
HAL Id: hal-00858350
https://hal.inria.fr/hal-00858350

Submitted on 5 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NUMA-aware fine grain parallelization framework for
multi-core architecture

Corentin Rossignon, Hénon Pascal, Olivier Aumage, Samuel Thibault

To cite this version:
Corentin Rossignon, Hénon Pascal, Olivier Aumage, Samuel Thibault. A NUMA-aware fine grain
parallelization framework for multi-core architecture. PDSEC - 14th IEEE International Workshop
on Parallel and Distributed Scientific and Engineering Computing - 2013, May 2013, Boston, United
States. 2013. <hal-00858350>

https://hal.inria.fr/hal-00858350
https://hal.archives-ouvertes.fr


A NUMA-aware fine grain parallelization framework for multi-core architecture

Corentin Rossignon
Total - E&P

CSTJF
Pau, France

corentin.rossignon@total.com

Pascal Hénon
Total - E&P

CSTJF
Pau, France

pascal.henon@total.com

Olivier Aumage
Inria

Runtime project team
Bordeaux, France

olivier.aumage@inria.fr

Samuel Thibault
Université Bordeaux I
Runtime project team

Bordeaux, France
samuel.thibault@labri.fr

Abstract—In this paper, we present some solutions to handle
two problems commonly encountered when dealing with fine
grain parallelization on multi-core architecture: expressing
algorithm using a task grain size suitable for the hardware
and minimizing the time penalty due to Non Uniform Memory
Accesses. To evaluate the benefit of our work we present some
experiments on the fine grain parallelization of an iterative
solver for sparse linear system with some comparisons with
the Intel TBB approach.

Keywords-task flow; scheduler; aggregation; fine-grain par-
allelism; NUMA

I. INTRODUCTION

With the commoditization of multi-core processors in
clusters, the inter-node parallelism expressed by HPC ap-
plications needs to be complemented by a finer-grained
parallelism that takes advantage of shared memory at the
intra-node level. The fine grain parallelism means that we
can exhibit new levels of parallelism by parallelizing some
operations that are usually done sequentially. Usually it
consists to parallelize some algorithms done inside a MPI
process by using several cores of a cluster node. Indeed by
taking advantage of the shared memory at the node level,
some algorithms are then parallelizable whereas they could
not be efficiently parallelized using the static partitioning of
data and communication overhead imposed by a distributed
memory framework (e.g., MPI).

Some popular shared memory parallel frameworks like
Intel TBB [1], Cilk [2] or OpenMP 3.0 [3] propose pro-
gramming models that considerably alleviate the fine grain
parallelization in a shared memory environment. Those
models rely on the use of a scheduler that dispatches the
computation tasks at runtime on the available cores of a
cluster node. The simplest form of fine grain parallelism
consists in splitting independent works done in a loop among
the cores. More complex algorithms require to expose the
parallelism as an Direct Acyclic Graph (DAG) where each
node is a task consists in a group of operations that can
only be computed when all its predecessor tasks has been
completed. With such a computational task graph approach,
the work that falls to the developer is to describe the
computations as a collection of tasks and to give the set
of predecessor and successor tasks for each of them. The

runtime scheduler is then in charge of launching tasks on
the hardware and achieve a good load-balancing.

Nevertheless, these programming models lack some fea-
tures to handle efficiently some important classes of prob-
lems. Indeed, very often two crucial problems have to
be addressed in order to achieve an efficient fine grain
parallelization:

• The first one is to obtain a correct task grain size for
a good parallel efficiency: a too fine parallelism grain
leads to bad performances caused by the task manage-
ment and scheduling overhead while a too coarse grain
does not provide enough parallelism for the hardware
capability and causes load balancing issues.

• The second problem is to take into account the Non
Uniform Memory Accesses (NUMA) that are caused
by the time penalty when a core needs to access some
data that are not physically located on a memory bank
directly linked to its socket. Therefore the physical
location of memory allocation needs to be carefully
driven to match the task scheduler policy in order to
minimize these time penalties.

In this paper, we present some solutions to handle these
two problems at the level of the programming model. Our
main motivation is that we want a programming model
that adds as few as possible efforts starting from a natural
task based parallelization of an algorithm (using TBB for
example) to obtain a better efficiency by taking care of
NUMA and task grain size.

To evaluate the benefit of our work we present some
experiments on the parallelization of an iterative solver for
sparse linear systems. A popular approach to solve large
sparse linear systems of equations is a Krylov method
(like GMRES or Conjugate Gradient) preconditioned by an
incomplete factorization (see [4]). This is often the most
time consuming part of a numerical simulation. The usual
way to parallelize this kind of solvers is to use a weaker
form of the preconditioner in parallel by preconditioning
subdiagonal blocks of the matrix: the subdiagonal block are
usually obtained thank to a partition of the adjacency graph
of the matrix. Outside the preconditioner, the operations
required in a Krylov method are vector operations (mostly



BLAS1 type like dot products or AXPY) and matrix vector
products: those operations are naturally dealt with parallel
loop splitting (e.g., parallel for in OpenMP). In this paper,
we have chosen to focus on the fine grain parallelization
of the ILU preconditioner. In this case, more levels of
parallelism can be obtained because the factorization and
triangular solves of a submatrix can be parallelized on
several cores. Incomplete factorization and associated tri-
angular solve of a sparse matrix is a problem that is well
representative of the difficulty that one can encounter with
fine-grain parallelization: the fine grain description of these
algorithms is natural but in practice a straight task based
parallelization using TBB or OpenMP does not give good
speed-up because of the very low computational cost of a
task and the NUMA effect when accessing the coefficients
of the matrix and vector. In the experiment results, we will
evaluate our programming model on those algorithms.

