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Practical inference with systems of gradual implicative rules

Hazaël Jones, Brigitte Charnomordic, Didier Dubois and Serge Guillaume

IEEE Transactions on Fuzzy Systems, 17(1):61-78, 2009

Abstract— A general approach to practical inference with
gradual implicative rules and fuzzy inputs is presented. Gradual
rules represent constraints restricting outputs of a fuzzy system
for each input. They are tailored for interpolative reasoning.
Our approach to inference relies on the use of inferential
independence. It is based on fuzzy output computation under an
interval-valued input. A double decomposition of fuzzy inputs
is done in terms of α-cuts and in terms of a partitioning of
these cuts according to areas where only a few rules apply. The
case of one and two dimensional inputs is considered, as well
as higher dimensional cases. An application to a cheese-making
process illustrates the approach.

I. INTRODUCTION

Fuzzy logic, as an interface between symbolic and numeric

computations, is well-known for its ability to represent the

graded nature of some non-Boolean linguistic concepts.

Historically, fuzzy inference systems were devised to per-

form a reasoning task based upon expert knowledge yielding

a continuous numerical ouput, as needed in fuzzy control.

Afterwards, many learning methods were added to enhance

numerical performance.

Conjunctive rules used in the Mamdani-style fuzzy in-

ference systems [1], represent joint sets of possible input

and output values. They cannot be easily interpreted as

generalizations of usual Boolean “if-then” statements in

propositional logic, since the latter are modelled by material

implication [2]. The weak logical behavior of conjunctive

rules was pointed out by several authors like Baldwin and

Guild [3] and Di Nola et al. [4]. Nevertheless, mainly

due to alleged computational difficulties, fuzzy extensions

of material implications have been neglected so far, if not

simply rejected as proper tools for modeling fuzzy systems.

For instance, Mendel [5] dismissed implicative fuzzy rules as

being counterintuitive for engineers, and dubbed “engineer-

ing implications” the minimum or product operations, that

are in fact generalized logical conjunctions.

However, inferring with parallel implicative rules and a

precise input is not more computationally difficult than with
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fuzzy conjunctive rules (it can be done rule by rule). More-

over, it yields normalized fuzzy outputs often more precise

than with conjunctive rules. Recently, we outlined several

advantages of implicative rules with respect to conjunctive

rules [6]. For instance, with conjunctive rules, the more rules

in a rule base, the more imprecise its output becomes. This

fact is usually hidden by defuzzification. The converse occurs

with implicative rules. Their output is all the more precise

as more rules are triggered. Furthermore, using conjunctive

rules, the fuzzy output width can bias the defuzzified result.

In constrast, gradual implicative rules [7] model constraints

restricting output values for each input, and have interesting

interpolation properties [7], [8]. They are fully compatible

with the classical logic view. Among these kinds of rules,

the most interesting ones for practical purposes use Goguen

implication because of its continuous inference result [2], and

Resher-Gaines implication if a non fuzzy (interval) output is

needed [7]. Implicative rules are more natural to represent

expert knowledge [9] as they model constraints relating input

and output values.

In practical applications, fuzzy inputs are useful to account

for sensor imprecision and approximate measurements. Fur-

thermore in the case of cascaded fuzzy systems, it makes

little sense to defuzzify the output to one system before

feeding the next one, since it comes down to neglecting

the meta-information concerning the imprecision of results

(hence the validity of the eventually defuzzified overall

output cannot be assessed).

Note that the recent blossoming of Type 2 fuzzy systems

[10], was partly motivated by the need for accounting for

higher order uncertainty in fuzzy systems outputs. Since

the output of a fuzzy system is usually precise (either due

to fuzzification or due to the use of the Takagi-Sugeno

approach), this concern may look legitimate. But, arguably,

the higher-order uncertainty is already present in the fuzzy

output of a Type 1 fuzzy logic system, if rule conclusions

are not precise, provided one refrains from defuzzifying it1.

However, the fuzzy output of Mamdani systems is hard

to interpret as often not normalized and with unreasonably

wide support. On the contrary, the fuzzy output of consistent

implicative fuzzy logic systems is a regular fuzzy interval

(provided suitable fuzzy partitions of the input and output

space are chosen). It can be summarized by a precise value if

needed, and the higher order uncertainty of this value can be

measured by some non-specificity index of the fuzzy output.

1The term “defuzzification” to designate the extraction of a precise value
from a fuzzy set is a language abuse, as strictly speaking, stripping a fuzzy
set from its fuzziness should yield a crisp set, not an element thereof.
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Moreover the imprecision produced by a set of implicative

rules is rather limited when the rules are informative enough,

which enables cascading.

Nevertheless, the practical use of parallel implicative rules

with a fuzzy input is difficult, as the inference can no

longer be done rule by rule. The aim of this article is

to show that under some conditions on input partitions,

inference becomes easier due to a double decomposition of

the fuzzy input: by α-cut and by partitioning. In the sequel,

section II recalls features of conjunctive and implicative rules

and compares them according to some expected properties.

In section III, we present sufficient conditions to obtain

inferential independence, so as to facilitate the calculation of

the inference process. Then, in section IV, exact analytical

expressions are given for one dimensional systems. In section

V we propose a fuzzy input decomposition method based on

inferential independence that allows to simplify the inference

mechanism, and apply it to the one dimensional case. Section

VI adresses the two dimensional case, and section VII out-

lines an approach to the complex case of higher dimensional

systems.

A practical application to the predictive diagnosis of a

cheese-making process is outlined in section VIII to illustrate

the technique, and some general conclusions are given in

section IX.

II. FUZZY RULES: CONJUNCTION VS IMPLICATION

Before examining the semantics of fuzzy rules, let us first

recall what is the meaning of a rule in classical logic, i.e.

a crisp rule. A crisp rule “If X is A then Z is O” relates

two universes of discourse U and W that form the domains

of variables X and Z respectively, locally restricting the

domains of X and Z to subsets A of U and O of W .

Such a rule can be interpreted in two ways according to

whether one focuses on its examples or its counterexamples

[11]. The examples of the rule precisely form the set of

pairs (u,w) ∈ A × O. Modeled as such, a rule cannot be

understood as a constraint since A×O does not encompass

all admissible pairs (u,w) relating U and W . Indeed, the

rule does not prevent X from lying outside A. So the rule

cannot be understood as the necessity to let (X,Z) ∈ A×O;

it only points out A×O as one set of explicitly allowed pairs

for (X,Z).
On the contrary, the counterexamples of the rules are the

set of pairs (u,w) such that u ∈ A,w 6∈ O. The Cartesian

product A × Oc, where Oc is the complement of O, is

the set of pairs of values explicitly forbidden by the rule.

It means that the set of implicitly allowed pairs of values

form the set (A × Oc)c = Ac ∪ O = (Ac ×W ) ∪ (A × O)
corresponding to a material implication. This is the usual

representation of rules in classical logic. Clearly, to the set

A × O of examples, it adds the set (Ac × W ) of pairs of

values uncommitted by the rule. Since a rule refers to both

examples and counterexamples, the complete representation

of the rule is the pair (A × O,Ac ∪ O) made of explicitly

and implicitly permitted values (u,w).

In the case of fuzzy rules A and O are fuzzy sets, and the

two fuzzy sets A×O and Ac ∪O are modelled using fuzzy

connectives of conjunction and implication, respectively:

µA(u) ∧ µO(w); (1)

µA(u) → µO(w). (2)

First we will present commonly used rules: conjunctive

rules. Then implicative rules will be described. An interpre-

tation in terms of logic will be given and a comparison will

be made according to several properties.

A. Conjunctive Fuzzy Rules

In contrast to logic representations, the most popular repre-

sentation of fuzzy rules is the Cartesian product of the fuzzy

condition and the fuzzy conclusion, following the approach

of Mamdani. These rules may have a simple interpretation

in terms of guaranteed possibility distributions [2]. For a

given variable X , a guaranteed possibility distribution δX
is associated to statements of the form “X ∈ A is possible”:

∀u ∈ U, δX(u) ≥ µA(u).

The statement “X ∈ A is possible” only means that values

in A are possible to some degree. δX(u) = 1 indicates that

X = u is an actual situation, an observed value. δX(u) = 0
indicates no evidence in favor of X = u has been collected

yet. It does not forbid situations where the statement is

false. δX is a lower possibility distribution. Note that this

interpretation is at odds with classical logic where asserting

a proposition p explicitly forbids situations where p is false.

Conjunctive rules “if X is A then Z is O”, can be

understood as: “the more X is A, the more possible it is

that Z lies in O” [2]. In this approach, the operator “then” is

modeled by a conjunction and the rule output is a guaranteed

possibility distribution: δZ|X = µA ∧ µO. The traditional

Mamdani conjunction operator is the min.

