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Figure 1: A high-quality animated production model (Ptex T-rex model c© Walt Disney Animation Studios.) rendered in real time under
directional and environment lighting using LEADR mapping on an NVidia GTX 480 GPU. The surface appearance is preserved at all scales,
using a single shading sample per pixel. Combined with adaptive GPU tessellation, our method provides the fastest, seamless, and antialiased
progressive representation for displaced surfaces.

Abstract

We present Linear Efficient Antialiased Displacement and Re-
flectance (LEADR) mapping, a reflectance filtering technique for
displacement mapped surfaces. Similarly to LEAN mapping, it
employs two mipmapped texture maps, which store the first two
moments of the displacement gradients. During rendering, the pro-
jection of this data over a pixel is used to compute a noncentered
anisotropic Beckmann distribution using only simple, linear filter-
ing operations. The distribution is then injected in a new, physically
based, rough surface microfacet BRDF model, that includes mask-
ing and shadowing effects for both diffuse and specular reflection
under directional, point, and environment lighting. Furthermore,
our method is compatible with animation and deformation, making
it extremely general and flexible. Combined with an adaptive mesh-
ing scheme, LEADR mapping provides the very first seamless and
hardware-accelerated multi-resolution representation for surfaces.
In order to demonstrate its effectiveness, we render highly detailed
production models in real time on a commodity GPU, with quality
matching supersampled ground-truth images.
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1 Introduction

Rendering applications such as video games commonly employ
bump or normal textures (henceforth interchangeably referred to
as normal textures) to enhance surface appearance (e.g., [Kilgard
2000]). These textures perturb or modify the normal of a simple
underlying surface to emulate geometric variations through shad-
ing perturbations. Similarly to albedo textures, normal textures
must be filtered for antialiasing purposes. But since shading with
linearly filtered normals does not result in proper reflectance filter-
ing, these textures cannot exclusively rely on simple methods such
as mipmapping. Recently introduced by Olano and Baker [2010],
LEAN mapping is an elegant solution to this problem, that has
found widespread adoption because of its effectiveness, efficiency,
and simplicity [Baker 2011].

Normal mapping is an inherited paradigm from the 1980’s. At that
time, geometric models were coarse because of computing capa-
bilities and memory constraints. Textures cheaply enhanced visual
details without increasing geometric complexity. The discrepancy
between the resolutions of geometry and texture was the key as-
sumption for texture filtering: within the same large and flat trian-
gle, visibility, curvature, and orientation were considered constant.
Consequently, filtering in texture space or in geometry space could
reasonably be considered equivalent. This assumption does not
hold anymore because mesh and texture resolutions can be matched
with negligible overhead on modern GPUs.

Filtering appearance of small-scale geometry is thus a critical
emerging problem. Indeed, small-scale geometry produces view-
and light-dependent effects that include masking, shadowing, and
projection weighting (i.e., the cosine term). Filtering this small-
scale geometry while neglecting these visual effects violates energy
conservation and can result in objectionable aliasing, popping arti-
facts, and inconsistent appearances throughout scales. Methods for
filtering normal maps do not account for these effects, which is why
filtering reflectance from normal mapping is not the same problem
as filtering reflectance of small-scale geometry [Han et al. 2007;
Bruneton and Neyret 2012] (see Figure 2).

We propose a solution to this problem in the important case where
the small-scale geometry is generated by displacement mapping.
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Figure 2: On real surfaces the distribution of visible normals de-
pends on the view direction because of masking and projection
weighting.

We introduce Linear Efficient Antialiased Displacement and Re-
flectance (LEADR) mapping, a technique motivated by LEAN
mapping but adapted to reflectance of displacement maps. We use
the same lightweight memory representation, but with a physically
based BRDF that correctly accounts for view- and light-dependent
effects under directional, point, and environment lighting. Our
model also leverages commodity GPU features, and produces high-
quality images matching supersampled ground-truth images. When
coupled with an adaptive meshing scheme, LEADR mapping pro-
vides a seamless, multi-resolution, and hardware-accelerated sur-
face representation. Our contributions can be summarized as fol-
lows.

• We model physically based microfacet BRDFs with noncen-
tered Beckmann microfacet distributions.

• We provide anisotropic BRDF equations for specular and dif-
fuse surfaces of arbitrary roughness.

• We derive an analytical solution for the noncentered
anisotropic specular microfacet BRDF with a direc-
tional/point light.

• We propose a simple, controllable, noise- and artifact-free
sampling scheme for our microfacet model under environ-
ment lighting.

• We show how surface height scaling, and tangent stretching
and shearing can be integrated efficiently in our reflectance
model.

Overview

In order to give a general understanding of the workings of our
method, and before diving into the mathematical derivations for our
solutions, we provide in Figure 3 an overview of its GPU pipeline.

A series of surface statistics are precomputed from a displacement
map, and stored in mipmapped textures. In the vertex processing
stages, the geometry is adaptively tessellated and displaced for best
rasterization performance. The displacements that are too small
to be represented by the final geometry are accounted for in our
reflectance model during fragment processing, thus guaranteeing
consistent and seamless surface shape and appearance at any scale.
First, a noncentered Beckmann distribution of the slopes projected
onto the footprint of the pixel is computed. This process lever-
ages modern GPU filtering capabilities and only consists of texture
fetch operations. The resulting PDF and incident lighting are then
combined to compute the diffuse and specular reflectance from the
surface using our two new BRDF models (Sections 4 and 5).

Note that a number of additional mathematical derivations, proper-
ties, explanations, and pseudocodes are provided in the associated
supplemental document.
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Figure 3: The GPU pipeline for our method. The following data
is given or precomputed once per scene: LEADR textures and light
sources (points and environments). The processing pipeline is di-
vided in two stages. First, the vertex processing computes all the
data projected into each pixel. Then, the fragment processing cal-
culates the noncentered Beckmann distribution in the pixel to be
combined with the incident lighting in order to compute the diffuse
and specular shading contributions to the pixel.