The paper is organized as follows. Section II expresses
the problem statement of task grain tuning, NUMA effect
and then discusses existing and past works related to these
problems. Section III explains how we propose to improve
existing task based programming models to deal with these
problems. Section IV shows the benefit of our work on
the fine-grain parallelization of an ILU(k) factorization
and the triangular solves associated with the sparse LU
decomposition of the matrix. Sections V and VI present
experimental results on a NUMA platform compared to TBB
(OpenMP has very similar performance on those problems).
Section VII concludes the paper, and presents ongoing and
intended future works.

II. PROBLEM STATEMENT

The principle of using tasks to express the potential
application parallelism in an abstract way, independent from
available hardware resources, was once popularized by tools
such as Cilk [2]. The widespread availability of multi-core
processors recently revived the popularity of task scheduling
frameworks [5] as exemplified by tools such as Intel TBB [1]
and OpenMP 3.0’s task support [6] for regular multi-
core platforms, or StarSs/OmpSs derivatives [7] as well as
StarPU [8] and X-Kaapi [9] for heterogeneous platforms.

Most frameworks for multi-core platforms don’t handle
memory locality, some try to improve data locality between
tasks by letting the user the choice of the next task to sched-
ule (e.g., continuation in TBB). In case of tasks scheduler
for heterogeneous platforms, data need to be moved to the
target platform. Therefore, in this case, the scheduler must
know which data are used by each task to move them at the
right moment, unfortunately none of these schedulers care
about NUMA in their scheduling algorithms to reduce the
overhead of data displacement.

Several related works have been conducted in the past
to address the issue of adapting the task grain size to the
amount of available computing units. Many related works

partially address this grain size issue by promoting cache-
oblivious techniques for a specific class of applications
such as recursive, divide-and-conquer codes or recursively
partitioned loops [1], [2], [5], [9], [10].

Works such as the SCOOPP framework [11] provides
means for the applications to control the task grain size.
However, the grain size selection issue is still up to the
application programmer.

On the theoretical side, general task scheduling has been
heavily studied for a long time now [12], [13]. Works on
task grain adaptiveness have been scarcer but do exist. The
work presented in this paper is built on grain-packing [14]
and task clustering [15] past works.

III. TASK-GRAIN TUNING THROUGH GUIDED
AGGREGATION

To solve the granularity problem, several possible ap-
proaches exist. We could enable task parallelism only when
cores are idle. For example, X-Kaapi [9] uses this approach
with its adaptive task model, this is a very good solution
with parallel loops or tree task flow. But in general case,
the user needs to define a function that splits the task flow
graph into two complete parallel parts, which is not always
possible.

Another possible approach, as given by Capsules [16],
requires the user to define several grain sizes. The runtime
then chooses which grain best matches the current situation.
The application programmer must therefore design his/her
application while having these multiple granularity levels in
mind, which may prove difficult to realize or express in an
abstract way in the code.

Our approach is different. From the finest-grained DAG,
we build a coarse-grained DAG after the machine topology
layout and the run-time state using an aggregate operator
on subsets of tasks. Our default aggregate operator just
serializes the function called within all merged tasks. But
the aggregate operator itself is user programmable by over-
loading the aggregate method of our task class. Indeed it
is often interesting to redefine this operator: for example
instead of calling sequentially several functions that depend
on a parameter i it is more efficient to use a single function
call that loops on the list of i parameters.

Several possible aggregate operators are experimented
later in this paper. Those aggregate operators are called
from a dedicated framework called Taggre which interfaces
with existing low-level task schedulers. Taggre expects a fine
grain task DAG as input. It then returns a coarser DAG as
the result of applying the selection of aggregate operators
on the contents of the fine-grain DAG.

A. Aggregate operator algorithms

As a proof of concept, we have defined several heuristics
that coarses the DAG to change the task grain size. Multiple
heuristics may be chained together to further coarsen the



0

1-2 3-4

5

0

1 3

2 4

5

Figure 1: Example of aggregation with S algorithm

0

1 2 3 4

0

1-2 3-4

Figure 2: Example of aggregation with the F algorithm and
parameter 2

DAG. In Taggre, each algorithm is thus designated by a
letter. The sequence of selected letters is called the Coarse
String. For example, the Coarse String “SD(300)F(32)”
means the call of Sequential algorithm, followed by the
Depth Front algorithm with parameter 300 and finally by
the Front algorithm with parameter 32. The parameters are
algorithm-dependent.

1) Sequential (S): This is the most straightforward al-
gorithm. We aggregate tasks having a single predecessor
with their predecessor, if such a predecessor has a single
successor (Fig. 1).