∀u ∈ U, ∀w ∈ W, δZ|X(u,w) can be interpreted as

follows: when X is A to some degree, “Z is O” is possible

at least to level min(µA(u), µO(w)).
If we consider a precise input u0 and if µA(u0) = α with

α ∈ [0, 1], values in O are guaranteed at degree α. So the

output O′ is given by the truncation of O at level α as shown

on figure 1.

0

1

W
0

1

U

α

µO

Mamdani conclusion

µO′

α

µA

Rule condition

Fig. 1. Inference with Mamdani rules

In a knowledge base K = {Ai × Oi, i = 1, ..., n} of n
parallel fuzzy rules (having the same input space U and the

same output space W ), rule aggregation is disjunctive. As a

rule suggests outputs with a guaranteed possibility degree,

when two or more rules are fired, all the corresponding

Author-produced version of the article published in IEEE Transactions on Fuzzy Systems, 2009, N°17(1), p.61-78. 
The original publication is available at http://ieeexplore.ieee.org 
Doi: 10.1109/TFUZZ.2008.2007851 



3

outputs are guaranteed, each one at least to level δiZ|X , ∀i.
The final possibility distribution will then be:

δK ≥ max
i=1,...,n

δiZ|X (3)

The maximum represents a lower bound of possibility

degrees. Clearly, δZ|X(u,w) = 0 means that if X = u, no

rule can guarantee that w is a possible value for Z. Ignorance

is then represented by a null distribution: δZ|X(u,w) =
0,∀w.

B. Implicative Fuzzy Rules

The interpretation of implicative rules is based on a

straightforward application of Zadeh’s theory of approximate

reasoning [12]. According to Zadeh, each piece of knowledge

can be considered as a fuzzy restriction on a set of possible

worlds. It extends the conventions of classical logic.

The statement “ X is Ai ” can be depicted as:

∀u ∈ U, πX(u) ≤ µAi
(u) (4)

where πX(u) is a (potential) possibility distribution. “ X
is Ai ” now means: “ X must be in Ai ”, it represents

a constraint, i.e., negative information in the sense that it

points out forbidden values.

In view of the above discussions, the two possibility

distributions δZ|X and πZ|X have very different semantics:

degrees of possibility expressed by πZ|X are potential :

πZ|X(u,w) = 1 means that nothing forbids (u,w) from

further consideration, while πZ|X(u,w) = 0 means that

(u,w) is forbidden by the rule.

The difference of nature between conjunctive and implica-

tive rules has impact when combining several rules together:

while several conjunctive rules are combined disjunctively

(as they point to more examples than a single rule), im-

plicative rules are combined conjunctively, because several

constraints lead to a more restricted feasible set of allowed

situations than a single constraint:

πZ|X(u,w) = min
i=1,...,n

πi
Z|X = min

i=1,...,n
(µAi

(u) → µOi
(w))

(5)

Rule aggregation is conjunctive because the possibility

in the sense of (4) is not guaranteed: a value estimated as

possible by a rule can be forbidden by other rules.

There are different kinds of implicative rules: certainty

rules and gradual rules [2]. In this article, we only focus

on gradual rules. The behavior of gradual implicative rules,

“the more X is A, then the more Z is O”, depends on the

selected implication. We consider in this paper the following

residuated implications :

• Resher-Gaines: a → b =

{

1 if a ≤ b
0 otherwise

• Gödel: a → b =

{

1 if a ≤ b
b otherwise

• Goguen: a → b =

{

min(1, b/a) if a 6= 0
1 otherwise

Figure 2 clearly shows that under a precise input u0 the

resulting output affects the shape of the conclusion part while

maintaining the output values within the support of the rule

conclusion. In all cases the core of the output gets larger

as the input membership value decreases, thus relaxing the

constraint expressed in the rule conclusion at level 1. In the

case of Goguen implication, the output membership function

remains continuous, if µA(u0) > 0, while Gödel implication

almost always results in a discontinuous output. In the case

of Resher-Gaines implication, the output coincides with the

core of the output obtained by all other residuated impli-

cations, a crisp interval in practice, that gets wider as the

input membership value decreases [7], [13]. In particular, if

µA(u0) = 1 and the core of the output is a singleton, the

output is precise.

0
U

1

α

µA

Rule condition

0

1

W

α

Godël conclusion

µO

µO′

0

1

W

α

Goguen conclusion

µO′

µO

0

1

W

α

µO

µO′

Resher-Gaines conclusion

Fig. 2. Inference with one gradual rule and a precise input

Modus Ponens in classical logic is: A ∧ (A → O) |=
O where |= represents the logical inference. In fuzzy logic,

modus ponens can be non-trivially extended to Generalised

Modus Ponens (GMP) [14] A′ ∧ (A → O) |= O′. In the

presence of an approximate fact A′ and the implication A →
O, we are able to calculate O′ defined by:

µO′(v) = sup
u∈U

(

µA′(u)⊤(µA(u) → µO(w))
)

(6)

The output O′ constrains the value of the output variable.

When an operator → (implication) is obtained from ⊤ (con-

junction) by residuation, the GMP A′ ∧ ( A → O ) |= O′

is recovered for fuzzy rules [15]. Note that for pure (Resher-

Gaines) gradual rules, modus ponens is strengthened: from

A′ ⊂ A and A → O, a conclusion more precise than O can

be obtained.

C. Rule Behavior Comparison

In line with their different meanings, conjunctive and

implicative rules do not behave similarly. In the presence of

fuzzy inputs or cascading systems of fuzzy rules, conjunctive

rules have some unnatural behavior.

1) Interpolation between rules: The interpolation mecha-

nism used for Mamdani rules is described in depth in [16].

Let us consider input/output partitions such as core(Ai) =
{ai} and supp(Ai) = [ai−1, ai+1], with ai−1 < ai < ai+1
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Fig. 3. Interpolation with Mamdani rules
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Fig. 4. Interpolation with gradual implicative rules (Godël implication)

a) Conjunctive possibility rules: Figure 3 shows the

output possibility distribution inferred by three Mamdani

rules, Ai∧Oi (i = 1, 2, 3), when input u0 moves from a1 to

a2 (see subfigure a): only truncation levels of O1 and O2 are

affected (see subfigure b). A defuzzification step is always

needed. Subfigures (c) and (d) respectively show results

using mean of maxima and centroid defuzzifications. Only

the centroid defuzzification leads to a continuous function,

which is generally monotonic. However, contrary to what

could be expected, this function is not linear. In fact it has

been shown that in some configurations, a set of fuzzy rules

qualitatively expressing a monotonic behavior may fail to

produce a monotonic control law ([17] and [18]).

b) Gradual implicative rules: Figure 4 illustrates the

case of three gradual rules Ai → Oi(i = 1, 2, 3). Due to

the fuzzy partition structure, the maximum is unique (b) and

defuzzification is not necessary in that case. Subfigure (c)

shows the linear evolution of this unique maximum. This

subfigure holds for all residuated implications, as they yield

the same core.
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Fig. 5. Fuzzy set width influence

2) Influence of the specificity of the rules: Let us consider

two rules triggered at the same level.

a) Conjunctive possibility rules: When two trapezoidal

output fuzzy sets have equal widths, the inferred value (mean

of maxima or centroid) is equal to z such that µO1
(z) =

µO2
(z). This result is the one expected. Nevertheless, if one

output set is wider than the other, the defuzzified value moves

towards the wider one, which is counter-intuitive, as shown

in the left part of figure 5.

b) Gradual implicative rules: This behavior is im-

possible with gradual implicative rules because rules are

aggregated in a conjunctive way. In fact the result of trig-

gering two gradual rules is more precise than the result of

triggering a single rule. This is totally the opposite situation

for conjunctive rules, even with precise inputs. So there

is a natural expectation of limited imprecision of results

when triggering fuzzy implicative rules with fuzzy inputs,

including the case when such fuzzy inputs result from a

previous inference step.

3) Rule accumulation: Adding a conjunctive rule enlarges

the output possibility distribution. Then a rule system is never

inconsistent even if the rule base includes conflicting rules

from a knowledge representation point of view. When many

rules are added to the rule base, the output possibility dis-

tribution approaches the membership function of the whole

referential. That behavior, often hidden by defuzzification, is

not intuitive because we might think that adding new rules

(hence new information) to the knowledge base would lead

to a more accurate system. If conjunctive fuzzy systems have

to be cascaded, it is clear that using the fuzzy output of the

first system as a fuzzy input for the second one may lead to

unreasonably imprecise responses.