2 Related Work

Convolution-based normal map filtering methods [Fournier 1992;
Toksvig 2005; Han et al. 2007] use the fact that, at any scale,
the BRDF is the convolution of a base BRDF and a Normal Dis-
tribution Function. Because masking, shadowing, and projection
weighting are nonlinear functions of the view, light, and normal
directions, incorporating these effects into the convolution is dif-
ficult. Tan et al. [2005; 2008] use several Gaussian lobes with a
masking-shadowing term, but omit the important view-dependent
projection weighting effect and do not normalize their BRDF. Heitz
et al. [2013] derive an analytical approximation to evaluate view-
dependent normal distributions on the fly, in order to filter albedo
textures correlated with visibility on displaced surfaces. Neither the
BRDF nor reflectance are accounted for in their model. Other meth-
ods precompute the complete BRDF at any location and for any
scale, and store it in a Bidirectional Texture Function [Cabral et al.
1987; Becker and Max 1993; Ma et al. 2005; Wu et al. 2009]. These
methods are capable of capturing view-dependent effects, and could
theoretically work with displacement maps; however, the dissuasive
memory requirements to store 6D spatially varying BRDFs strongly
reduce their practicality.

Our approach concerns three main areas of previous work: LEAN
mapping, physically based BRDFs, and filtered importance sam-
pling. We review their respective related work in the following
paragraphs.

LEAN Mapping. Olano and Baker [2010] introduce a lightweight
representation capable of leveraging the tangent-plane parameteri-
zation to express the moments of the normal distribution in the same
reference frame. Their formulation allows for linear filtering of the
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data in a manner that properly captures filtered reflectance. Fur-
thermore, their representation supports anisotropy and multilayer
superposition, making it overall an excellent tool for real-time ren-
dering. The main limitation of LEAN mapping in the context of our
work comes from the non-physically based BDRF employed by the
model: It lacks proper normalization, as the Jacobian of the reflec-
tion operation is missing, and does not incorporate the important
masking, shadowing, and projection weighting effects. Moreover,
it is only designed for specular microfacets under point and direc-
tional lighting.

Physically based BRDFs. Microfacet theory has been used ex-
tensively by the graphics community to derive physically based
BRDF models [Beckmann and Spizzichino 1963; Cook and Tor-
rance 1982; Oren and Nayar 1994; Walter et al. 2007]. It is only
recently though that both production and real-time rendering com-
munities have begun leveraging their use [McAuley et al. 2012].
Despite the fact that microfacet BRDF derivations bare many simi-
larities with the problem of filtering reflectance from displaced sur-
faces, they cannot be used directly. Indeed, BRDF formulations do
not account for multiple scales, and more importantly assume cen-
tered microfacet distributions. This implies a constant average mi-
crosurface normal pointing in the “up” direction of the local frame
of parameterization, and prevents their use with LEAN mapping,
where the average normal can deviate significantly from this direc-
tion. As another illustration, Bruneton et al. [2010] use a physically
based BRDF model [Ross et al. 2005] to compute the reflectance
of procedural ocean displacements at any scale. Since their formu-
lation does not account for noncentered microfacet normal distri-
butions, they are forced to use an approximation, which arguably
works for small angular deviations, but fails when the average mi-
crofacet normal deviates significantly from the vertical.

Filtered Importance Sampling. For lighting from an environ-
ment map, the BRDF must be integrated over all incident lighting
directions. Monte Carlo integration is typically used for this prob-
lem but produces noisy results and is not adequate for real-time
rendering. Colbert and Křivánek [2007; 2008] propose a sampling
scheme that leverages filtered environment map representations. In-
stead of sampling directions from the unfiltered environment map,
they use samples from the filtered version of the environment map.
For a fixed budget of N samples, the algorithm always produces
smooth and noise-free results, while exhibiting convergence as N
increases. Such behavior is well suited for real-time rendering
purposes, where artifact-free tradeoffs between quality and perfor-
mance are important. We extend this idea to our more complex
BRDF models.

3 Preliminaries

In this section, we show how displacement map filtering can be di-
rectly transposed into the problem of deriving a microfacet reflec-
tion model. This key observation allows us to use a derivative of
LEAN mapping to solve our new shading equations efficiently in
the next sections.

Let P be a flat geometric patch that projects onto a pixel, and whose
area is normalized under the measure of a low-pass filter kP satisfy-
ing

∫

P kP(p) dp = 1. We refer to the normal of P as the macronor-

mal ωg , which verifies ωg = (0, 0, 1)t in its tangent space. At a
smaller scale, P is perturbed by displacements. This process gen-
erates micronormals ωn(p) indexed by locations p ∈ P . These
micronormals average to ωn̄, referred to as the mesonormal of P .
Note that contrary to previous microfacet models, we do not assume
that ωg = ωn̄. This configuration is illustrated in Figure 4. For any

Figure 4: Macro-, meso-, and micronormals. The displacement
is applied to points pi on patch P , resulting in the process into
different sets of normals.

observation direction ωo, the projected area of the plane defined by
the mesonormal is

ωn̄ · ωo

ωn̄ · ωg

=

∫

P

ωn(p) · ωo

ωn(p) · ωg

kP(p) dp. (1)

Here, the dot products ωn̄ · ωo and ωn(p) · ωo are the projection
weights due to the observation direction. The two other dot prod-
ucts ωn̄ · ωg and ωn(p) · ωg are due to parameterization Jacobians,
and respectively measure the areas of the meso- and microsurfaces.
Note that if ωg = ωn̄, then ωn̄ · ωg = 1.

In order to shade P , we define the intensity I of the pixel it covers
as the integration of a filtering operation over all incident lighting
directions Ω:

I =
ωn̄ · ωg

ωn̄ · ωo

∫

Ω

L(ωi)

∫

P
R(p, ωo, ωi) kP(p) dp dωi. (2)

The term
∫

P R(p, ωo, ωi) kP(p) dp is the “filtering integral” and

involves a local reflectance function R(p, ωo, ωi), assumed con-
stant over P . Additionally, L(ωi) is the incident radiance from
direction ωi, and

ωn̄·ωg

ωn̄·ωo
is a renormalization factor measuring pro-

jected area in direction ωo. Under the geometric optics approxima-
tion, we define our local reflectance function as

R(p, ωo, ωi) =V (p, ωi)V (p, ωo)×

ρ (ωn(p), ωo, ωi)
〈ωn(p), ωo〉 〈ωn(p), ωi〉

ωn(p) · ωg

(3)

where at location p, V (p, ωo) (resp. V (p, ωi)) denotes the masking
(resp. shadowing) Heaviside function, and ρ(ωn(p), ωo, ωi) the
surface’s BRDF. The operator 〈−,−〉 gives the cosine of the angle
formed between two vectors, clamped to zero if it is negative.