2) Front (F): This algorithm takes one argument which
is the maximum number of tasks per depth level. We call
this number N . The basic idea of this algorithm is to limit
the number of simultaneously available tasks and thus to
limit the oversubscription of computing units. To do this,
the Front algorithm implements a breadth-first traversal of
the DAG. During the traversal, it aggregates tasks of same
depth to group the maximum of N coarse tasks of similar
computation time (e.g., grain size) per depth (Fig. 2).

3) Depth Front (D): This algorithm expects one argument
which is the maximum number of fine grain tasks aggregated
into a coarse grain task. We call this number M . The main
idea of this algorithm is to aggregate a task with some of
its descendants, up to the limit M . For that, the algorithm
performs a breadth-first traversal of the descendants of a
task to aggregate up to M tasks together. However, during
the traversal, each new level encountered is sorted, from
the task having the highest number of predecessors in
the current aggregate being built, to the task having the
least predecessors in this aggregate. The rationale of this
heuristics is to favor aggregating tasks that are more tightly

0

1 2

34 8

6 95

7

10

11

0-3

4-7 8-11

Figure 3: Example of aggregation with D algorithm and
parameter 4

connected in the DAG (Fig. 3).
The first loop of Algorithm 1 is a loop for each level of

the coarsened DAG.
The second loop is a loop over tasks of the same level

in coarsened DAG. Other tasks will be aggregated to these
tasks in the third loop, we call them Master and they will
be kept in the final DAG.

The third loop is the aggregation loop, we aggregate tasks
descendants of the Master task to it.

Algorithm 1 Depth Front

Require: M , DAG
Ready = empty list
put root tasks of DAG in Ready
while Ready not empty do

Depth = Ready
Ready = empty list
while Depth is not empty do

Master = pop first from Depth
Release = empty list
put Master in Release
count: 0
while count < M AND Release is not empty do

Next = pop first from Release
count++
aggregate Master and Next
put tasks released by Next in Release, sorted by

number of precedence of Master
end while
put tasks released by Master in Depth

end while
put tasks released by Depth in Ready

end while

4) Continuation Oriented (C): The Continuation Ori-
ented algorithm is an aggregation method which improves
serial accesses to data inside an aggregated task. For a 3D
cube, it’s equivalent to putting tasks with the same (x,y)



coordinates together.

IV. APPLICATION TO A SPARSE LINEAR SOLVER

To illustrate the benefit of aggregation, we propose to
study the parallelization of an iterative solver for sparse
linear system. A popular approach to solve large sparse
linear systems of equation is a Krylov method (like GMRES
or Conjugate Gradient) preconditioned by an incomplete
factorization (see [4]). This is often the most time consuming
part of a numerical simulation. In this method there is two
major operations, the first step is the ILU matrix factoriza-
tion and the second step is the triangular solve. Outside the
preconditioner, the operations required in a Krylov method
are mostly BLAS1 operations and matrix vector products
which naturally dealt with parallel loop splitting. In our
experiments, we focus on the fine grain parallelization of
the ILU preconditioner; that is to say the factorization of
the matrix (done once per system solve) and the triangular
system solves (done once at each iteration of the system
solve).

Both of those algorithms (factorization and triangular
solve) can naturally be represented as a task graph. For
example in the factorization a task corresponds to the
factorization of a matrix row and the dependencies are
directly given by the non-zero pattern of the matrix. Indeed,
to factorize the row i, we need to factorize all the rows j
lower than i such that the entry (i, j) is non-zero. Therefore
the DAG description is easily built from the non-zero pattern
of the matrix: the task i corresponds to row i of the matrix,
the predecessor tasks of task i are given by the column index
of non-zero coefficients before the diagonal in row i and
successor tasks of task i are given by the row index of non-
zero coefficients below the diagonal in the column i.

Incomplete factorization and associated triangular solve of
a sparse matrix is a problem that is well representative of the
difficulty that one can encounter with fine-grain paralleliza-
tion: the fine grain description of these algorithms is natural
but in practice a straight task based parallelization using
TBB or OpenMP does not give good speed-up because of the
very low computational cost of a task and the NUMA effect
when accessing the coefficient of the matrix and vector. In
the experiment results, we will evaluate our programming
model on those algorithms.

Our testing machine is composed of two Intel Xeon
X5570 (Nehalem) 4-core sockets with 24 GB RAM (12 GB
per socket) running Red Hat Enterprise Linux 5.2 with
a Linux kernel 2.6.18. The compiler used is Intel C++
compiler XE 13 with level 3 optimizations. The back-end
task scheduling runtime is TBB. We obtain comparable
results using OpenMP tasks.

We perform the tests on two linear systems. The first
one, Cube 100, is a system obtained from a 7 points dis-
cretization scheme (e.g., finite volume) of regular 3D cubes
with 100 points along each dimension. It is a scalar system;

each row of the matrix is a vector of coefficients stored in
double precision. The second one, SPE10, corresponds to a 7
points discretization of a reference problem from petroleum
industry [17]. In this case each entry of the matrix is a small
dense block (3, 3) of coefficients stored in double precision.
Due to the geometry of the problem, for Cube 100, the task
dependency graph is very regular whereas it is an irregular
one in the SPE10 case. The characteristics of the matrices
are listed in Table I.