Implicative rules formulate constraints on possible in-

put/output mappings. The more rules there are in a rule base,

the more precise the output fuzzy set becomes, at the risk of

reaching inconsistency. Inconsistency arises when for a given

input u ∈ U, πZ/X(u,w) < 1,∀w. This feature is interesting

because it allows to check logical consistency of the rule

base [19].

4) Inference Mechanism: With conjunctive rules, the out-

put O′ is equal to:

O′ = A′o(

n
⋃

i=1

Ai ∧Oi) =

n
⋃

i=1

(A′o(Ai ∧Oi)) (7)

because of the commutativity of the sup−min composi-

tion (denoted o) and the
⋃

operator, the maximum for Mam-
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dani systems. This method, named FITA2, corresponds to the

right-hand side of equation 7. The inference mechanism is

easy to implement because the inference can be performed

rule by rule.

With implicative rules, the output O′ is given by:

O′ = A′o
n
⋂

i=1

(Ai → Oi) (8)

where
⋂

is the minimum operator. When A′ is a precise

input, operators o and
⋂

commute, the output can then be

written:

O′ =
n
⋂

i=1

((A′oAi) → Oi)) (9)

This formalisation corresponds to the FITA method for

computing inference results.

However, when the input A′ is imprecise or fuzzy, the

commutativity between sup−min composition and the
⋂

operator is no longer possible [14]. Only the expression (8)

which is a FATI3 inference is correct. For an approximate

fact, the following inclusion is true :

A′o

(

n
⋂

i=1

Ai → Oi

)

⊆
n
⋂

i=1

(

(A′ o Ai ) → Oi

)

The FITA method only gives an upper approximation of

the result.

Currently there are almost no practical methods for com-

puting inference with implicative fuzzy rules. One method

had been developed in [20] for Gödel implication when the

fuzzy sets in condition parts are one-dimensional and have

overlapping cores. Another technique proposed by Ughetto

and al. [21] is devoted to Resher-Gaines implications with

one-dimensional inputs; it presupposes an explicit calculation

of the (crisp) relation defined by a set of gradual rules, in

the form of two piecewise linear functions.

D. Other fuzzy interpolation techniques

In this subsection we briefly discuss the difference between

gradual rule-based inference and other fuzzy interpolation

methods. Many fuzzy systems rely on the proposal previously

made by Takagi and Sugeno [22] to simplify Mamdani-

like systems, turning the fuzzy conclusions of rules into

precise ones. Then, using the centroid defuzzification, the

fuzzy system computes a standard interpolation between

precise conclusions, weighted by the degrees of activation of

rules, due to a precise input. There is a precise connection

between Takagi-Sugeno systems and gradual rules. In the

one dimensional case, if strong partitions are used for inputs

and output, Takagi-Sugeno inference coincides with gradual

rule inference, both of which generalize linear interpolation

[23]. In particular, a precise input yields a precise output.

2FITA means ”First Infer Then Aggregate”
3FATI means ”First Aggregate Then Infer”

In the multidimensional case, this equivalence no longer

holds because the output of a gradual rule system under a

precise multidimensional input is generally an interval [13].

Nevertheless it is possible to devise a gradual rule system so

that the output interval contains the precise output of some

prescribed T-S system. In fact, even if gradual rule systems

have interpolation capabilities built in the logic, their scope

is to reflect the imprecision pervading the input and the rules

in their output results, while T-S systems aim at modeling a

generalized form of precise interpolation by means of rules

having fuzzy conditions.

The nD Takagi-Sugeno method essentially comes down

to extending an interpolation equation from 2D to nD. On

the contrary the nD gradual rule approach extends the 2D

generalized modus ponens, hence the result will be imprecise

(an interval) even if the input is precise. So, contrary to T-S

approach, gradual rules not only interpolate but also propa-

gate imprecision (present because of the granular nature of

a fuzzy rule-based system) as well, hence handle uncertainty

without resorting to type 2 fuzzy sets.

Other interpolation methods exist for fuzzy systems having

rules whose condition parts fail to cover the input domain,

starting with works by Koczy and Hirota [24]. Usually, such

methods start with a given classical numerical interpolation

scheme, and extend it to fuzzy data expressed by scarce fuzzy

rules. Reasoning alpha-cut-wise often leads to difficulty

because the obtained output intervals for each membership

levels may fail to be nested. Jenei and colleagues [25],

[26] provide an extensive analysis of fuzzy interpolation

techniques with a set of requirements fuzzy interpolation

should satisfy. The latter family of techniques is driven by

the necessity to produce an output result despite the scarcity

of information, while the gradual rule approach is tailored

not to produce an output result when a logical inconsistency

is detected [19], a conflict resulting from handling too much

information.

III. INFERENTIAL INDEPENDENCE

To design a practical algorithm for implicative inference,

we use the interesting property of inferential independence

[27], leading to well-conditioned systems. Section III-A

recalls the main results available in the literature, that will

be used in section III-B.

A. Definitions and results

A rule system {Aj → Oj , j = 1, . . . , n} is well-

conditioned if it produces the output fact Oi when fed with

the input fact Ai, for any i = 1, . . . , n:

∀i, Aio
⋂

j

(Aj → Oj) = Oi

More often than not, this condition is not satisfied, and the

output is more precise:

Aio
⋂

j

(Aj → Oj) = O′
i ⊂ Oi
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According to Morsi[28], if we substitute each rule con-

clusion with the inferred output O′
i, the system Aj → O′

j is

well-conditioned:

Aio
⋂

j

(

Aj → O′
j

)

= O′
i

Morsi’s proof uses residuated implication properties [29]

verified by Gödel and Goguen operators and the relation:
⋂

j(Aj → Oj) =
⋂

j(Aj → O′
j) proved in [28]. In

a well-conditioned system, rules are said to be inferentially

independent.

This way of doing requires an inference step. Alternatively,

the inferential independence property can be guaranteed by

a proper design of fuzzy input partitions.

B. Sufficient conditions for a well-conditioned system

In the sequel, we look for a form of fuzzy input partition

ensuring a well-conditioned system. Two cases are to be

considered: residuated implications (Gödel and Goguen) and

Resher-Gaines implication. The following result does not

work for Resher-Gaines but it is true for all residuated

implications obtained from a continuous t-norm.

Theorem: A system of fuzzy implicative fuzzy rules

{Ai → Oi, i = 1, . . . , n}, modeled by residuated implica-

tions is well-conditioned as soon as

∀ i = 1, . . . , n ∃ x ∈ core(Ai), µAj
(x) = 0,

∀ j 6= i.
Proof: Let ⊤ be a continuous triangular norm on [0, 1],

and → be the corresponding residuated implication a →
b = sup{c, a⊤c ≤ b}. The max−min composition is

generalized into a max−⊤ composition. From equation (6),

and because of the conjunctive aggregation of implicative

rules, we require: ∀z ∈ W,

sup
x∈U

µAi
(x)⊤min

j∈N

(

µAj
(x) → µOj

(z)
)

= µOi
(z)

We can shift µAi
(x) and t-norm ⊤ inside of min. We are

looking for sufficient conditions for the equality: ∀z,

sup
x∈U

min
j∈N

(

µAi
(x)⊤(µAj

(x) → µOj
(z))

)

= µOi
(z)

to hold. This sufficient condition is equivalent to:

∀z,∃x ∈ U,

min
j∈N

(

µAi
(x)⊤(µAj

(x) → µOj
(z))

)

= µOi
(z)

Then, the following conditions are sufficient to ensure

this equality:

∀z,∃x ∈ U,

∀j 6= i, µAi(x)⊤(µAj (x) → µOj (z)) ≥ µOi(z) (10)

and

µAi(x)⊤(µAi(x) → µOi(z)) = µOi(z) (11)

Choosing x ∈ core(Ai), equation (11) obviously holds

since 1 → µOi
(z) = µOi

(z) for residuated (hence Gödel

and Goguen) implications.

Now, we must deal with equation (10). If we consider x
in the core of Ai, then µAi

(x) = 1. A sufficient condition is

then:

∀z,∃x ∈ core(Ai), ∀j 6= i, µAj
(x) → µOj

(z) ≥ µOi
(z)

(12)

There are two cases:

• µAj
(x) > µOj

(z): then equation (12) is not usually

true. If this strict inequality holds ∀x ∈ core(Ai), the

system is not well-conditioned.

• µAj
(x) ≤ µOj

(z): then equation (12) is always true.

Fuzzy systems will ever respect the latter inequality

condition µAj
(x) ≤ µOj

(z), if the following property holds:

at least one value in a fuzzy set core does not belong to

the support of other input fuzzy sets. i.e. as we can see

on figure 6, ∃ x ∈ core(Ai), µAj
(x) = 0, ∀ j 6= i. Q.E.D.

This proof holds for a n-dimensional-input system as well

(interpreting x as a vector of coordinates).