Similarly to PDFs, (low-pass) energy-conserving filters integrate to
one over their domain. Therefore, the filtering integral in Equa-
tion (2) can be interpreted as the first moment of a function of ran-
dom variable p, with PDF kP(p)

1:

∫

P
R(p, ωo, ωi) kP(p) dp = E[R(p, ωo, ωi)]. (4)

This observation directly links our filtering problem with micro-
facet BRDF models, since they also integrate reflectance using the
statistics of the surface. This allows us to follow an important as-
sumption: Previous work has shown that treating the visibility func-
tions V (p,−) independently from the other parameters of R is an
accurate approximation [Ross et al. 2005; Bruneton et al. 2010;
Heitz and Neyret 2012]. Intuitively, this is because occlusions never
occur at position p directly, as they are due to distant geometry,

1Some filters (such as kP(p) = sinc(p)) produce negative weights and

may not be considered as valid PDFs, but this does not impact the equations.
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contrary the other parameters in R that depend only on the normal
ωn(p). Based on this observation, we can reasonably write

E[R(p, ωo, ωi)] = E[V (p, ωo)V (p, ωi)]E[Rn(ωn, ωo, ωi)],

having

E[Rn(ωn, ωo, ωi)]

=

∫

Ω

ρ(ωn, ωo, ωi) 〈ωn, ωo〉 〈ωn, ωi〉D(ωn) dωn. (5)

Here, D is the exact normal distribution function over P :

D(ω) =

∫

P

δω(ωn(p))

ωn(p) · ωg

kP(p) dp, (6)

and satisfies
∫

Ω
(ωn · ωg)D(ωn) dωn = 1. Thus, using Equa-

tions (2) and (4), we can derive our “microfacet equation”:

I =
ωn̄ · ωg

ωn̄ · ωo

×
∫

Ω

L(ωi)E[V (p, ωo)V (p, ωi)]E[Rn(ωn, ωo, ωi)] dωi, (7)

expressing the pixel intensity as an integral over all inci-
dent lighting directions of the masking-shadowing mo-
ment E[V (p, ωo)V (p, ωi)] and the reflectance moment
E[Rn(ωn, ωo, ωi)]. Compared to Equation (2), we only as-
sume that the statistics of V (p,−) and ωn are uncorrelated.

4 Gaussian Surfaces

The distribution of normals as formulated in Equation (6) makes
Equation (7) inadequate to be solved under real-time constraints.
Therefore, we will assume that D takes the form of a Beckmann
distribution at all scales. Given this assumption, we discuss the
memory requirements of our method, derive an analytical formula-
tion for E[V (p, ωo)V (p, ωi)], and instantiate Equation (7) for spec-
ular and diffuse microfacets. Our choice of distribution is further
motivated in Section 6.

4.1 Properties

Elevation and slopes are usually the two parameters considered
when studying the statistics of random rough surfaces [Bourlier
et al. 2000]. Choosing such features to follow Gaussian distribu-
tions is especially interesting for our needs because they are flexible
and lightweight, but also quite general. For instance, many classes
of real-world surfaces, such as stochastic, fractal, or multi-layered
surfaces, produce Gaussian statistics that can exhibit behaviors that
range from perfectly smooth to very rough. Denoting surface slopes
as ñ = (xñ, yñ)

t, we write their 2D PDF as

P22(ñ) =
exp

(

− 1
2
(ñ− E[ñ])t Σ−1 (ñ− E[ñ])

)

2π
√

|Σ|
, (8)

where Σ is the covariance matrix

Σ =

[

σ2
x cxy

cxy σ2
y

]

with

σ2
x = E[x2

ñ]− E
2[xñ]

σ2
y = E[y2

ñ]− E
2[yñ]

cxy = E[xñyñ]− E[xñ]E[yñ]
(9)

Now, recalling that slopes are mathematically linked to normals by
the relations

xñ = −xn/zn and yñ = −yn/zn,

our normal distribution function D following an anisotropic Beck-
mann formulation can be expressed as

D(ωn) =
P22(ñ)

(ωn · ωg)4
. (10)

The factor 1
(ωn·ωg)4

is due to the Jacobian

∥

∥

∥

∂ñ
∂ωn

∥

∥

∥
= 1

(ωn·ωg)3
and

the inverse projection 1
(ωn·ωg)

that normalizes the PDF. Since the

moments in Equation (9) are linear, we store them in mipmapped
textures. Linear (mipmapped) filtering can then be exploited to
compute the adequate normal distribution at any scale [Olano and
North 1997; Olano and Baker 2010]. Note also that we can retrieve
the mesonormal ωn̄ directly from this linear data:

ωn̄ =
(−E[xñ],−E[yñ], 1)

t

√

1 + E2[xñ] + E2[yñ]
. (11)

Thus, similarly to LEAN mapping, we store the terms E[xñ],
E[yñ], E[x

2
ñ], E[y

2
ñ], and E[xñyñ], i.e., five scalar values, in two

mipmapped texture maps.

Since we use the same representation as LEAN mapping, our
method inherits other important properties from it: the base surface
roughness can be modeled by offsetting the parameters of the co-
variance matrix, the model is compatible with typical Blinn-Phong
shading since the Beckmann distribution can be used to approxi-
mate it, and the linearity of the parameters allows for the combi-
nation of displacement layers. Another important property is its
compatibility with animation, which is addressed next.

4.2 Macrosurface Animation

In this section, we study Gaussian microsurface statistics in the case
where the macrosurface is subject to deformations.

Surface Stretching and Shearing. In practice, we store the mo-
ments of the slopes defined in texture space (u, v), denoted as
E[uñ], E[vñ], E[u

2
ñ], E[v

2
ñ], and E[uñvñ]. They are linearly fil-

tered at runtime and transformed into texture space slope moments
using Equation (9). In order to solve Equation (7), this distribution
must be expressed in the macrosurface tangent frame (x, y, ωg).
Since meshes are rarely perfectly parameterized, the texture param-
eterization u(x, y), v(x, y) usually produces distortions. This phe-
nomenon is further accentuated in the case of animation. If we de-
note as h(u, v) the amplitude of the displacement map, the texture
space slopes are then defined as the displacement gradient

(uñ, vñ) =

(

∂h

∂u
,
∂h

∂v

)

.

