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ABSTRACT

We address the issue of jointly detecting brain activity estt
mating brain hemodynamics from functional MRI data. To #hisl,
we adopt the so-called Joint-Detection-Estimation (JD&)ework
introduced in [1] and augmented in [2]. An inherent diffiguils to
find the right spatial scale at which brain hemodynamicsreston
makes sense. The voxel level is clearly not appropriatetanating
a full hemodynamic response function (HRF) from a singleelox
time course may suffer from a poor signal-to-noise-ratid kad
to potentially misleading results (non-physiological HBkapes).
More robust estimation can be obtained by considering graafp

between homogeneity of the BOLD signal (reproducibilitytbé
HRF) and the increase of the signal-to-noise ratio by sihatiggre-
gating signals; (ii) prior information about the temporal@thness
of the HRF to be estimated; and (iii) the modelling of spat@tela-
tion between neighboring voxels within each parcel usingl@®n-
specific hidden Markov fields. In [1,2], posterior inferensearried
out in a Bayesian setting using Monte Carlo Markov Chain (MOM
methods. In order to overcome the high computational cogtisf
MCMC-based approach, an alternative with similar perfarogshas
been proposed in [3] based on Variational Expectation M&dtion
(VEM) algorithm.
However, one current limitation of all these JDE approaches

voxels (.e. parcels) with some functional homogeneity properties.jiog in the prior decomposition of the brain into functidgaho-

Current JDE approaches are therefore based on an initied|fsr
tion but with no guarantee of its optimality or goodness his tvork,
we propose a joint parcellation-detection-estimatiorDEPproce-
dure that incorporates an additional parcel estimatiop stéving
this way both the parcellation choice and robust HRF estonas-
sues. As in [3], inference is carried out in a Bayesian sgitising
variational approximation techniques for computatiorfi€iency.

Index Terms— Variational EM, MRF, Biomedical signal detection,
Magnetic resonance imaging.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a powetdal
to non-invasively study the relation between cognitivé &sd cere-
bral activity through the analysis of the hemodynamic BOL@® s
nal [4]. Within-subject analysis in event-related fMRI firglies
on (i) a detection step to localize which parts of the bram acti-
vated by a given stimulus type, and second on (ii) an estimatiep
to recover the temporal dynamics of the brain response. Isjost
proaches to detect neural activity rely on a singl@riori model
for the temporal dynamics of activated voxels also knownhas t

mogeneous regions (parcels) required so as to estimatel{m@ased
HRFs. Those parcels should be small enough to guarantee-the i
variance of the HRF within each parcel but large enough taéaion
reliable information for the estimation. This spatial sctdade-off

is currently decided on an appropriate external a priorc@iéation.
Ideally, the parcellation should instead be reconsiderkilevesti-
mating the HRF directly from the BOLD signal. We propose tten
further constrain the HRF estimation by incorporating farqel es-
timation an additional layer in the model and to carry ouéershce

in a variational setting. In this novel Joint-Parcellatidoetection-
Estimation (JPDE) model, a parcel is a set of connected saxith
different individual HRFs but that can be seen as local pleatiions

of the same parcel-specific HRF pattern. The hemodynamies es
mation reduces then to the identification of a limited num{sary

K) of such HRF patterns. We relax the assumption of a unique HRF
model by parcel by considering voxel-varying HRFs but toucsd
the number of parameters to be estimated, these HRFs ardl@tbde
as realizations of & -component mixture model. As a by product, a
parcellation estimation can be derived by consideringehah set of
connected voxels in the same HRF group defines a parcel. dhe gr

hemodynamic response function (HRF) [5]. A canonical HRF isvariables will be governed by a hidden Markov Model to engorc
usually assumed for the whole brain although there has been e spatial correlationi.e. favor group assignments to vary smoothly.