Table I: Matrices used in tests.

Name Cube 100 SPE10

Rows (n) 1,000,000 3,283,263

Number of non-zeros (nnz) 6,940,000 67,303,269

Entries of the matrix Scalars (3, 3) dense blocks

Each fine grain task performs one elementary line oper-
ation. SPE10 tasks weight 2-5 times more than Cube 100
tasks. However, both cases generate approximately 1 million
tasks each.

The test protocol is the following:
• Each test is run three times, the final retained result is

computed as the average of the three measured results.
For each test, we collect three different timings: fac-
torization time, triangular solve time, and aggregation
time.

• We perform the tests on a single socket (using numactl
–cpunodebind) and on two sockets.

• We test two orderings (set of row/column permuta-
tions): a natural ordering which corresponds to no
modification on matrix structure where unknowns are
sequentially ordered by plane following the geometric z
axis (this leads to a perfect seven diagonals pattern for
Cube 100) and a nested dissection [4] ordering which
exposes more parallelism.

• We test three levels of ILU(k) fill: 0, 1 and 2. The level
k of ILU(k) preconditioner determines the level of fill
of the matrix, in others words, computation per line
and the number of dependencies between tasks grow
up with a greater k. Table II gives the number of edges
resulting in the DAG of the factorization (triangular
solve DAG has a similar number of edges) for ILU(0),
ILU(1) and ILU(2). Subsection IV-A will also give
some features on the cost of a computational task (one
row factorization) depending on the ILU level of fill
parameter.

• For the parameterized aggregation heuristics, we select
the parameter values leading to the best performance
result. With natural ordering, we can use the Cache Ori-
ented algorithm because of particular DAG structure.
With nested dissection ordering, the Cache Oriented
algorithm can’t be used, so we use the Depth Front
algorithm with a high value.



In all tables, best results are represented in bold.

Table II: Number of edges in computation DAG

Matrix ILU Edges

CUBE 100 ILU(0) 2,970,000
Natural ILU(1) 5,910,300
ordering ILU(2) 10,761,498

SPE10 ILU(0) 2,970,000
Natural ILU(1) 5,910,300
ordering ILU(2) 11,357,865

A. ILU(k) Factorization Step

The first test series is performed on the ILU(k) factoriza-
tion step on a single 4-core socket (Tables III, IV).

With aggregation disabled the task-parallel ILU(0) fac-
torization is always slower than the sequential version,
this is due to the additional cost of task management.
Tasks duration for CUBE 100 in ILU(0) is only 50ns and
240ns for SPE10, but one task management duration is
approximately 500ns. In ILU(2), tasks are bigger, their
duration is 600ns for CUBE 100 and 1.7µs for SPE10
but it’s not enough bigger to consider task management
negligible. Another important aspect of the ILU factorization
and triangular solve is that on our testbed machine the
algorithm speed-up is bounded by the memory bandwidth:
therefore the maximum theoretical speed-up achievable by
such algorithms on several cores is less than the number of
cores used.

With aggregation enabled and CD(4) coarse strategy
string, we now reduce the number of tasks to 2,500 with
a task duration 400 times bigger. In ILU(0) we achieve
a moderate speed-up of 2. ILU(2) factorization achieves a
better speed-up of 3. The Front algorithm is not as effective
as the Depth Front in this test case because it doesn’t
aggregate tasks with continuous lines which cause many
cache misses.

With the Front algorithm (F(32)) in ILU(0) with natural
ordering, we aggregate a maximum of 157 tasks together
and, in average, we aggregate only 53 tasks.

Table III: Results on the ILU(k) factorization step on a single
4-core socket with TBB with natural ordering.

Matrix ILU Sequential No agg. F(32) CD(4)
(second) (speed-up)

ILU(0) 0.056 0.20 1.06 2.23
CUBE 100 ILU(1) 0.142 0.46 1.54 2.81

ILU(2) 0.611 1.30 2.58 3.47
ILU(0) 0.262 0.65 1.89 3.09

SPE10 ILU(1) 0.721 1.39 2.30 3.22
ILU(2) 1.936 1.87 2.19 3.32

Table IV: Results on the ILU(k) factorization step on a single
4-core socket with TBB with nested dissection ordering.

Matrix ILU Sequential No agg. F(32) D(400)
(second) (speed-up)

ILU(0) 0.129 0.46 2.17 2.26
CUBE 100 ILU(1) 0.495 1.29 1.70 2.78

ILU(2) 0.828 1.74 1.94 3.12
ILU(0) 0.276 0.74 1.93 2.16

SPE10 ILU(1) 1.375 1.98 1.67 2.82
ILU(2) 2.247 2.43 1.85 3.12

With two 4-core sockets (Tables V, VI), the parallel
ILU(0) again performs slower than sequential execution
when aggregation is disabled. With aggregation enabled, the
ILU(0) achieves a speed-up of 3. ILU(2) achieves a speed-up
of 6.2.

Table V: Results on the ILU(k) factorization step on two
4-core sockets with TBB with natural ordering.