Therefore, the slopes in world space can be defined by

(xñ, yñ)=

(

∂h

∂x
,
∂h

∂y

)

=

(

∂h

∂u

∂u

∂x
+

∂h

∂v

∂v

∂x
,
∂h

∂u

∂u

∂y
+

∂h

∂v

∂v

∂y

)

.

If the distortions occurring on the macrosurface have low spatial
variations, then we can reasonably assume that the mapping dis-
tortions represented by the terms ∂u

∂x
, ∂v

∂x
, ∂u

∂y
, and ∂v

∂y
are locally

constant. It follows that the appropriate slope distribution in world
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space verifies

E[xñ] =
∂u

∂x
E[uñ]+

∂v

∂x
E[vñ] ; E[yñ] =

∂u

∂y
E[uñ]+

∂v

∂y
E[vñ]

σ2
x =

(

∂u

∂x

)2

σ2
u +

(

∂v

∂x

)2

σ2
v + 2

∂u

∂x

∂v

∂x
cuv

σ2
y =

(

∂u

∂y

)2

σ2
u +

(

∂v

∂y

)2

σ2
v + 2

∂u

∂y

∂v

∂y
cuv

cxy =
∂u

∂x

∂u

∂y
σ2
u +

∂v

∂x

∂v

∂y
σ2
v +

(

∂u

∂x

∂v

∂y
+

∂v

∂x

∂u

∂y

)

cuv

(12)

Height Scaling. One may wish to apply a scaling factor η on
displacements h to increase or reduce surface displacement. If η
also exhibits low spatial variation across the surface, then it suffices
to scale the first order moments E[xñ] and E[yñ] by η, and the
second order moments E[x2

ñ], E[y
2
ñ], and E[xñyñ] by η2.

Computing the moments of D in this way allows us to support ani-
mated geometry without having to update the LEADR mipmap hi-
erarchy during animation. The distribution is adapted on the fly
from the distortions, and adequately modulates the resulting appear-
ance, as illustrated in Figure 5.

Figure 5: Top row: Our representation allows for efficient ren-
dering under surface stretching. Stretching the surface reduces the
amplitude of the slopes. Because our representation is linear, this
effect can be included at any scale. Note how the specular reflection
becomes anisotropic under important surface compression. Middle
row: A quad with diffuse microfacets is deformed by surface shear-
ing. Shearing the surface changes the slope distribution and thus
its appearance. As well as stretching, this effect can be accounted
for at any scale. Bottom row: Height downscaling reduces the am-
plitude of the displacement map. At close view, the bumps disap-
pear, and at a distance, the roughness decreases and the surface
becomes specular, leading to a mirror-like reflection. All the insets
show closer views of the actual displaced geometry.

4.3 Masking-Shadowing

Another benefit of using Gaussian surfaces is the availability of an
experimentally validated solution to the masking-shadowing mo-
ment [Smith 1967; Bourlier et al. 2000]:

E[V (p, ωo)V (p, ωi)] =
1

1 + Λ(ωo) + Λ(ωi)
. (13)

Here, the Λ function from Smith [1967] is defined as follows for
any direction ω = (sin θ cosφ, sin θ sinφ, cos θ):

Λ(ω) = tan θ

∫ +∞

cot θ

(x− cot θ)P2(x) dx.

The PDF P2(x) is the slope density along a fixed inci-
dent direction ω. It is also Gaussian, hence P2(x) =

1

σ(φ)
√
2π

exp
(

− (x−µ(φ))2

2σ2(φ)

)

, with parameters

µ(φ) = cosφE[xñ] + sinφE[yñ], (14)

σ2(φ) = cos2 φσ2
x + sin2 φσ2

y + 2 cosφ sinφ cxy. (15)

Analytical solutions as well as approximations have been derived
for Λ [Bourlier et al. 2000], but only under the assumption that
the distribution is centered, i.e., E[xñ] = E[yñ] = 0. Fortu-
nately, the formula can easily be extended to Gaussians with ar-
bitrary mean by shifting its parameter by the mean slope along the
incident direction ω. Using Equations (14) and (15), we generalize

ν = cot θ−µ(φ)

σ(φ)
√

2
and combine it with the approximation given by

Walter et al. [2007]:

Λ(ω) =
exp

(

−ν2
)

2ν
√
π

− erfc(ν)

2

≈
{

1.0−1.259ν+0.396ν2

3.535ν+2.181ν2 if ν < 1.6
0 otherwise.

Note that ν < 0 may occur, implying that the incident direction ω
is below the surface. This should not happen for the computation of
Λ(ωo) because the face would then be backface culled. However,
this may happen for ωi, and then Λ(ωi) = +∞. In this case the
masking-shadowing term is 0 because the surface is completely in
shadow.

Now that we have expressions for D and E[V (p, ωo)V (p, ωi)], we
turn to E[Rn(ωn, ωo, ωi)]. This is the final step to getting a com-
plete expression for Equation (7), and simply requires that we de-
fine the BRDF term ρ of the microgeometry.

4.4 Specular Microfacets

A (mirror) specular BRDF is defined as a function of the half-vector
ωh = ωo+ωi

‖ωo+ωi‖ as follows

ρ(ωn, ωo, ωi) =

∥

∥

∥

∥

∂ωh

∂ωi

∥

∥

∥

∥

F (ωh, ωi) δωh
(ωn)

〈ωh, ωi〉

=
F (ωh, ωi) δωh

(ωn)

4 〈ωh, ωi〉2
,

where

∥

∥

∥

∂ωh

∂ωi

∥

∥

∥
= 1

4 |ωh·ωi| is the Jacobian of the reflection trans-

formation [Walter et al. 2007], and F is the Fresnel term. After
substitution in Equation (5) we get

E[Rn(ωn, ωo, ωi)] = F (ωh, ωi)
D(ωh)

4
,
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thus leading to the following expression for Equation (7):

I =
ωn̄ · ωg

ωn̄ · ωo

∫

Ωi

L(ωi)F (ωh, ωi)

4 [1 + Λ(ωo) + Λ(ωi)]
D(ωh) dωi. (16)

Equation (16) provides a complete shading formulation for
rough specular surfaces. Its physical soundness can easily
be validated since it integrates to one without the shadow-
ing Λ(ωi) and Fresnel F terms for any possible configuration
{

ωo,E[xñ],E[yñ], σ
2
x, σ

2
y, cxy

}

:

ωn̄ · ωg

ωn̄ · ωo

∫

Ωi

1

4 [1 + Λ(ωo)]
D(ωh) dωi = 1.