dence that this response can vary in space or region, aubgEss
and groups [6]. In addition, a robust and accurate estimatfdhe
HRF is possible only in regions that elicit an evoked respdosan
experimental stimulus [7]. Both issues of properly detegtvoked
activity and estimating the HRF then play a central role iffiMata
analysis. They are usually dealt with independently withpoesi-
ble feedback although both issues are strongly connectedooan-
other. To introduce more flexibility regarding the assuimpgion the
HRF model, a novel approach referred to as the Joint Dete&isn
timation (JDE) framework has been introduced in [1] and eotéel
in [2] to account for spatial correlation between neighbgrvoxels
in the brain volume (regular lattice in 3D). In this lattepapach, the
HRF can be estimated while simultaneously detecting agtiwi a
region-based analysis, that is on a set of pre-specifiedmegilso

Finally, the overall scheme will iteratively and alterrgtelentify
parcels and HRF groups. The proposed approach makes the JDE
framework fully automatic and more flexible. It is based onEW
algorithm to derive estimates of the HRF, the Neural Resphes-

els (NRLs), the corresponding labels (activated/nonvatgd vox-

els) and the HRF group labels.

The rest of this paper is organized as follows. In Sectiome, t
JDE framework is presented and extended to JPDE with a whole-
brain model. The new model inference is detailed in SectioRi3
nally, results on realistic artificial fMRI data are repattn Sec-
tion 4, and some conclusions are drawn in Section 5.

2. AJOINT DETECTION-ESTIMATION MODEL
Matrices (resp. vectors) are denoted with bold upper (ré&sper)

namedparcelspartitioning the whole brain data set. This approachcase letters such & (resp.h). A vector is by convention a column

is mainly based on: (i) the non-parametric modelling of tiRF-ht a
regional spatial scale (parcel-level) that provides adampromise

vector. The transpose is denoted’byUnless stated otherwise, sub-
scriptsj, m, k, ¢ andn are respectively indexes over voxels, stimulus



types, HRF groups, activation classes and time point. Thes§an
distribution with mean and variancé is denoted usingy (i, X2).

2.1. Observation BOLD model

Let us partition the set of voxelgR) in the brain intoK groups,
each of them having homogeneous functional propeitea,unique
HRF model: P = (Pi)r=1.x. At a voxelj, the fMRI time series
y; is measured at timgs TR),—1.~, N being the number of scans

and TR the time of repetition. The number of different stimulus

types or experimental conditions Ad. For a given voxel, a BOLD
signhal model (the same for all voxels) is used in order to timé
observed datd” = {y; € RY,j € P} to the voxel-dependent
HRFsh; € RP*! and to the response magnitudds= {a™,m =
1: M} with a™ = {a}",j € P} anda}* being the magnitude at

voxel j for conditionm. More specifically, the observation model at

each voxelj € P is expressed as follows: M
Y = thj + P(j + €5, with Sj = Z a;nXm

m=1

@)

whereS;h; is the summation of the stimulus-induced component

of the BOLD signal. The binary matriX,,, = {z %t n =1 :
N,d = 0 : D} is of sizeN x (D + 1) and provides informa-
tion on the stimuli occurrences for the-th experimental condi-

(Aj)171 = (Aj)NyN =1, (Aj)nyn = 1+p§ forn=2: N—-1and
(Aj)nt1i,n = (Aj)nny1 = —pjforn =1: N —1. The likelihood
can therefore be written as:

1_ ¢ —
P(Y | A, HL,00) o [ T2 exp(—55,T53,), @)
JEP

where|T;| = o, 2" |A;| and|A;| = 1—-p3, 60 = {p;, 07, j € P}
andyj =Y; — PEJ — thj.