Matrix ILU Sequential No agg. F(32) CD(4)
(second) (speed-up)

ILU(0) 0.056 0.28 1.27 2.54
CUBE 100 ILU(1) 0.143 0.65 1.89 3.79

ILU(2) 0.612 1.47 3.06 3.91

ILU(0) 0.260 0.97 2.48 3.78
SPE10 ILU(1) 0.771 2.24 3.80 5.72

ILU(2) 2.006 3.37 3.97 6.21

Table VI: Results on the ILU(k) factorization step on two
4-core sockets with TBB with nested dissection ordering.

Matrix ILU Sequential No agg. F(32) D(400)
(second) (speed-up)

ILU(0) 0.127 0.41 3.10 3.31
CUBE 100 ILU(1) 0.483 1.31 2.70 4.77

ILU(2) 0.817 1.96 3.18 5.46

ILU(0) 0.277 0.71 2.59 3.09
SPE10 ILU(1) 1.452 2.48 2.81 5.00

ILU(2) 2.347 3.29 3.12 5.57

B. Triangular Solve Step

The triangular solve step is itself composed of two parts:
A forward substitution followed by a backward substitution.
The DAG of the forward substitution is identical to the DAG
of the factorization step mentioned in the previous section.
Thus we can reuse the same coarse DAG. In our test cases,
the DAG of the backward substitution part is the transpose
of the DAG of the forward substitution. Here again, the
factorization coarse DAG can thus straightforwardly be
reused. In total we have twice more tasks in triangular solve
than in factorization.



The weight of operations done in triangular solve elemen-
tary tasks is lighter than their factorization task counterparts.
Tests on a single 4-core socket (Tables VII, VIII) show
that the parallel triangular solve is always slower than
the sequential version with task aggregation disabled. With
aggregation enabled, we obtain a speedup of 2.

Table VII: Results on the Triangular Solve step on a single
4-core socket with TBB with natural ordering.

Matrix ILU Sequential No agg. F(32) CD(4)
(second) (speed-up)

ILU(0) 0.092 0.23 0.88 1.90
CUBE 100 ILU(1) 0.117 0.27 0.82 1.97

ILU(2) 0.163 0.34 0.92 2.05

ILU(0) 0.219 0.40 1.08 1.93
SPE10 ILU(1) 0.353 0.62 1.37 2.22

ILU(2) 0.554 0.85 1.58 2.39

Table VIII: Results of the Triangular Solve step on a single
4-core socket with TBB with nested dissection ordering.

Matrix ILU Sequential No agg. F(32) D(400)
(second) (speed-up)

ILU(0) 0.107 0.20 1.19 1.34
CUBE 100 ILU(1) 0.150 0.31 0.94 1.39

ILU(2) 0.171 0.34 0.95 1.50

ILU(0) 0.249 0.37 1.39 1.52
SPE10 ILU(1) 0.430 0.65 1.32 1.77

ILU(2) 0.500 0.72 1.35 1.89

On two 4-core sockets (Tables IX, X), with task aggre-
gation disabled, only the SPE10 test achieves a speedup
greater than 1. With aggregation enabled, a speedup of 2.52
is achieved on ILU(0) and a speedup of 4.14 is achieved on
ILU(2).

Table IX: Results of the Triangular Solve step on two 4-core
sockets with TBB with natural ordering.

Matrix ILU Sequential No agg. F(32) CD(4)
(second) (speed-up)

ILU(0) 0.092 0.27 1.27 2.44
CUBE 100 ILU(1) 0.123 0.35 1.54 2.82

ILU(2) 0.174 0.45 1.40 2.98

ILU(0) 0.219 0.53 1.63 2.52
SPE10 ILU(1) 0.408 0.96 2.39 3.77

ILU(2) 0.658 1.38 2.79 4.14

C. Aggregation Overhead

This section evaluates the overhead caused by the task
aggregation step for several aggregation algorithm instances.
As mentioned in the test description above, the fine-grain

Table X: Results of the Triangular Solve step on two 4-core
sockets with TBB with nested dissection ordering.

Matrix ILU Sequential No agg. F(32) D(400)
(second) (speed-up)

ILU(0) 0.107 0.18 1.41 1.67
CUBE 100 ILU(1) 0.156 0.32 1.36 1.92

ILU(2) 0.180 0.36 1.37 2.08

ILU(0) 0.249 0.35 1.64 1.82
SPE10 ILU(1) 0.496 0.80 2.12 2.71

ILU(2) 0.578 0.90 2.19 2.90

DAG generated from the test cases amount to about 1 million
nodes for each matrix. The number of edges increases when
the parameter k of ILU(k) preconditioner increases (see
Table II). This aggregation step is performed only once for
each matrix. Then, the coarsened DAG is reused as long as
the sparse pattern of the matrix is unchanged. In classical
numerical simulation the mesh on which the equations are
discretized does not change through the simulation, only the
coefficients of the linear system are changing: this means
that typically the aggregation step is done only once where
the factorization and triangular solves are called a large
number of times (several thousand of times). The time
spent in the task aggregation (Table XI) is then usually
negligible compared to the time spent in the factorizations
and triangular solves.

In average, applying CD(4) Coarse String takes 1.5 s on
a DAG with 1 million of nodes and applying D(400) takes
3.5 s.