Point and Directional Lighting Under a point or directional light
δωi emitting radiance L, Equation (16) takes an analytical form

I =
ωn̄ · ωg

ωn̄ · ωo

LF (ωh, ωi)

4 [1 + Λ(ωo) + Λ(ωi)]
D(ωh). (17)

When the mesonormal is centered (i.e., ωn̄ = ωg), Equation (17)
is equivalent to previous work [Ross et al. 2005; Bruneton et al.
2010]. Thus, our result can be interpreted as a generalization to the
case of Gaussian distributions with arbitrary mean.

Environment Lighting For environment lighting, we reformulate
the integral in Equation (16) in normal space Ωn, rather than Ωi.

The Jacobian

∥

∥

∥

∂ωh

∂ωi

∥

∥

∥
then cancels out, yielding

I =
ωn̄ · ωg

ωn̄ · ωo

∫
Ωn

L(ωi)F (ωh, ωi) 〈ωn, ωo〉
1 + Λ(ωo) + Λ(ωi)

D(ωn) dωn.

Note that because of the change of variable, ωi must be computed
using the reflection operator

ωi = 2 (ωn · ωo)ωn − ωo. (18)

With a change of variable D(ωn) dωn = P22(ñ)
ωn·ωg

dñ, we obtain

I =
ωn̄ · ωg

ωn̄ · ωo

∫
L(ωi)F (ωh, ωi)

〈ωn,ωo〉
ωn·ωg

1 + Λ(ωo) + Λ(ωi)
P22(ñ) dñ, (19)

which expresses the outgoing radiance from the microsurface as
an integration over its slopes statistics. This formulation is more
convenient because efficient numerical solutions can be derived, as
we will show in Section 5. Before diving into these details, we
provide next our shading formulation for rough diffuse surfaces.

4.5 Diffuse Microfacets

A diffuse BRDF is constant ρ(ωn, ωo, ωi) = 1
π

. Substituting this
formulation in Equation (5) yields

E[Rn(ωn, ωo, ωi)] =
1

π

∫

Ωn

〈ωn, ωo〉 〈ωn, ωi〉D(ωn) dωn.

As in the specular case, we first rewrite Equation (7) with this spe-
cific formulation of ρ, obtaining

I =
ωn̄ · ωg

ωn̄ · ωo

∫
Ωi

L(ωi)

1

π

∫

Ωn

〈ωn, ωo〉 〈ωn, ωi〉D(ωn) dωn

1 + Λ(ωo) + Λ(ωi)
dωi

which, after the same change of variable D(ωn) dωn = P22(ñ)
ωn·ωg

dñ,

leads to

I =
ωn̄ · ωg

ωn̄ · ωo

∫
Ωi

L(ωi)

1

π

∫
〈ωn, ωo〉 〈ωn, ωi〉

ωn · ωg

P22(ñ) dñ

1 + Λ(ωo) + Λ(ωi)
dωi.

Even under a single directional light, this equation has no analyti-
cal solution. It can however be reformulated into another integral
involving irradiance mapping [Ramamoorthi and Hanrahan 2001].
Denoting as E(ωn) the irradiance map satisfying

E(ωn) =

∫

Ωi

L(ωi) 〈ωn, ωi〉
1 + Λ(ωo) + Λ(ωi)

dωi, (20)

we derive our final shading expression for a rough diffuse surface:

I =
ωn̄ · ωg

ωn̄ · ωo

1

π

∫

E(ωn)
〈ωn, ωo〉
ωn · ωg

P22(ñ) dñ. (21)

5 Sampling Algorithms

The expressions we have derived for diffuse surfaces (Equa-
tion (21)) as well as specular surfaces in the special case of en-
vironment lighting (Equation (19)) must be computed numerically.
In order to maintain high performance, we next derive an efficient
sampling scheme, specifically adapted to solve these integrals as
efficiently as possible.

5.1 Sampling Pattern

Our numerical solution is based on a sampling scheme whose sam-
ples are regularly and uniformly distributed on the R

2 plane, and
centered at the origin. For a 2D set of N2 samples, we thus only
need to store ⌈N

2
⌉ positions and weights. We initialize each sample

by uniformly sampling a standard 1D normal distribution N (0, 1)
so that the set covers an arbitrary interval [−λ, λ] × [−λ, λ], cho-
sen for best results (Figure 6(a)). For instance, we set λ = 1.8 for
N = 5. The normalized weight Wj associated to point pj is given
by

Wj =
exp

(

− 1
2
p2j
)

∑N

k=1 exp(− 1
2
p2k)

.

At runtime, we warp each sample in order to match P22 in Equa-
tions (19) and (21), which results in a new sample position ñ =
(xñ, yñ) and weight Wñ. We accomplish this by multiplying the
2D sample (pj , pk) by the Cholesky decomposition of the covari-
ance matrix of P22 [Jäckel 2005]:

xñ = pj σx + E[xñ]

yñ =
(

rxy pj +
√

1− r2xy pk
)

σy + E[yñ]

Wñ = Wj Wk

where rxy = cxy/(σxσy) is the correlation coefficient of Σ. This
whole process is illustrated in Figure 6, and provides a lightweight
collection of samples to compute Equations (19) and (21), further
detailed in the next section. Our sample set converges to the ex-
act value as N increases, and we further discuss their properties in
Section 6.

6



To appear in ACM TOG 32(6).

Figure 6: Sampling distribution P22. (a) We precompute uniform
1D samples pj . (b) In the fragment shader we compute the Carte-
sian product and get 2D samples (pj , pk). (c) We scale, correlate,
and shift the samples to match distribution P22.