1

Ux0

Ai−1 Ai Ai+1

Fig. 6. A fuzzy partition allowing inferential independence

For strong input fuzzy partitions (see figure 8)

the following stronger property holds: ∀ j 6= i,
∀ x ∈ core(Ai), µAj

(x) = 0. Hence the system is

always well-conditioned in this case. An interesting property

useful for inference is that for strong fuzzy partitions, with

x ∈ core(Ai), the system output is Oi for Gödel and

Goguen implications.

For the Resher-Gaines implication, equation (11) holds

if, ∀z, we choose x such that µAi
(x) = µOi

(z). Then

equation (10) will hold if and only if µAj
(x) ≤ µOj

(z).
Assume strong input and output partitions. Then, in the one-

dimensional case, only adjacent rules Ai → Oi, Ai−1 →
Oi−1 and Ai+1 → Oi+1 are triggered. Then for j 6= {i, i+1}
equation (10) trivially holds. For j = i+1, this equation reads

:

µAi
(x) ⊤ ((µAi+1

(x) → (µOi+1
(z))) ≥ µOi

(z)

Because of the strong partition assumption, the equation

is equivalent to:

µAi
(x) ⊤ ((1 − µAi

(x) → (1 − µOi
(z))) ≥ µOi

(z)

which holds if µAi
(x) = µOi

(z) for Resher-Gaines

implication. This behavior is also true for j = i− 1.
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0

1

xa ai+1

µ

Ai A Ai+1

1 − µ
1

0

Oi

ν

O Oi+1

1 − ν

ooi oi+1arai al
z

Fig. 7. Notation (Resher-Gaines implication)

In the one dimensional case, exact analytical expressions

can be calculated for the inference result. We give them for

all different implication types.

IV. ANALYTICAL EXPRESSIONS FOR INFERENCE WITH A

SINGLE FUZZY INPUT

In the one dimensional case it is possible to provide

analytical expressions of the inference result. Let us consider

a fuzzy input A as a unimodal fuzzy interval whose support

lies in the interval between the cores of two subsequent rule

conditions (which is the most complex case). Therefore, the

µ function is invertible.
The output is given by:

µO(z) = sup
x∈U

µA(x)⊤min
(

µAi
(x) → µOi

(z), µAi+1
(x) → µOi+1

(z)
)

As we deal with strong partitions this is also, letting µ =
µAi

, and ν = µOi
for short:

µO(z) = sup
x∈U

µA(x)⊤min
(

µ(x) → ν(z), (1− µ(x)) → (1− ν(z))
)

(13)

Let us study the different implications. Figure 7 illustrates

some notations. Let’s denote e = min
(

µ(x) → ν(z), (1 −

µ(x)) → (1− ν(z))
)

.

1) Resher-Gaines implication: Let us consider the case

of Resher-Gaines implication. It is clear that e > 0 if and

only if µ(x) = ν(z), and then e = 1. Hence x is equal to

µ−1(ν(z)), the inference result ORG is such as:

µORG
(z) = µA(µ

−1(ν(z))) (14)

In other words, if the input partition is the same as the

output partition, the computed output is the same as the fuzzy

input.

2) Gödel implication: Now in the case of Gödel implica-

tion, ⊤ = min, and the inference process reads, distinguish-

ing 3 cases:

• µ(x) = ν(z) then e = 1
• µ(x) > ν(z) then e = ν(z)
• µ(x) < ν(z) then e = 1− ν(z)

From equation 13, we can deduce:

µOGod
(z) = max

(

µA(µ
−1(ν(z))), sup

µ(x)<ν(z)

min
(

µA(x),

1− ν(z)
)

, sup
µ(x)>ν(z)

min
(

µA(x), ν(z)
)

)

= max

(

µA(µ
−1(ν(z))),min

(

1− ν(z),

sup
µ(x)<ν(z)

µA(x)
)

,min
(

ν(z), sup
µ(x)>ν(z)

µA(x)
)

)

Note that, for a given z, {x|µ(x) > ν(z)} is of

the form [ai, µ
−1(ν(z))[, and so, the possibility degree

supµ(x)>ν(z) µA(x)) is 1 if µ−1(ν(z)) > a (the core of

A), and µA(µ
−1(ν(z))) otherwise. In other words, it is

the membership degree of µ−1(ν(z)) to the fuzzy interval

[ai, A].
Similarly, supµ(x)<ν(z) µA(x) is 1 if µ−1(ν(z)) < a, and

µA(µ
−1(ν(z))) otherwise. In other words, it is the degree

of membership of µ−1(ν(z)) to the fuzzy interval [A, ai+1]
[30]. Hence

µOGod
(z) = max

(

µA(µ−1(ν(z))),min
(

1− ν(z),

µ[A,ai+1]
(µ−1(ν(z)))

)

,min
(

ν(z), µ[ai,A](µ
−1(ν(z)))

)

)

So, the inference result OGod has the same core o =
ν−1(µ(a)) as ORG and is such that:

µOGod
(z) =

{

max(µORG
(z), 1− ν(z)) if z < o, o = core(O)

max(µORG
(z), ν(z)) if z > o, o = core(O)

3) Goguen implication: For Goguen implication, e =

min
(

min(1, ν(z)
µ(x) ),min(1, 1−ν(z)

1−µ(x) )
)

and ⊤ = ∗. We know

that µA(x) = 0, ∀x /∈]al, ar[; we will then only consider the

interval ]al, ar[. For a given z0, we denote x0 = µ−1(ν(z0)).
Then we have 3 cases:

• µ(x) = ν(z) ⇔ x = x0 then e = 1
• µ(x) > ν(z) ⇔ x ∈]al, x0[

then e = min
(

ν(z)
µ(x) , 1

)

= ν(z)
µ(x)

• µ(x) < ν(z) ⇔ x ∈]x0, ar[

then e = min
(

1, 1−ν(z)
1−µ(x)

)

= 1−ν(z)
1−µ(x)

The result for Goguen is now given by:

µOGog
(z) = max

(

µA(x0), sup
x∈]al,x0[

µA(x) ∗
ν(z)

µ(x)
,

sup
x∈]x0,ar [

µA(x) ∗
1− ν(z)

1− µ(x)

)

Then, there are two cases:

• z < o :

First, let study supx∈]al,x0[ µA(x) ∗
ν(z)
µ(x) . On ]al, x0[,

µA(x) is increasing and µ(x) is decreasing. For x =

x0, µ(x) = ν(z) so supx∈]al,x0[ µA(x)∗
ν(z)
µ(x) = µA(x0).

Then, we study the interval ]x0, ar[. This study is

more complex and gives the result supx∈]x0,ar [ µA(x)∗
1−ν(z)
1−µ(x) = 1−ν(z)

1−µ(a) . We do not give details here, but a
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geometrical demonstration proves that ∀z < o, 1−ν(z)
1−µ(a)

is always greater than µA(x0).
So the final result is equal to:

µOGog
(z) = max

(

µA(x0), µA(x0),
1− ν(z)

1− µ(a)

)

=
1− ν(z)

1− µ(a)

• z > o :

The study of supx∈]al,x0[ µA(x) ∗
ν(z)
µ(x) gives us

ν(z)
µ(a) .

In the interval ]x0, ar[, sup]x0,ar[ µA(x) ∗
1−ν(z)
1−µ(x) =

µA(x0). As previously one can show that
ν(z)
µ(x) >

µA(x0).
As a consequence, the result of the inference for z > o
is:

µOGog
(z) = max

(

µA(x0),
ν(z)

µ(a)
, µA(x0)

)

=
ν(z)

µ(a)

So, the result Ogog of the inference has the same core

o = ν−1(µ(a)) as ORG and is such that:

µOGog
(z) =

{

1−ν(z)
1−µ(a) if z < o
ν(z)
µ(a) if z > o

Let us stress that all analytical expressions given here are

only valid for a fuzzy input lying in the overlapping area

between two fuzzy sets of the input partition. The case of a

fuzzy input lying within a fuzzy set core is obvious.

V. 1D INFERENCE ALGORITHM

We now use strong input fuzzy partitions and the infer-

ential independence property to design a practical inference

process by input decompositions. These decompositions are

instrumental due to the following property of a fuzzy relation

R:

(A ∪A′)oR = (AoR) ∪ (A′oR) (15)

where o is a sup-t-norm composition and ∪ is the maximum

operation.

We first consider one-dimensional inputs for explanation

purposes. We detail the output calculation for an α-level

rectangular input, which our inference algorithm will be

based upon. The decomposition algorithm proposed here in

1D scales up to 2D inputs while the previous analytical

expressions do not.