For CD(4) aggregation we won in average 0.22 s per
factorization and 0.31 s per triangular solve compared to
not doing aggregation. So after only 3 combinations of
factorization and triangular solve, the aggregation become
profitable.

For D(400) aggregation we won in average 0.28 s per
factorization and 0.49 s per triangular solve. So after only
5 combinations of factorization and triangular solve, the
aggregation becomes profitable.

V. NUMA

In this section, we further improve on the previous results
by taking into account the NUMA (Non Uniform Memory
Access) characteristics of the testbed machine: both 4-core
sockets have a faster access to their own memory bank than
to the opposite socket’s memory bank (Fig. 4).

In a general way, a program allocates memory from a
virtual address space split into pages. Each page used by
the program is transparently mapped to a physical memory
location. Thus, some virtual pages can also be moved
from one physical location to another one, while the vir-
tual/physical mapping is transparently updated accordingly
to the operating system without affecting the execution of



Table XI: Aggregation overhead.

Matrix ILU F(32) D(400) CD(4)
(second)

CUBE 100 ILU(0) 1.534 2.945 0.908
No ILU(1) 1.467 3.032 1.119

ordering ILU(2) 1.871 3.705 1.315

CUBE 100 ILU(0) 1.208 2.330 N/A
Nested ILU(1) 2.194 3.224 N/A

dissection ILU(2) 3.182 3.554 N/A

SPE10 ILU(0) 1.519 3.239 1.217
no ILU(1) 1.542 3.344 1.527

ordering ILU(2) 2.019 4.042 1.918

SPE10 ILU(0) 1.292 2.541 N/A
Nested ILU(1) 2.337 3.518 N/A

dissection ILU(2) 3.119 3.816 N/A

Socket 1

Core Core

CoreCoreM
e
m

o
ry

 
C

o
n

tr
o
lle

r

Memory 1

Socket 2

Core Core

CoreCore M
e
m

o
ry

 
C

o
n

tr
o
lle

r

Memory 2

Figure 4: NUMA Machine with 2 sockets of 4 cores

user level programs. However, the physical location of vir-
tual page may impact the program performance on NUMA
architectures, depending on the connectivity between the
physical memory bank where a page is located and the
socket core that is accessing this memory bank.

The NUMA memory allocation policy is defined by the
operating system. With Linux, at least the following three
memory policies are generally available:

• First Touch: Memory is allocated on the bank next to
the core which accessed the data first, this is the default
policy.

• Bind: Memory is allocated on a specific bank.
• Interleaved: Memory allocations are interleaved among

all the banks available.

On Linux, these policies can be set either through the mbind
system call, or with the numactl command line tool.

Other operating system may come with their own specific
sets of NUMA memory allocation policies. Solaris, for
instance, also provides the next-touch [18] policy. When this
policy is selected, a memory page is moved to the bank close
to the core that subsequently accesses it.

A. Interleaved Memory Allocation Policy

When the interleaved policy is selected, Linux uniformly
distributes newly allocated physical pages among all avail-
able NUMA banks, following a round robin scheme. While
having very little impact on the applicative code, the inter-
leave policy often shows some effectiveness in mitigating
NUMA overheads in the general case, because it distributes
the required memory bandwidth over the various memory
banks. Thus, it is usually worthwhile to experiment with it,
before investigating the NUMA issue further.

The following tables show the performance results ob-
tained after enabling the interleaved memory allocation
policy. We first test this method using Intel TBB as the low-
level runtime under the Taggre layer described in previous
section (Tables XII to XV).

While the results we obtain show a better speed-up
with TBB and interleaved policy, it should be noted that
sequential runs with interleaved policy are of course worse
because of memory access penalties introduced by NUMA.
When comparing interleaved page allocation with first-touch
allocation, we get an average improvement of 3.5 % on
ILU(k) preconditioner and 6.2 % on triangular solve with
two 4-core sockets.

Table XII: Results on the ILU(k) factorization step on two
4-core sockets in natural ordering.

Matrix ILU TBB TBB interleaved Nas
speed-up

ILU(0) 2.54 2.68 2.80
CUBE 100 ILU(1) 3.79 3.86 3.95

ILU(2) 3.91 5.82 6.19
ILU(0) 3.78 5.10 5.34

SPE10 ILU(1) 5.72 5.84 6.64
ILU(2) 6.21 6.34 6.84

Table XIII: Results on the ILU(k) preconditioner step on
two 4-core sockets in nested dissection ordering.

Matrix ILU TBB TBB interleaved Nas
speed-up

ILU(0) 3.31 3.65 3.95
CUBE 100 ILU(1) 4.77 4.90 5.14

ILU(2) 5.46 5.54 5.72
ILU(0) 3.09 3.70 4.00

SPE10 ILU(1) 5.00 5.01 5.57
ILU(2) 5.57 5.62 6.06

These improvements could be further enhanced by taking
into account locality of data used by tasks in the task
scheduler. This is the purpose of the following section.



Table XIV: Results on the Triangular Solve step on two 4-
core sockets in natural ordering.

Matrix ILU TBB TBB interleaved Nas
speed-up

ILU(0) 2.44 3.51 2.66
CUBE 100 ILU(1) 2.82 3.68 2.95

ILU(2) 2.98 3.76 3.18

ILU(0) 2.52 3.58 3.24
SPE10 ILU(1) 3.77 4.04 4.43

ILU(2) 4.14 4.41 4.96

Table XV: Results on the Triangular Solve step on two 4-
core sockets with TBB and interleaved allocation with nested
dissection.