5.2 Sampling Environment Lighting

We numerically compute Equation (19) using our sample set:

I =
ωn̄ · ωg

ωn̄ · ωo

∑
N2

L(ωi)F (ωh, ωi)
〈ωn,ωo〉
ωn·ωg

1 + Λ(ωo) + Λ(ωi)
Wñ. (22)

For each slope sample ñ, we compute the associated normal ωn and
the reflected vector ωi, using respectively Equations (11) and (18),
to sample the environment map. Directly sampling the environment
map from ωi could produce noise or banding artifacts, especially
with the small values for N that we target. To prevent this, we de-
rive a method inspired by filtered importance sampling [Colbert and
Křivánek 2007; Křivánek and Colbert 2008]: Instead of sampling
with a set of delta directions, we emulate a smooth reconstruction
filter using a prefiltered environment map. For each sample, we
compute the level of detail according to the solid angle α covered
in the incident direction ωi

α ≈
∥

∥

∥

∥

∂ωi

∂ñ

∥

∥

∥

∥

A,

where A = (2λmax(σx, σy)/N)2 is the surface area of a sam-
ple in slope space. Because we use isotropic samples, we further
overestimate it by squaring the length of the sample in the largest
direction of eccentricity of P22 (hence the term max(σx, σy)). This
guarantees that the solid angles overlap across neighboring samples
and avoids banding artifacts for any N . For the sake of complete-
ness, we provide the Jacobian of the slope to reflected vector:

∥

∥

∥

∥

∂ωi

∂ñ

∥

∥

∥

∥

=

∥

∥

∥

∥

∂ωi

∂ωn

∥

∥

∥

∥

∥

∥

∥

∥

∂ωn

∂ñ

∥

∥

∥

∥

= 4 |ωn · ωo| |ωn · ωg|3.

The whole computation is detailed in Algorithm 1 and illustrated
in Figure 7, and provides efficient and artifact-free results to Equa-
tion (19).

5.3 Sampling Irradiance

We compute Equation (21) in three steps. The first two steps consist
in building a spherical harmonic (SH) representation of the irradi-
ance map [Ramamoorthi and Hanrahan 2001] that we defined in
Equation (20), that we then sample.

Irradiance Map. Since our irradiance map formulation from
Equation (20) depends on the masking-shadowing term, we com-
pute the map on the fly using the local frame of P . In Algorithm 2,
we compute the first nine SH coefficients of the irradiance map due

Figure 7: Filtered environment map sampling. (a) We sample slope
distribution P22 and for each micronormal sample ωn we compute
reflected vector ωi. (b) The surface covered by the samples in slope
space are transformed into solid angles by multiplying by the Jaco-
bian of the transformation. (c) For each reflected direction ωi we
fetch the environment map with levels of detail determined by the
solid angles. The reconstruction is smooth and noise-free.

Algorithm 1 Environment map sampling

function ENVMAPSAMPLING(ωo,E[ñ], σx, σy, cxy)
I = 0
for j, k = 1..N do

xñ = pj σx + E[xñ]

yñ =
(

rxy pj +
√

1− r2xy pk
)

σy + E[yñ]
Wñ = Wj Wk

ωn = (−xñ,−yñ, 1)/
√

x2
ñ + y2

ñ + 1
ωi = 2 (ωn · ωo)ωn − ωo

J = 4× |ωn · ωo| × |ωn · ωg|3
α = J ×A

I+=Wñ×
F (ωn,ωi)

〈ωn,ωo〉
ωn·ωg

1+Λ(ωo)+Λ(ωi)
×textureLod(ωi,LOD(α))

end for
return I × ωn̄·ωg

ωn̄·ωo

end function

to point/directional lights, accounting for the masking-shadowing
term by weighting their respective energies by 1

1+Λ(ωo)+Λ(ωi)
.

Unfortunately, interactively computing SH coefficients
Llm(environment) for an environment map is too costly.
Therefore, we precompute them once on the CPU; at runtime, we
multiply them by the masking term 1

1+Λ(ωo)
alone, and add them

to the coefficients computed for point/directional lights. With this
approach, we correctly weight point/directional light contributions
by the masking-shadowing term but only use the masking term for
environment lights.

For completeness, we recall the formula to sample from the irra-
diance map given the SH coefficients [Ramamoorthi and Hanrahan

7
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Algorithm 2 Computing the irradiance map

function INITIRRADIANCEMAPCOEFS

for 0 ≤ l ≤ 2 and −l ≤ m ≤ l do
Llm = 0

end for
for each directional light of radiance L and direction δωi do

P = L/(1 + Λ(ωo) + Λ(ωi))
L00 += L00 + 0.282095× P
(L11, L10, L1−1) += 0.488603× (xi, zi, yi)× P
(L21, L2−1, L2−2) += 1.092548×(xizi, yizi, xiyi)×P
L20 += 0.315392× (3z2i − 1)× P
L22 += 0.546274× (x2

i − y2
i )× P

end for
Llm += Llm(environment)/(1 + Λ(ωo))
end function

2001]

E(ωn) = 0.429043L22(x
2
n − y2

n) + 0.743125L20z
2
n

+ 0.886227L00 − 0.247708L20

+ 0.858086(L2−2xnyn + L21xnzn + L2−1ynzn)

+ 1.023328(L11xn + L1−1yn + L10zn).

Irradiance Integration. Once we have computed the irradiance
map, we discretize Equation (21) as

I =
ωn̄ · ωg

ωn̄ · ωo

1

π

∑
N2

E(ωn)
〈ωn, ωo〉
ωn · ωg

Wñ (23)

and compute it numerically with Algorithm 3. We observed that,
contrary to specular sampling, irradiance maps need not be pre-
filtered since they are already low frequency. This prevents artifacts
during sampling.

Algorithm 3 Irradiance map sampling

function IRRADIANCEMAPSAMPLING(ωo,E[ñ], σx, σy, cxy)
I = 0
for j, k = 1..N do

xñ = pj σx + E[xñ]

yñ =
(

rxy pj +
√

1− r2xy pk
)

σy + E[yñ]
Wñ = Wj Wk

ωn = (−xñ,−yñ, 1)/
√

x2
ñ + y2

ñ + 1

I += Wñ × 〈ωn,ωo〉
ωn·ωg

× E(ωn)

end for
return I × ωn̄·ωg

ωn̄·ωo
× 1

π

end function

6 Discussion

In this section we review the properties of our models and algo-
rithms, and discuss choices we made to elaborate our representa-
tion.