A. Partitioning the input space

To partition the input space, we consider supports and

cores seperately. Let Ek be intervals forming a partition,

obtained as a alternating sequence of cores and peripheral

parts of rules conditions (see figure 8). This decomposition

isolates the fuzzy set cores. The inference is straightforward

from a fuzzy input lying in a core area, as, due to the

strong fuzzy partition structure, only one rule is fired. In this

case, the output possibility distribution is either the whole

set corresponding to the fired rule conclusion for Godel or

Goguen operators, or its core for Rescher-Gaines operator.

0

1

E2 E3 E4 E5

U
E1

Fig. 8. Partitioning decomposition with strong fuzzy partition

B. Fuzzy input decomposition

An α-cut of A is an interval defined by:

∀α > 0, Aα = {x ∈ R|µA(x) ≥ α}.

According to Zadeh’s representation result:

A =
⋃

α∈]0,1] αAα. In the presence of a fuzzy

input A′, we first decompose A′ in terms of α-cuts . Then,

we decompose these cuts in terms of the above partition of

the input space. In consequence, we have the identity:

A′ =
⋃

α

(

α(
⋃

k=1,...,p Ek ∩Aα)
)

where p is the number of intervals Ek.

In practice we use only a finite number of cuts with

thresholds α1 = 1 > α2 > · · · > αn > 0. A fuzzy set A′

is then included within two inner and outer approximations

(see figure 9).

⋃

j=1,...,n

αjAαj
⊆ A′ ⊆

⋃

j=1,...,n

αjAαj+1
(16)

1

0

α2

α3

α1

A’

U

Aα1

Aα2

Aα3

α1
A’

α2

α3

1

U0

Aα2

Aα3

Aα4

Inner Outer

Fig. 9. α-cut decomposition

External approximations seem to be more appropriate

because they include the fuzzy input. The approximated

output contains the true output. It could be interesting to keep

both inner and external approximations in order to reason

with two approximations like for Rough Sets [31].

The double decomposition presented above will be used

in the inference algorithms that follow.

C. Inference with an α-level rectangular input

Due to the partitioning of the input space, the rectangular

input (Ek ∩ Aα) overlaps on at most two fuzzy sets. If

this input lies within the fuzzy set core of Ai, the result is

obvious: we obtain Oi for Gödel and Goguen implications

and Oi’s core for Resher-Gaines implication. Figure 10

recalls inference results with a precise input and two gradual

rules whose conditions form a strong partition.
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α2

α1

1

0

Ai

Ux

Ai+1

Rule condition

ai ai+1

α2

α1

1

0

Oi Oi+1

Resher-Gaines conclusion

oi oi+1 Wz

α2

α1

1

0

Godël conclusion

Oi Oi+1

oi oi+1 Wz

α2

α1

1

0

Goguen conclusion

Oi Oi+1

oi oi+1 Wz

Fig. 10. Inference with two gradual implicative rules and a precise input

Let the interval of interest (Ek ∩ Aα) be denoted [il, ir].
An α-level rectangular input membership function is defined

by µ[il,ir] such that: µ[il,ir](x) =

{

α if il ≤ x ≤ ir
0 otherwise

Since the rectangular input [il, ir] lies in the support of two

consecutive fuzzy sets (see figure 11), the output is given by:

µO′(z) = sup
il≤x≤ir

min
i=1,...,n

(

α⊤µAi
(x) → µOi

(z)
)

In this specific case, it is equal to:

µO′(z)= sup
il≤x≤ir

min
(

α⊤µAi
(x) → µOi

(z),

α⊤µAi+1
(x) → µOi+1

(z)
)

(17)

for some i.
Since α and ⊤ are independent of x and i, the system is

equivalent to:

µO′(z)=α⊤ sup
il≤x≤ir

min
(

µAi
(x) → µOi

(z),

µAi+1
(x) → µOi+1

(z)
)

Next, the output behavior depends on the chosen resid-

uated implication. We consider Resher-Gaines, Gödel and

Goguen implications.

Level α has only a truncation effect on the output’s height.

No output element can have a higher membership than level

α because the minimum is the upper bound of t-norms.

According to the chosen implication, a different t-norm will

be used. For Resher-Gaines and Gödel ones, the t-norm is

the minimum. Then, the output is truncated at level α, but

its shape is preserved. For Goguen implication, t-norm is

the product. The output is also truncated at level α but the

support slopes are modified (See figure 11).

Output computation for one rectangular input is straight-

forward depending on the chosen implication.

The approximate one-dimensional inference process is

completed by performing the union of outputs inferred from

each α-level rectangular input taking both decompositions

into account.
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Ai1

U
0

Ai+1

αi

αj

Rule condition

ai ai+1
�
�
�
�
�
�
�

�
�
�
�
�
�
�

1

0

αi

αj

Oi
Oi+1

Resher-Gaines conclusion

oi oi+11 W

1

0

αi

αj

Oi
Oi+1

Gödel conclusion
oi oi+1 W

1

0

αi

αj

Oi
Oi+1

Goguen conclusion
oi oi+1 W

Fig. 11. Inference with two gradual implicative rules and a fuzzy input
decomposed on three levels αj < αi < 1

D. Results of the double decomposition

The result of the inference based on a fuzzy input A′ is

O′ of the form:

O′ =
⋃

k=1,...,p

(

⋃

α O
′α
k

)

where O
′α
k = (Ek ∩Aα)oR is obtained in two steps. First

the output possibility distribution is calculated for a level 1

rectangular input. Then the t-norm is applied to this output

possibility distribution. The minimum t-norm truncates the

output possibility distribution while the product t-norm also

affects its slope, as illustrated in Figure 11.

E. Complexity

The inference process summary is given below. Let n be

the number of α-cuts, and k the number of Ek intervals

within the input partition.

• Decompose the fuzzy input by n α-cuts in order

to consider it as a series of α-level rectangular

inputs.

• Decompose each rectangular input according to

the Ek intervals within the input partition in order

to separate cores from intermediate zones.

Then, for each α-level rectangular input, it is

necessary to:

– Infer from each bound of the α-level rectan-

gular input.

– Compute the convex hull of the k partial

inferred sets

• Compute the union of the n convex hulls.

An analysis of the algorithm complexity follows.

• α-cut input decomposition linearly depends on n.

• Decomposition of rectangular inputs linearly depends

on n and on the number of their intersections with the

subsets resulting from the partition decomposition, i.e.

k.

• Inference from both bounds of the rectangular input

requires 2 calculations for each α-cut.

• Convex hull can be determined by considering 2k
inferred bounds.

Author-produced version of the article published in IEEE Transactions on Fuzzy Systems, 2009, N°17(1), p.61-78. 
The original publication is available at http://ieeexplore.ieee.org 
Doi: 10.1109/TFUZZ.2008.2007851 



10

• Last step is the union of n convex hulls.

As all operations linearly depend on n, this algorithm has

complexity O(n).

F. α-cut related approximation

The only approximation made in the one dimensional

inference algorithm described above comes from the α-

cut input decomposition. All the other steps include exact

decompositions, they are only introduced in order to increase

the algorithm efficiency. Let us give some elements to

quantify the α-cut related approximation. For that purpose,

we consider “identical” input and output partitions, such

as the ones shown on Figure 12, with the same range

[min,max] and two fuzzy sets each. In that case, the analyt-

min max
0

1

 

 

Fuzzy input

min max
0

1

 

 

Exact output

α-cuts

Fig. 12. α-cut related approximation

ical expression given in Equation 14 reduces to µORG
(z) =

µA(z), ∀z ∈ [min,max]. The inferred output must be

identical to the fuzzy input (see Figure 12).

Table I gives the number of α-cuts required for reach-

ing various accuracy levels, depending on the fuzzy input

characteristics. The fuzzy input is chosen as a symmetrical

trapezoidal fuzzy set.

Irrespective of the number of α-cuts, the computed output

has the same core as the exact output. The accuracy level is

evaluated as the ratio computed output area
exact output area . It only depends

on the fuzzy input slope, which varies from 45 to 90 degrees.

The results show that, whatever the slope, at most ten α-cuts

are necessary for ensuring an accuracy level better than ten

per cent.

Min. Accuracy (%)
Slope 20 15 10 5 2

45 ˚ 6 7 10 22 81
50 ˚ 5 6 8 15 47
60 ˚ 3 4 5 9 22
70 ˚ 2 3 3 5 12
80 ˚ 2 3 6
90 ˚ 1

TABLE I

NUMBER OF α-CUTS REQUIRED FOR A GIVEN ACCURACY

VI. 2D INFERENCE ALGORITHM

We now examine inference with fuzzy inputs in the two-

dimensional case. We use the same decomposition method as

in the one-dimensional case. In the sequel, we denote a rule

as: Ak ∧Bl → Ok,l. The aim of this section is to determine

the output in the presence of two fuzzy inputs. In order to

reduce the complexity, a double decomposition is used again:

• α-cut decomposition: decompose each fuzzy input into

a union of rectangular inputs of level α, 0 < α ≤ 1.