Matrix ILU TBB TBB interleaved Nas
speed-up

ILU(0) 1.67 2.11 1.92
CUBE 100 ILU(1) 1.92 2.25 2.07

ILU(2) 2.08 2.42 2.24

ILU(0) 1.82 2.26 2.19
SPE10 ILU(1) 2.71 2.82 3.08

ILU(2) 2.90 3.01 3.32

VI. NUMA AWARE SCHEDULING

In order to easily experiment with NUMA-aware task
scheduling, we implemented our own basic NUMA task
scheduler. We call this scheduler “Nas” (NUMA Aware
Scheduler) in the remainder of this paper.

Nas design is similar to TBB, tasks are objects containing
an execute method and some extra information like depen-
dencies. We add NUMA node affinity into tasks objects
to allow Nas scheduling tasks with the best affinity. This
NUMA affinity can be strict or not, in strict mode the tasks
can only be executed on one NUMA node, in flexible mode
tasks are executed in priority on the specified NUMA but
can be executed somewhere else.

In Nas, threads of the same NUMA node share the same
container of tasks unlike other runtime that use one deque
per thread. When a task becomes available, it is put into
the container corresponding of its NUMA affinity if that is
set, otherwise a round robin algorithm is used by default.
Because of thread concurrency over the container, we didn’t
choose a simple deque but rather an optimized structure
which allows multiple operations at the same time.

Nas also provides control over data allocation and dis-
tribution among NUMA banks, as well as memory block
moves among NUMA banks.

Nas and Taggre are designed to cooperate together, with
Taggre being responsible for the DAG preprocessing, and
Nas acting as the runtime back-end. Both tools also coop-
erate together in controlling the placement of tasks on the
NUMA platform: the aggregation operator is called using

the Front algorithm with the number of NUMA nodes as
parameter.

A. NUMA helpers

Nas has some NUMA helpers, the first helper is a function
to allocate data and distribute it over all NUMA banks, this
is equivalent to starting a static parallel for with OpenMP
and First Touch policy activated but in our case we have
simplified this through a single function call. This helper is
mainly useful for vector allocation.

The second helper is to move data between NUMA banks,
the user registers the piece of data and where he wants to
move it. This helper is only an overlay of the move pages
system call, it automatically splits memory address and size
into a set of memory addresses aligned to page boundaries.
This helper can be combined with Taggre to distribute
data by taking into account data access over computation
time. Thus using Nas in conjunction with Taggre is a very
convenient way to manage NUMA seamlessly in a task
driven parallelization. Indeed we provide a single function
that uses the Taggre DAG to achieve allocate or move
memory page of the data in order to balance the work
between sockets accordingly to the DAG. The task affinity
with the sockets where its data are allocated is then used
by the scheduler to minimize the NUMA penalties. More
details are given in the next section.

B. Nas with Taggre

If we want to optimize memory distribution one can use
the DAG of Taggre, and Nas as runtime. In most cases, tasks
have data from other tasks to read in input and produce data
for other tasks in output. By distributing tasks over NUMA
nodes, we can distribute indirectly the data production. In
most cases, NUMA penalty of a write access is worst than
NUMA penalty of a read access. The tasks distribution is
done with the Front algorithm and the number of NUMA
nodes as parameter (Fig. 5).

Then we need to match the NUMA locality of data with
the NUMA affinity of tasks which use it by moving physical
pages on the right NUMA bank. To do this, we simulate an
execution of the DAG with a user defined function. This
function is called for each task and must register data write
in the task to express that it should be brought them closer.

In the case of GMRES, we distribute the row of the matrix
following the DAG, all vectors used during triangular solve
are allocated with the first NUMA helper.

C. Result

On a single 4-core socket, the Nas scheduler delivers
results very similar to those of TBB because no NUMA is
involved. On our NUMA platform with two 4-core sockets,
the Nas scheduler delivers better results than TBB. On the
factorization step, we achieve an improvement from 1 to
40 % (Tables XII, XIII).



0

5 25

10 30 50

15 35 55

20 40 60

45 65

70

75

80

85

90

95

100

105

110

115

120

Figure 5: Distribution of tasks between 2 NUMA nodes, in
white tasks of node 1, in black tasks of node 2

On the triangular solve step, the improvement ob-
tained with the Nas scheduler is 12.36 % on average (Ta-
bles XIV, XV).

On Cube 100 case, one can notice that the interleaved
memory allocation method gives better results than using
our NUMA aware allocator. This is due to the fact that in
the triangular solve, a task accesses the matrix data and some
part of the vector: the problem is that the matrix is allocated
using the second NUMA helper allocator (described in
Subsection VI-A) whereas the vector is allocated using the
first NUMA helper allocator (optimized for the matrix-vector
product). Hence, the memory accesses to the vector are not
optimized in the triangular solve and the interleaved memory
allocation method gives better results in average. One can
see that in the case SPE10 where each entry of the matrix
is a dense block (3,3), the memory accesses to the vector
are more neglectable and in this case the NUMA allocator
is better.