2.2.2. Model priors

Neuronal response levels.Akin to [1-3], the NRLs are assumed
to be statistically independent across conditions(A;6.)
[Ip(a™;6.,) whereg = {0,,,m = 1 : M} and@,, gath-

ers the parameters for the-th condition. A mixture model is
then adopted by using the allocation variabj¢s to segregate ac-
tivated voxels ¢;* = 2) from non-activated ones;{* = 1). For

the m-th condition, and conditionally to the assignment varabl

q™, the NRLs are assumed to be independeiie™ | ¢";0.,,) =

s pr(a}” la;"; 0m) With p(af | ¢f" = i50m) ~ N (kmi, vmi) @nd
VIS

0. = {pmi, vmi, @ = 1,2}. We also writep ={p,,,,m = 1: M}
with p,,, = {tmi,ume2} andv = {v,,m = 1 : M} with
Um = {Um1,Um2}. FOr non-activated voxels we set for ail,

tion, At < TR being the sampling period of the unknown HRFs (tm1 = 0. The other parameters have to be estimated.

h; = (haat)a=0:p. We denote byH = {h;,j € P} the set of

all HRFs. The scalaa’"’s are weights that model the transition be-

tween stimulations and the neurovascular response. Téi®nse
is a consequence of the neuronal excitation which is comynasi
sumed to occur with stimulations. It follows that thg’s are gen-
erally referred to as Neural Response Levels (NRL). Theaktte
signal is made of matri¥P, which corresponds to physiological ar-
tifacts accounted for via a low frequency orthonormal fisrcbasis
of size N x O. With each voxelj is associated a vector of low

frequency drifts; € R which has to be estimated. These vec-

tors may be grouped into the same matkix= {¢;,j € P}. Re-
garding the observation noise, thg's are assumed to be indepen-
dent withe; ~ N/(0, I‘j‘l) at voxel j (see Section 2.2.1 for more
details). The set of all unknown precision matrices is dedidiy
r={r,,j P}

Detection is handled through the introduction of activattass as-
signments) = {q™,m = 1: M} whereqg™ = {¢}",j € P} and
q;" represents thactivation classat voxel;j for experimental condi-
tion m. Without loss of generality, the number of classes consitler
here isI = 2 for activated { = 2) and non-activated (= 1) voxels.
Finally, joint parcellation is performed by introducingather set of
hidden variable = {z;,j € P} wherez; € {1 : K} denotes the
group or HRF class at voxgl(z; = k£ means that voxe] belongs
to thek-th group).

2.2. Hierarchical model of the complete data distribution
With standard additional assumptions [1-3], and omitting te-
pendence on the parameters to be specified later, the digtrib

Activation classes.As in [2, 3], we assume prior independence be-
tween theM experimental conditions regarding the activation class

M
assignments. It follows that(Q) = T] p(q¢™; Bm) Where we as-
m=1

sumed in addition thai(q¢™; B ) is a spatial Markov prior, namely
an Ising model with interaction parametegf, [2]:
p(q@™; Bm) x exp(BnU(q™)), ®3)
where U(q™) =3, . 6(qf", qj) andv(a,b) € R? , §(a,b) =
1if @ = b and 0 otherwise. The notatioh ~ j' means that the
summation is over all neighboring voxels. The neighboripstem
covers a 3D scheme through the brain. The unknown parameters
are denoted by3 = {3,,,,» =1: M}. In what follows, we will
consider a 6-connexity 3D neighboring system.
HRF groups. In order to promote parcellation regularity, we use
here a spatial Markov prior, namely an Ising model with iatgion
parametefs. :

p(Z; B.) x exp(B.U(2Z)), 4

where U(Z) > j~jr 0(25,27). We use here the same 6-
connexity 3D neighboring system as before.

HRF. In contrast to [1-3] where a unique HRF is used for a
whole parcel and where a smoothness constraint is impogsed fo
the HRF by controlling its second order derivative, we defieee
P(H|Z) = T] plh; | 25) wherep(hy | 2; = k) ~ (s, 3.

. ; je
of both the observed and hidden variables can be decompssed fne distribution o is expressed conditionally to the HRF group

p(Y,AH,Z,Q)=p(Y|A H)p(A|Q)p(H|Z)p(Q) p(Z).