This decomposition allows to consider each fuzzy input

on each dimension as a set of α-level rectangular inputs.

α is identical in both dimensions.

• Partitioning decomposition: For each rectangular α-cut,

a decomposition is made according to the different

parts of the partition in order to handle the inference

process locally. Thanks to inferential independence, the

inference from the core part is obvious.

As a consequence, the inferred output is now the result of

a double union:

O′ =
⋃

k=1,...,p

(

⋃

α

O
′α
k,l

)

(18)

O
′α
k,l is the inferred output resulting from inputs Ek ∩Aα

and El ∩Bα.

The key issue to be considered is how to infer with an α-

level rectangular input in each dimension. If the function to

be represented by the fuzzy rule-based system is monotonic

and continuous, it is sufficient to infer from each bound of

the rectangular input on each dimension, in order to get the

fuzzy output interval bounds. If the output is not monotonic,

we need to detect the extrema of the function and deal with

monotonic parts separately.

To sum up the inference process in two dimensions, it is

necessary to:

• decompose the fuzzy input by α-cuts in order to con-

sider the fuzzy input as a set of α-level rectangular

inputs.

• decompose each rectangular α-cuts according to the

input partition in order to separate core and overlapping

zones. This allows a local inference.

• for each α-level rectangular input,

– infer from each of the 4 vertices of the 2 α-level

rectangular inputs.

– test if there are other useful points lying inside the

rectangular input, and infer from all such values.

– the final output is the convex hull of all the outputs

so inferred.

• The union of all outputs previously computed is the final

result.

A. Implementation

We have three key points to study:

• output partition: To preserve coherence and to insure

interpretability of the system, we need to choose proper

output partitions.

• Continuity: we must insure continuity across the differ-

ent areas obtained by decomposition.

• Extremal points: if the output is not monotonic between

the two bounds of the rectangular input, we need to

detect the extremal points and to consider them for the

inference process.
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If X is A1 and Y is B1 then Z is O1,1

If X is A1 and Y is B2 then Z is O1,2

If X is A2 and Y is B1 then Z is O2,1

If X is A2 and Y is B2 then Z is O2,2

TABLE II

THE SET OF SIMULTANEOUSLY FIRED RULES FOR TWO INPUTS

In the sequel, we first study output partitions and the

mechanism of inference for a precise input. Then, we deal

with continuity and kink points.

B. Output partition coherence and interpretability

In this section, we focus on Resher-Gaines implication

because its computation provides the core of outputs inferred

using residuated fuzzy implications. Each input variable is

associated to a strong fuzzy partition (see figure 13). The

purpose of this section is to find output fuzzy sets capable

of ensuring the logical coherence of the rule base system

[19]. Furthermore, we need to have an interpretable output

partition.

Thanks to the strong fuzzy partition a given two-

dimensional precise input can trigger at most four rules,

shown on table II.

A1 A2

1 2 3 00

1 1
B1 B2

1 2 3U V

Fig. 13. Input partitions

Coherence: a rule system is coherent if for all input

values, there is at most one output value totally compatible

(the infered output must be normalized)

To obtain a coherent system, a necessary condition is to

have O1,1 ∩ O1,2 ∩ O2,1 ∩ O2,2 6= ∅. Sufficient conditions

are more demanding and can be found in [19]. Based

on results presented in [13], we build an output coverage

where O1,1 and O2,2 form a strong partition. In order to

have an interpretable system, we choose Support(O1,2) =
Support(O2,1) = Support(O1,1) ∩ Support(O2,2). (see

figure 14)

Note that this partition satisfies both system coherence and

interpretability properties. According to whether the system

we want to represent is symmetric or not, O1,2 and O2,1 may

be identical or not.

C. 2D inference for a precise input

With strong input partitions, there are 3 different situations

according to the location of the precise input (see figure 15).

• Case 1: both inputs lie within the fuzzy set cores of each

dimension. In this situation we can directly infer the

output thanks to inferential independence (see section

III). Output is equal to core(Ok,l) for Resher-Gaines

implication.

1

0 W

O1,1 O1,2 O2,1 O2,2

Fig. 14. Output partition for coherence and interpretability

A1 A2

1B1

B2

2

1 2

3 2

121

U

V

Fig. 15. Areas defined by input partitions

• Case 2: the x input lies within the fuzzy set core in

a dimension and in the overlapping zone of the other

dimension. For example, choose x in the core of A1 and

y between the cores of B1 and B2. In consequence, 2

rules are triggered: A1 ∧ B1 → O1,1 and A1 ∧ B2 →
O1,2.

• Case 3: Both x and y inputs lie between the cores of

adjacent fuzzy sets in U and in V (see figure 17). Four

rules are triggered. This is the most complicated case.

Let us first study case 3 since case 2 is a particular case

of 3. In the sequel, we denote by [o−(α), o+(α)] the α-cut

of the fuzzy interval O (see figure 16).

1) Case 3: Given a 2D precise input, we can compute the

Resher-Gaines output [13], which is an interval defined by its

lower bound zmin and its upper bound zmax. Let us denote

αi = µAi
(x) and βi = µBi

(x). Zones are defined on figure

17 according to the value of m = min(α1, α2, β1, β2),
where α1 = 1 − α2, β1 = 1 − β2 corresponding to

changes in the inference results. Table III gives the m value

1

α

W

O

o
−(α) o

+(α)
0

Fig. 16. Notation

Author-produced version of the article published in IEEE Transactions on Fuzzy Systems, 2009, N°17(1), p.61-78. 
The original publication is available at http://ieeexplore.ieee.org 
Doi: 10.1109/TFUZZ.2008.2007851 



12

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

3.1

3.4 3.2

3.3

B
1

B
2

A1 A2
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x

1

α1

α2

β
1

β
2

y

U

V

Fig. 17. Case 3: Four interesting areas

Zone 3.1 3.2 3.3 3.4

min(α1, α2, β1, β2) β1 α1 β2 α2

TABLE III

ZONE PROPERTIES

for each zone. Let us detail what happens for the inference

in zone 3.1, which corresponds to β2 > β1 and α1 and α2

both greater than β1.

In zone 3.1, the lower bound can come from four rules:

• A1 ∧ B1 → O1,1 gives us bound o−1,1(β1) since β1 is

less than α1.

• A1 ∧ B2 → O1,2 gives us bound o−1,2(α1) since α1 is

less than β2.

• A2 ∧ B1 → O2,1 gives us bound o−2,1(β1) since β1 is

less than α2.

• A2 ∧ B2 → O2,2 gives us bound o−2,2(α2) since α2 is

less than β2.

Since rule aggregation is conjunctive, the overall lower

bound is the maximum of these bounds.

zmin = max(o−1,1(β1), o
−
1,2(α1), o

−
2,1(β1), o

−
2,2(α2))

o−1,1(β1) is always less than other bounds because its max-

imum is the lower bound of the core of O1,1. Furthermore,

o−2,1(β1) is always lower than o−2,2(α2) because β1 < α2. As

a consequence, the lower bound is:

zmin = max(o−1,2(α1), o
−
2,2(α2))

Similarly, we are able to compute the upper bound:

zmax = min(o+1,1(β1), o
+
1,2(α1), o

+
2,1(β1), o

+
2,2(α2))

which becomes:

zmax = min(o+1,1(β1), o
+
1,2(α1))

Zone Lower bound zmin Upper Bound zmax

3.1 max(o−1,2(α1), o
−

2,2(α2)) min(o+1,1(β1), o
+
1,2(α1))

3.2 max(o−2,1(β1), o
−

2,2(β2)) min(o+1,1(α1), o
+
2,1(β1))

3.3 max(o−2,1(α2), o
−

2,2(β2)) min(o+1,1(α1), o
+
2,1(α2))

3.4 max(o−1,2(β2), o
−

2,2(α2)) min(o+1,1(β1), o
+
1,2(β2))

TABLE IV

OUTPUT INTERVALS FOR CASE 3

A1
A2

B1

1 1

1 1

U

V

3.1

3.23.42.4

3.3

2.1

2.2

2.3

B2

Fig. 18. Several input areas

Table IV shows results for all sub-zones of zone 3.

2) Case 2: Zone 2 can be seen as a special case of zone

3. There are four zones (2.1, 2.2, 2.3 and 2.4) adjacent to

zones 3.1,3.2, 3.3 and 3.4 (see figure 18).

There are at most two rules fired in zone 2 because of the

strong input partition.