VII. CONCLUSIONS AND FUTURE WORK

Today, popular frameworks like Intel TBB or OpenMP
offer a task based programming interface that allows to

easily parallelize algorithms in shared memory. In this
paper, we have presented some improvements to these task-
based parallelization frameworks in order to cope with the
problem of expressing an algorithm with a suitable task grain
size and the problem of Non Uniform Memory Accesses
that degrades performance. Current state of our framework
doesn’t fully automate seeking of an optimal grain size but
help the programmer by proposing a simple interface to deal
with DAG coarsening.

We have shown the benefits of this work on the par-
allelization of a sparse ILU preconditioner which is a
challenging application with respect to task grain tuning and
NUMA effect to an Intel TBB implementation.

To improve even more the NUMA aspects: we are work-
ing on improving the task scheduler with cache-aware hier-
archical scheduling support using a similar approach as the
one implemented in the Bubblesched thread scheduler [19].

REFERENCES

[1] J. Reinders, Intel threading building blocks, 1st ed. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2007.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: an efficient multithreaded
runtime system,” in Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, ser. PPOPP ’95. New York, NY, USA: ACM, 1995,
pp. 207–216.

[3] OpenMP Architecture Review Board, “OpenMP application
program interface version 3.0,” May 2008. [Online].
Available: http://www.openmp.org/mp-documents/spec30.pdf

[4] Y. Saad, Iterative Methods for Sparse Linear Systems.
Boston, MA, USA: PWS, Jul. 1996.

[5] A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparison
of some recent task-based parallel programming models,”
in 3rd Workshop on Programmability Issues for Multi-Core
Computers, Pisa, Italy, 2010.

[6] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang, “The
design of OpenMP tasks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 3, pp. 404–418, 2009.

[7] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell,
R. M. Badia, E. Ayguade, and J. Labarta, “Productive cluster
programming with OmpSs,” in Proceedings of the 17th inter-
national conference on Parallel processing - Volume Part I,
ser. Euro-Par ’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 555–566.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A unified platform for task scheduling on hetero-
geneous multicore architectures,” Concurrency and Computa-
tion: Practice and Experience, Special Issue: Euro-Par 2009,
vol. 23, no. 2, pp. 187–198, Feb. 2011.

[9] T. Gautier, F. Lementec, V. Faucher, and B. Raffin, “X-Kaapi:
a multi paradigm runtime for multicore architectures,” Tech.
Rep. RR-8058, Feb. 2012.



[10] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos, “A
unified scheduler for recursive and task dataflow parallelism,”
in Parallel Architectures and Compilation Techniques, ser.
PACT ’11, Oct. 2011, pp. 1–11.

[11] J. L. Sobral and A. J. Proença, “Dynamic grain-size adapta-
tion on object oriented parallel programming the SCOOPP
approach,” in Proceedings of the 13th International Sym-
posium on Parallel Processing and the 10th Symposium on
Parallel and Distributed Processing, ser. IPPS ’99/SPDP ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp.
728–732.

[12] A. A. Khan, C. L. McCreary, and M. S. Jones, “A comparison
of multiprocessor scheduling heuristics,” in Proceedings of
the 1994 International Conference on Parallel Processing,
volume II, 1994, pp. 243–250.

[13] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling al-
gorithms for heterogeneous processors,” in Proceedings of the
Eighth Heterogeneous Computing Workshop, ser. HCW ’99.
Washington, DC, USA: IEEE Computer Society, 1999, p. 3.

[14] Y. Ge and D. Y. Y. Yun, “A method that determines optimal
grain size and inherent parallelism concurrently,” in Interna-
tional Symposium on Parallel Architectures, Algorithms and
Networks, ser. ISPAN ’96. IEEE Computer Society, June
1996, pp. 200–206.

[15] B. Cirou and E. Jeannot, “Triplet: a clustering scheduling
algorithm for heterogeneous systems,” in IEEE International
Symposium on Reliable Distributed Systems, ser. SRDS ’01.
IEEE Computer Society, 2001, pp. 231–236.

[16] H. Mandviwala, U. Ramachandran, and K. Knobe, “Capsules:
Expressing composable computations in a parallel program-
ming model,” in Languages and Compilers for Parallel Com-
puting, V. Adve, M. Garzarán, and P. Petersen, Eds. Springer
Berlin Heidelberg, 2008, vol. 5234, ch. Lecture Notes in
Computer Science, pp. 276–291.

[17] Society of Petroleum Engineers, “SPE comparative solution
project,” 2001. [Online]. Available: http://www.spe.org/web/
csp/

[18] H. Löf and S. Holmgren, “affinity-on-next-touch: increasing
the performance of an industrial PDE solver on a cc-NUMA
system,” in Proceedings of the 19th annual international
conference on Supercomputing, ser. ICS ’05. New York,
NY, USA: ACM, 2005, pp. 387–392.

[19] S. Thibault, R. Namyst, and P.-A. Wacrenier, “Building
portable thread schedulers for hierarchical multiprocessors:
The bubblesched framework,” in Euro-Par 2007 Parallel
Processing. Springer, 2007, vol. 4641, pp. 42–51.