BRDF Models. Our BRDF models are designed to be parame-
terized with noncentered anisotropic Beckmann distributions, and
therefore may be interpreted as generalizations of previous work,
thus remaining compatible with them. In the case of centered dis-
tributions, our specular model corresponds to the one proposed by
Ross et al. [2005], which is essentially the same as Walter et al.’s

model [2007] used with Beckmann distributions. The only differ-
ence lies in the masking-shadowing function: Walter et al. use the
separable form 1

1+Λ(ωo)
× 1

1+Λ(ωi)
while we use the joint form

1
1+Λ(ωo)+Λ(ωi)

proposed by Ross et al., which better models the

correlation between visibility for view and light directions. In the
case of centered and isotropic Beckmann distributions, our diffuse
BRDF model corresponds to Oren and Nayar’s model [1994]. Our
diffuse BRDF model is more general because it includes noncen-
tered and anisotropic distributions. Within the scope of this pa-
per we focus on Beckmann distributions because they are conve-
nient for multi-scale representations. However, our general formu-
lation for noncentered distributions presented in Equation (7) can
be used with other normal distribution functions, such as Phong or
GGX [Walter et al. 2007].

Mono- vs. Multi-lobe Normal Distributions. Some previous
work uses multiple lobes to represent and store normal distribu-
tions [Fournier 1992; Tan et al. 2005; Han et al. 2007; Tan et al.
2008]. While multiple lobes can represent more complex distribu-
tions, they are more expensive. Also, their main problem lies in
the precomputations. To make interpolation possible, every lobe
in a texel must match the same lobe in the neighboring texels [Tan
et al. 2005; Han et al. 2007; Tan et al. 2008]. Solving this prob-
lem requires heavy nonlinear optimizations, and matching failures
may result in visual artifacts when two nonmatching lobes are in-
terpolated. To allow for lightweight memory storage, simple and
fast precomputations, as well as no-failure interpolation, we chose
to use a single anisotropic lobe representation.

Shadowing. Physically based rendering techniques should ac-
count for shadowing to ensure energy conservation. Our BRDF
model accounts for this effect: shadowing that occurs at the level of
the macrosurface (typically using a shadow map or a horizon map)
is still represented at the level of the microsurface by the BRDF
model; energy is conserved as well. However, in a real-life imple-
mentation one may decide to neglect shadowing because of perfor-
mance or memory constraints. In this case, to ensure consistency
across scales, the BRDF masking-shadowing term 1

1+Λ(ωo)+Λ(ωi)

must be replaced by the masking term alone 1
1+Λ(ωo)

.

Performance of Our Algorithms. We provide an analytical for-
mulation to evaluate our specular BRDF model with point and di-
rectional lights. It requires more computations than LEAN map-
ping alone because of our masking-shadowing term, but has similar
cost than any other physically based model overall. For environ-
ment lights, we propose a sampling scheme. We rely on hardware
mipmapping and select the best mipmap level to fetch the environ-
ment map by appropriately evaluating the solid angle of each fetch.
This ensures noise- and artifact-free evaluations for any number of
sample points as opposed to Monte Carlo sampling. The number of
samples can then be chosen as a tradeoff between bias and perfor-
mance. Our diffuse BRDF model has no analytical solutions and
we resorted to our sampling strategy even for a single light source.
We tried to find an analytical fitting with rational polynomials, us-
ing Pacanowski et al.’s [2012] fitting library. However, our BRDF
is 8D (ωo, ωi, E[ñ], σx, σy) and the rational polynomials required
to provide a good fit ended up having more than 70 coefficients,
and resulted in lower performance than our integration scheme. To
amortize the cost of the integration, we first splat all light directions
in an irradiance map, and then make the numerical integration on
the resulting irradiance map just once. For L lights and N sample
points the complexity of the algorithm is O(L) + O(N), instead
of O(L × N). The cost of the integration is also amortized as the
number of light sources increases. In practice, we use a 5 × 5 grid
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of points for the diffuse integration, because they capture the main
view-dependent effects. Note that the spherical harmonic represen-
tation of irradiance maps [Ramamoorthi and Hanrahan 2001] can
result in errors of up to 9%. This is accurate enough for many ap-
plications, but one would need to sample the lights independently
to produce exact results.

An important property of our algorithm is scalability. The further
away the rendered object is, the more details get projected in the
same pixel, and the more samples a typical Monte Carlo integra-
tion would require to solve Equation (2). Our algorithm is able to
recover complex reflectance with computational complexity inde-
pendent of the size of the filter extent. This key property comes
from the fact that we replaced the nonscalable spatial integration
(i.e., Equation (2)) by a scalable integration in the space of the sur-
face statistics (i.e., Equation (7)).

Uniform Sampling. In Section 5.1 we showed how to sample a
Gaussian distribution P22 with uniform 2D grids. We tried other
sampling strategies before opting for the grid approach. The impor-
tance sampling of P22 with a method such as the one of Colbert and
Křivánek [2008] is too sensitive to the random samples configura-
tion for small values of N ; the uniform grid provides better results
(see our supplemental document for comparisons). We also tried
to use Gauss-Hermite quadratures, which are specifically designed
for Gaussian kernels. However, this quadrature scheme only works
well with polynomial functions, and Equations (22) and (23) con-
tain many terms that are hardly approximated by polynomials (the
function is not even C1). Again, our simple uniform sampling grid
provided better results than Gauss-Hermite quadrature. The sam-
pling pattern may be improved with further analysis [Heck et al.
2013; Subr and Kautz 2013], but this is out of the scope of this
paper.

Domain of Validity of Our Method. Our model and its deriva-
tions are based on the fundamental assumption that the displace-
ment map is applied over a locally planar patch. In theory, our
method is not valid when the pixel footprint covers a curved macro-
surface since the curvature must be filtered along with the displace-
ment map. For instance, the claws of the T-rex model in Figure 1 are
small, smooth, curved, and highly specular. As such, they exhibit
aliasing that cannot be filtered by LEADR mapping alone. In prac-
tice, we deal with this problem by offsetting base roughness heuris-
tically due to curvature, and add it to the slope covariance matrix of
the displacement map. This way, we merge the normal distribution
of the curved macrosurface with the LEADR map. This “trick” ef-
fectively removes the aliasing from small and highly curved macro-
surfaces, but is not well defined, as we arbitrarily set the mapping
from curvature to roughness. Properly filtering displacement maps
along with large pieces of macrosurfaces is complex and remains
an open problem [Bruneton and Neyret 2012].

