Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging

Thomas Vincent 1 Florence Forbes 1 Philippe Ciuciu 2
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In many neuroscience applications, the Arterial Spin Labeling (ASL) fMRI modality arises as a preferable choice to the standard BOLD modality due to its ability to provide a quantitative measure of the Cerebral Blood Flow (CBF). Such a quantification is central but generally performed without consideration of a specific modeling of the perfusion component in the signal often handled via standard GLM approaches using the BOLD canonical response function as regressor. In this work, we propose a novel Bayesian hierarchical model of the ASL signal which allows activation detection and both the extraction of a perfusion and a hemodynamic component. Validation on synthetic and real data sets from event-related ASL show the ability of our model to address the source separation and double deconvolution problems inherent to ASL data analysis.
keyword : ASL BOLD fMRI
Type de document :
Communication dans un congrès
ICASSP 2013 - IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2013, Vancouver, Canada. IEEE, pp.1003-1007, 2013, 〈10.1109/ICASSP.2013.6637800〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00859373
Contributeur : Philippe Ciuciu <>
Soumis le : samedi 7 septembre 2013 - 17:00:00
Dernière modification le : vendredi 24 novembre 2017 - 13:30:11
Document(s) archivé(s) le : dimanche 8 décembre 2013 - 02:50:15

Fichier

vincent.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thomas Vincent, Florence Forbes, Philippe Ciuciu. Bayesian BOLD and perfusion source separation and deconvolution from functional ASL imaging. ICASSP 2013 - IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2013, Vancouver, Canada. IEEE, pp.1003-1007, 2013, 〈10.1109/ICASSP.2013.6637800〉. 〈hal-00859373〉

Partager

Métriques

Consultations de la notice

538

Téléchargements de fichiers

195