For example, in case 2.1 where β1 = 0 and β2 = 1 only

the following rules are triggered:

• A1 ∧B2 → O1,2

• A2 ∧B2 → O2,2

The behavior is the same as in zone 3 but less rules are

triggered. zmin is the same as in zone 3.1 because outputs

O1,2 and O2,2 are triggered :

zmin = max(o−1,2(α1), o
−
2,2(α2))

O1,1 is not triggered so zmax becomes:

zmax = o+1,2(α1)

Similar calculations can be made for other subzones.

Outputs in zone 2 are summed up in table V.

D. The continuity of inferred outputs

In this section, we study the output continuity with respect

to input variations. Figure 18 shows all possible transitions.

Since zone 3 is the most general case, we first study

possible transitions between its subzones. Let us examine

the transition from 3.1 to 3.2. It occurs when α1 = β1 and

α2 = β2. Thus in zone 3.1, we have β1 < β2 (see table III)
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Area Lower bound zmin Upper bound zmax

2.1 max(o−1,2(α1), o
−

2,2(α2)) o+1,2(α1)

2.2 max(o−2,1(β1), o
−

2,2(β2)) o+2,1(β1)

2.3 o−2,1(α2) min(o+1,1(α1), o
+
2,1(α2))

2.4 o−1,2(β2) min(o+1,1(β1), o
+
1,2(β2))

TABLE V

OUTPUT INTERVALS FOR CASE 2

and α1 < α2. The lower bound zmin can be computed from

each of these subzones:

• zmin3.1 = max(o−1,2(α1), o
−
2,2(α2))

• zmin3.2 = max(o−2,1(β1), o
−
2,2(β2))

which gives zmin3.1 = o−2,2(α2) and zmin3.2 = o−2,2(β2).
Thus, we obtain zmin3.1 = zmin3.2 because α2 = β2.

Let us now consider the upper bound zmax:

• zmax3.1 = min(o+1,1(β1), o
+
1,2(α1))

• zmax3.2 = min(o+1,1(α1), o
+
2,1(β1))

Similarly zmax3.1 = o+1,1(β1) and zmax3.2 = o+1,1(α1).
Since α1 = β1, we have zmax3.1 = zmax3.2.

Thus, the inferred output is continuous between area 3.1

and area 3.2. In the same way, we can show that transitions

from areas (3.2,3.3), (3.3,3.4) and (3.4,3.1) are continuous.

Furthermore, for the single point at the intersection of

several areas, continuity is also guaranteed. Indeed, this point

has levels α1 = α2 = β1 = β2 = 1
2 . The lower bound is

equal to o−2,2(
1
2 ) for all areas and the upper bound is equal

to o+1,1(
1
2 ).

This proves that the inferred output is continuous all

through area 3. Since area 2 and area 1 are just particular

cases of area 3, the output is also continuous in these zones.

E. Extremal points

However, we need a continuous and monotonic output to

be sure that the result of the output is the convex envelope

of outputs inferred from rectangular input boundaries. In the

sequel, we prove that the output boundary functions defining

the set-valued output are not always monotonic and we detect

extremal points that need to be considered. An extremal point

is typically obtained if the two local functions defining an

output bound (table IV) evolve in opposite directions.

For example, in figure 19, an extremal point appears at

the lower bound in zone 3.1. In this area, the lower bound is

equal to max(o−1,2(α1), o
−
2,2(α2)), where o−1,2(α1) increases

and o−2,2(α2) decreases. Thus, there is an extremal point

when o−1,2(α1) = o−2,2(α2). As we know fuzzy sets O1,2

and O2,2, we can easily find the α1 level that corresponds

to this extremal point.

For each zone, an extremal point can appear on only

one bound as we can see on table VI. When necessary, we

split the non monotonic output in order to restrict ourself to

monotonic outputs.

The complexity analysis can be done in a similar way

to the one dimensional case. All steps described for one

dimension still hold for each input. One additional step is
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o
+
1,1(α1)

o
+
1,1(β1)

o
−

1,2(α1)

extremal point

β1

α1

Fig. 19. Output evolution according to α1 level

Zone lower bound upper bound

3.1 o−1,2(α1) = o−2,2(α2) No

3.2 o−2,1(β1) = o−2,2(β2) No

3.3 No o+1,1(α1) = o+2,1(α2)

3.4 No o+1,1(β1) = o+1,2(β2)

TABLE VI

CONDITIONS FOR EXTREMAL POINTS ACCORDING ZONE

needed: extremal point detection. This operation requires

two tests per α-cut. Thus the two dimensional algorithm has

complexity O(n).

F. Comparison with a naive sampling procedure

To demonstrate the efficiency of the proposed algorithm,

we now give some results comparing it with inference from

a naive sampling of the support. Input partitions and fuzzy

inputs are shown on Figure 20. The chosen fuzzy inputs are

symmetric triangles having a reasonable width with respect

to the partition fuzzy sets. Figure 20 also displays the output

partition and the inference results, for 1000 naive samples

(reference output), 6 α-cuts and 6 naive samples. The rules

are the ones given in Table II, with O1,2 = O2,1.

Table VII summarizes the comparison between our algo-

rithm, based on α-cut decomposition, and a naive sampling

strategy. For each row, the number given in the first column

is either the number of α-cuts or the sample size. For the

α-cut based algorithm, the first α-cut is of level 1, and the

following ones are regularly spaced in the unit interval. For

0

1

Input 1

0

1

Input 2

0

1

 

 

Ref. output
6 n. samples
6 α-cutsOutput

Fig. 20. Comparison of naive sampling and α-cut sampling
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n max (naive s.) %area (naive s.) %area (α-cut)

2 0.1 11.8 88.5
3 1 81.1 92.3
4 0.7 66.3 94.2
5 1 90.4 95.4
6 0.82 79.2 96.2
7 1 93.8 96.7
8 1 85.2 97.2
10 0.9 88.3 97.7
15 1 97.2 98.5
20 0.953 94.2 98.9
50 0.982 97.6 99.5
60 0.985 99.6 99.8

TABLE VII

COMPARISON OF NAIVE SAMPLING AND α-CUT SAMPLING

the naive sampling algorithm, samples are regularly spaced

in the 0.1 level α-cut, and combinations of all samples are

considered. For each row of the table, the second column,

labeled max gives the maximum possibility degree of the

output distribution for naive sampling. Obviously, this degree

is not given for the α-cut based algorithm, as it is always

equal to 1. The last two columns show the inferred area
reference area

ratio, the reference area being computed by taking 1000

alpha-cuts. Let us first point out that the complexity is not

the same for the two algorithms. n α-cuts result in 2n + 2
strict inferences, while n naive samples require n2 strict

inferences. An examination of this table then shows that,

for naive sampling, the maximum possibility degree does

not have a monotonic behaviour when n increases, causing

a non monotonic behaviour of the inferred output possibility

distribution area. Furthermore, this phenomenon is amplified

by the random handling of extremal points with the naive

sampling. We also note that an accuracy of 95% is obtained

with 5 α-cuts, i.e. 12 strict inference operations, while the

same accuracy requires more than 20 naive samples, i.e.

400 operations. To conclude this discussion, we can say

that the α-cut decomposition based algorithm provides an

“intelligent” sampling by the means of α-cuts.

VII. ND INFERENCE

The extension to fuzzy implicative rule inference with high

dimensional precise inputs is straightforward. In that case,

the fuzzy rule base has a FITA (First Infer then Aggregate)

behavior, and the inference result is given by Equation 9.

When dealing with fuzzy inputs, extending the approach is

a complex task. Finding extremal points will be cumbersome

in a high dimensional input space, so we suggest a working

alternative.

1) We propose to use the same double decomposition

method as in the two-dimensional case. In the sequel,

we denote a rule as: Ak∧Bl∧Cm . . .∧Zz → Ok,l,...,z .

• α-cut decomposition: decompose each fuzzy input

into a union of rectangular inputs of level α, 0 <
α ≤ 1. This decomposition allows to consider each

fuzzy input on each dimension as a set of α-level

rectangular inputs. α is identical in all dimensions.

• Partitioning decomposition: For each rectangular

α-cut, a decomposition is made according to the

different parts of the partition in order to handle

the inference process locally.

Consequently, the inferred output is again the result of

a double union (similar to equation 18), where O
′α
k,l,...,z

is the inferred output resulting from inputs Ek ∩ Aα,

El ∩Bα. . .Ez ∩ Zα.

2) Inferring from inputs within cores

Whatever the space dimension, when the input data are

located within a given core in all input dimensions, the

result is the corresponding rule conclusion or its core

for Rescher-Gaines implication. This is a consequence

of inferential independence.

3) Inferring from inputs outside cores

We propose an “intelligent sampling” for these sub-

areas. All α-cut parts located in subareas outside

cores will be approximated by means of a set of

sample points, with corresponding membership grades

to be used as weights. Inference will be done for all

combinations of points, using inference for precise

inputs as explained at the beginning of the section.

