Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems

Abstract : We give a new explicit, global, strict Lyapunov function construction for the error dynamics for adaptive tracking control problems, under an appropriate persistency of excitation condition. We then allow time-varying uncertainty in the unknown parameters. In this case, we construct input-to-state stable Lyapunov functions under suitable bounds on the uncertainty, provided the regressor also satisfies an affine growth condition. This lets us quantify the effects of uncertainties on both the tracking and the parameter estimation. We illustrate our results using Rossler systems.
Type de document :
Article dans une revue
IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2009, 54, pp.1152 - 1158. 〈10.1109/tac.2009.2013053〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00858529
Contributeur : Alain Rapaport <>
Soumis le : jeudi 5 septembre 2013 - 15:35:40
Dernière modification le : vendredi 27 avril 2018 - 14:42:02

Lien texte intégral

Identifiants

Collections

Citation

Frédéric Mazenc, Marcio De Queiroz, Michael Malisoff. Uniform global asymptotic stability of a class of adaptively controlled nonlinear systems. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2009, 54, pp.1152 - 1158. 〈10.1109/tac.2009.2013053〉. 〈hal-00858529〉

Partager

Métriques

Consultations de la notice

237