7 Results

Renderings. We present a set of very rough spheres rendered un-
der different configurations in Figure 8. The top two rows display
ground truth computed with supersampling of geometry synthe-
sized directly from normal and displacement maps, and the bottom
row displays the results of our method. The images show that nor-
mal mapping fails to capture view-dependent effects due to mask-
ing and projection weighting. Since normal map filtering methods
target ground truth when only normal maps are used, they cannot
reproduce these more realistic effects. On the other hand, LEADR
mapping accurately reproduces this more complex appearance. Fig-
ure 9 provides other comparisons with more complex geometry:

the pillow (top) is illuminated with an environment light only, and
the snake (bottom), with an environment map and four point light
sources.

Ground truth for normal mapping

Ground truth for displacement mapping

LEADR
5 × 5 5 × 5 32 × 32

σθ = 1.0 σθ = 0.2 σθ = 2.0 σθ = 0.2 σθ = 2.0 σθ = 0.2

σφ = 1.0 σφ = 1.6 σφ = 2.0 σφ = 0.4 σφ = 2.0 σφ = 1.6

isotropic anisotropic isotropic anisotropic isotropic anisotropic
diffuse; directional light diffuse; irradiance specular; environment

Figure 8: Ground truth generated with procedural normal mapping
(top row), and displacement mapping (middle row). 5× 5 sampled
LEADR mapping for diffuse microfacets, and 32 × 32 for specu-
lar microfacets (bottom row). More complete tables of rendered
spheres are provided in the supplemental document.

Ground truth LEADR

Normal mapping Displacement mapping 5× 5

Figure 9: Top row: Environment map applied to diffuse microfacet
distributions. The ground truth for normal mapping (left) fails to
capture the view dependence due to small-scale geometry in the
ground-truth displaced supersampled result (center). Our method
accurately captures these effects (right). Bottom row: Environment
and point lighting applied to diffuse microfacet distributions. At
close-up views (insets) the extent of the filter is appropriately re-
duced and our result matches the ground truth for displacement
mapping.

We also applied LEADR mapping on a multiscale ocean displace-
ment map, animated with the method of Bruneton et al. [2010]
(Figure 10). We use our analytic formula to evaluate shading from
the sun (which is approximated as a directional light), and our nu-
merical scheme to compute filtered reflection from the environment
map. Figure 5 shows that our technique is robust to extreme defor-
mation and animation.

Finally, we tested our approach on a complex, production-quality
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Figure 10: Procedural ocean displacement map rendered with
our specular microfacet BRDFs, at multiple scales within an im-
age and between an animated zoom-out sequence. From left to
right, the ocean is viewed from progressively increasing distances.
The specular highlights are correctly and continuously antialiased
while zooming out.

geometry asset with several highly detailed displacement maps in
Figure 1. This result is part of an animated walking cycle, available
in the accompanying video, also computed interactively with our
technique. While our model has been designed with real-time ren-
dering in mind, it could prove accurate even for some productions.

Performance. We report various rendering times in the following
tables. These numbers, all expressed in milliseconds, are provided
as a mean to quantify the performance impact of our model over
more naive, yet commonly used, shading methods. All numbers
are captured on an Intel Core i7-930 CPU at 2.80 GHz, and an
NVidia GTX 480 GPU. To obtain a baseline performance value, we
rendered a full-screen quad over a 1024× 1024 framebuffer with a
LEADR map of matching resolution. While no filtering occurs, this
configuration guarantees that the fragment shader load is the same
across all shading configurations, and gives a lower performance
bound since coarser mip levels could benefit from superior cache
optimizations.

For one directional light source and specular reflection, the baseline
times are

Constant Blinn-Phong LEAN LEADR

0.055 0.146 0.266 0.267

Here, LEADR mapping is as fast as LEAN mapping despite re-
quiring more arithmetic operations. This is most probably due to
the bottleneck texture fetches during rendering from the LEADR
map. Compared to a naive Blinn-Phong shader, the performance
differences are also quite negligible. The constant color configura-
tion outputs constant fragments, and is provided as a measure of the
geometry processing overhead.

In the next table, we use the same configuration, but with environ-
ment lighting. We compute our specular (resp. diffuse) shading
equations at three grid resolutions. Their timings are compared to a
single texture fetch along the mean reflected direction for the spec-
ular case, and a single irradiance map evaluation using the mean
normal for the diffuse case.

Reflection One sample 3× 3 5× 5 7× 7
specular 0.402 0.433 1.704 4.284
diffuse 0.148 1.067 2.750 5.027

As illustrated in Figure 11, LEADR mapping performance scales
linearly according to the number of samples used. We believe
that interesting gains can be made by optimizing the placement
of the samples and/or employing sample pruning, as suggested by
Jäckel [2005], in order to obtain similar quality but significantly
fewer samples. We leave this to future work.

For the complex production-quality T-rex model in Figure 1, our
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Figure 11: LEADR mapping render times under environment light
using an increasing number of samples on an NVidia GTX 480.

framework achieves performances ranging between 40 and 60 mil-
liseconds at an image resolution of 1024× 1024. For strong close-
up and distant views (≈ 128 × 128 pixel coverage), the rendering
times are about 200 and 9 milliseconds, respectively. Note that
in the accompanying video, we used an NVidia Quadro 6000 GPU
with 6 GB of memory so that we could fit the original, fully detailed
2.8 GB displacement textures. We observed similar performances
on this platform.

Overall, our method demonstrates a clear quality improvement over
naive shading methods, all while maintaining very high perfor-
mance. Furthermore, our technique exhibits spatial and temporal
coherence and always generates alias-free images closely matching
ground truth, across all scales.

8 Conclusion

We have presented LEADR mapping, a lightweight unified repre-
sentation for physically based BRDFs and small-scale geometries
defined with displacement mapping. LEADR mapping generates
smooth and antialiased transitions when zooming in and out of dis-
placed surfaces. The BRDF seamlessly emerges from the microge-
ometry, and accurately captures complex shading effects. We pro-
posed a simple, lightweight, and efficient sampling scheme to com-
pute shading from complex environment lightings in real time. We
validated our model against ground truth and successfully applied
it on static and animating/deforming geometries. Unlike supersam-
pling, our method properly reconstructs shading effects when dense
subpixel geometric detail is present, even in the difficult case of
highly specular microgeometry.

LEADR mapping is limited to the paradigm of displacement map-
ping, where the local tangent frame is available. Further filtering
would require including the macrosurface itself, with curvature and
nonlocality. Along with improving our sampling strategies, as dis-
cussed earlier, we believe that our approach will promote new work
on this important problem.
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