The resulting weighted intervals will be merged using

fuzzy union. In order not to miss extremal points,

fine-grained sampling will be performed. Compared to

“naive sampling”, α-cut sampling will not miss the

fuzzy input core part and the approximation will be

better.

4) Coherence and interpretability

Special care should be given to the output partition

design. As 2n rules are likely to be simultaneously

fired, the partition may count 2n overlapping fuzzy

sets with a non empty intersection. This may harm the

system interpretability, even with small values of n.

Fortunately, as previously mentioned in the comment

on figure 14, some of them may be identical.

When considering higher dimensional rules, one must

not forget the nature of implicative rules, i.e. that they

represent constraints. Therefore, it is not always easy

for an expert to express constraints simultaneously

relating many variables.

VIII. ILLUSTRATION: DIAGNOSING A CHEESE-MAKING

PROCESS

To show the interest of our method, we will consider

a problem of predictive diagnosis for a hard-cooked type

cheese-making process. Two parameters are important to

determine cheese firmness: MC (Moisture Content), the

cheese moisture content percentage at the end of the making

process and DEE (Dry Extract Evolution), the loss of water

during the first 15 days of the maturation process. The goal

is to predict the cheese firmness at the end of maturation (4
to 10 months or longer) according to these two parameters.

The two measurements (MC and DEE) come from sensors

tainted with significant imprecision. So, we need to use fuzzy

inputs in our system in order to correctly represent these
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Fig. 21. Fuzzy sets for prediction of firmness - A fuzzy input is plot in
dash lines

measurements. The firmness is a crisp real value ranging

between 0 and 10, supplied by an expert sensory panel, and

cannot be measured by a mechanical device. Input and output

expert partitions are shown on figure 21. Let us refer to the

typical output partition shown on Figure 14, we note that

O1,2 and O2,1 are identical and represented by the fuzzy set

Normal. Experts know some relations between MC, DEE

and cheese firmness. This rule system is a simplified system

that does not take into account the whole complexity of the

process:

• If MC is high and DEE is low then the cheese will be

soft

• If MC is high and DEE is high then the cheese will be

normal

• If MC is low and DEE is low then the cheese will be

normal

• If MC is low and DEE is high then the cheese will be

hard

Some explanations follow. When the cheese is very wet,

if it does not lose enough water, the cheese will be soft, but

if it loses a lot of water, the cheese firmness will be normal.

Similarly, if moisture content is low and if a lot of water is

lost, the cheese will be hard.

A. Inference from a fuzzy input

1) Implicative rules: Fuzzy inputs are shown in dashed

lines on figure 21. MC is modelled by a trapezoidal fuzzy set,

due to two kinds of imprecision (sensor error plus calculation

error) to take into account. DEE only suffers from sensor

error. We apply our algorithm as follows:

• Alpha-cut decomposition: for this example, we decide

to choose 3 α-cuts for the decomposition, as shown on

figure 22.
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Fig. 22. Partitioning decomposition
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Fig. 23. Partitioning decomposition for a level 1 α-cut

• Partitioning decomposition: We decompose MC and

DEE inputs according to partitions as shown on figure

22. We see the 3 zones activated by the corresponding

values of MC = 54.12± 0.75 and DEE = 0.6± 0.1.

• Inference: for a two-dimensional α-cut rectangular in-

put, we need to infer the four vertices a, b, c and d.

We denote right and left rectangular input α levels by

αr, βr and αl, βl. Figure 23 shows level 1 rectangular

inputs on each dimension. Points a and b are in zone

3.3 and points c and d are in zone 2.3. The intervals

inferred from each point are :

– Point a: [hard−(α2l), soft
+(β2r)] = [5.3, 5.8].

The interval is deduced from table IV. For exam-

ple, the lower bound is max(o−2,1(α2), o
−
2,2(β2)) =

max(hard−(α2l), normal−(β2r) = hard−(α2l)
in this case. The upper bound and the bounds of

other intervals are similarly computed.
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Fig. 25. Output union of the different α-cuts

– Point b: [hard−(α2r), soft
+(β2r)] = [5.8, 5.8]

– Point c: [hard−(α2r), normal+(α1r)] = [5.8, 6.1]
– Point d: [hard−(α2l), normal+(α1l)] = [5.3, 5.9]

There are no extremal points within that zone. Indeed

the point where hard−(α2) is equal to normal+(α1)
is not in the range of variation of α1 and α2.

Consequently, the level 1 output is the interval:

[hard−(α2l), normal+(α1r)] = [5.3, 6.1] as we can see

on figure 24.

In the same way, it is possible to compute inferred

intervals for the other two α-level rectangular inputs.

• Final result: The final output result is the union of all

α-level inferred outputs (see figure 25).

This example shows how the imprecision is propagated

while being maintained within reasonable bounds through the

inference process. The double decomposition gives a discrete

approximation of the real output. The higher the number of

α-cuts, the better the approximation. Let us point out that

inferences for all α-cuts are exact. The approximation only

concerns the input decomposition into α-cuts.

The inferred output interval may intersect several output

fuzzy sets. If it belongs to a single fuzzy set, the inferred

output is considered as precise. If it belongs to two fuzzy sets

(soft and normal for example), it is considered as imprecise.

2) Conjunctive rules: The output obtained from Mamdani

inference [32] using the same data is shown on figure

26. Note that the output partition is a strong partition.

The inferred output overlaps the three output fuzzy sets.

Consequently, it is difficult to interprete this result without

defuzzification. Centroid defuzzification gives us a firmness

equal to 6.0. Note that, as we saw on section II-C, defuzzifi-

cation is influenced by the fuzzy sets shape. The imprecision

of the fuzzy input is not respected in the defuzzified inference

result.
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Fig. 26. Inference result with a conjunctive rule system

B. Numerical results

We tested the rule system given above with precise inputs

for the two different kinds of rules. Since this example is

a simplified rule system, the quality of the prediction is

not very good. However, it is sufficient to demonstrate the

difference between conjunctive rules and implicative rules.

A representative sample of 103 cheeses was studied.

Inference results are analyzed at a symbolic level: The in-

ferred output is considered as good if it mainly belongs to the

same output fuzzy set than the crisp reference output,wrong

otherwise.

1) Implicative rules:

• 33 wrong predictions

• 49 good but imprecise predictions, meaning that the

inferred output contains the observed value but overlaps

two output fuzzy sets.

• 21 good and precise predictions.

These results show a lot of imprecise predictions. This

behavior was expected since the rule system is a simplified

one. However, only 33 wrong predictions are made by this

system. As we saw in section II-C, by adding more rules

(and more input variables), the implicative rule system could

be more precise and the output quality improved for 49

imprecise prediction.

2) Conjunctive rules:

• 56 wrong predictions

• 47 good and precise predictions

With conjunctive rules, there are many wrong predictions

because of the defuzzification process.

Each inferred output is then an artificially precise value.

With conjunctive rules it is impossible to refine the inference

result because adding more rules will only increase the output

imprecision because of the disjunctive agregation.

This example shows us the negative side effects of de-

fuzzification. It also points out the ability of implicative rules

to respect the input imprecision and thus to obtain a better

prediction quality.

IX. CONCLUSION

This paper lays the foundation for a practical inference

method with a system of implicative fuzzy rules and fuzzy

inputs. For a fuzzy input, we can get an exact discretization

of the result using α-cuts and a partitioning decomposition of

inputs. Inferring with this kind of fuzzy system is especially
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appropriate when modeling expert knowledge expressing

constraints (as opposed to Mamdani rules). The interest of the

method has been shown on a simplified predictive diagnosis

case-study of cheese production process, for which expert

rules with two dimensional input conditions are available.

In the future, more rules will be introduced to improve the

results. Variables will also be added to refine the fuzzy rule

systems according to needs. Nevertheless constraint man-

agement in highly dimensional spaces may be problematic,

and be the true limit to the use of implicative rule systems

in real world modelling. It might be better to consider an

alternate way of dealing with larger systems while keeping in

mind their interpretability: combination of various systems of

lower dimension. Unlike conjunctive rule bases, implicative

ones may be combined in either a parallel or a sequential

way. In the former case, both rule bases use the same output

universe and the result is their intersection: this is in full

agreement with implicative rule agregation. In the latter case,

the output is used to feed the next system. As the algorithm

is able to manage fuzzy inputs, no defuzzification step is

needed. Data imprecision is properly taken into account

at all steps. More generally a perspective to this work is

to relate higher dimensional fuzzy rule-based reasoning to

possibilistic networks [33] where the idea of decomposition

of a large fuzzy relation in lower dimension entities is at

work.
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