2.2.1. Likelihood

In [8], an autoregressive (AR) noise model has been adoptad-t
count for serial correlations in fMRI time series. It hascal®en
shown in [8] that a spatially-varying AR noise model helpedaon-
trol false positive rate. In the same context, we will therefassume
e; ~ N(0,T;") with T'; = o;>A; whereA; is a tridiagonal
symmetric matrix which depends on the AR(1) parametefl]:

variablez;. Regularity across neighbouring voxels is then favored
via the Markov prior onZ.

For the complete model, the whole set of parameters is detryte
© = {T',L,p,v,8, B, (hi, Ek)1<k<k } and belong to a sed.
3. ESTIMATION BY VARIATIONAL EM

We propose to use an Expectation-Maximization (EM) franmévtom
deal with the missing data namelt, ¢ A, H € H,Q € Q, Z €



Z. LetD be the set of all probability distributions ohix H x O x Z.

EM can be viewed as an alternating maximization procedura of

function 7 on D, F(p,®) = E,[logp(Y, A, H,Q,Z|©)] +
G(p) whereE, [.] denotes the expectation with respectpt@nd

K _ ~
me = > Eglﬁgj’”(k)hk. HereaboveS; = Z m(ATml)X

k=1
andm(Aﬁﬁl), 2“_71) (m,m’) denote respectively the and(m, m’)

m=1

('r 1) r— 1)
G(p) - -, [logp(A, H.Q. Z)] is the entropy op. At iteration entries of ther mlc)ean vecten and covariance matnX] of
(r), denoting the current parameter values@y ~", the alternat- e currenﬁ(
ing procedure proceeds as follows:
gp p e E-A step: Compute Ef{j Z A + H)™ and
E Step p - a‘rg max ]:( ®<T71)) (5) ™ ™ i ™ r T
AHQZ e mi‘)zx()(zllA() ()+X](')m(HJ)-)
M-step: @) = argér(laax -7'-(PA .0,z ©) ©)  with p!” = [,ugz) . HS\T,{]

andA(T) = diagy, |:p 1 ( )/Ug), HwﬁéMl)( )/vl(&)z where

X](.T) = [gf] - |9M] with g, = 1“5”( Yj —
H;” isaM x M matrix whose(m, m’) entry is

However, the optimization step in Eq. (5) Ieads;i%ﬁfH’Q’Z =
p(A,H,Q,Z|Y,®(T’1)), which is intractable for our model.
Hence, we resort to a variational EM variant in which theantable
posterior is approximated as a product of four pdfs 4n#, Q
and Z respectively. The intractable E-step is instead solved ove HT (m.m)) = trace(2 x_ 1 x
D, a restricted class of probability distributions choserthees set ;- (m,m) ( Hi=mm =g )
of distributions that factorize afa n,0,z = papubopz Where
DA, Du, Do andpz are probability distributions o4, #, Q and
Z respectively. It follows then that our E-step becomes ama{p

(r)ye
P¢’) X, and

+m) X500 X m)

e E-Q step: It comes

M
mate E-step, which can be further decomposed into four stige A@n)(Q) _ ~(r) ( (14)
consist of updating the four pdfgs, pa, po andpz, in turn using Pe _1me a
four equivalent expressions @ whenp factorizes as irD. At iter- ") om a m om )
; _ _ Ly (1) (1)
ation (r), with current estimates denoted bY ", ¢5; ", ¢ " with  pg, (@™) = pm(@™[a™ =my (m);vn’, fn’)

and® ("~ the updating rules become (using the Kullback-Leibler
divergence properties):

E-H: 547 (h) x exp (Eﬁg,%g,n llogp(h|Y, A, Z; @“*”})

wherep,, is a Potts model with interaction parame,ﬂé,f) and ex-
ternal fielderl]) = {a(” jEeP}

with 0‘52 = %EXJ(m,m) [1/1}5,3, 1/v (T)]
(7)
E-A: 51 (A) x exp (EE<T>5<H> [Ing(A|Y7H,Q;®(T71))D p(@™; 05, B5)) ocexp{ > ( @
H7Q JEP
(8) o
E-Q: 75)(Q) ox exp (B [lg (@1 Y, 4,07 V)]) (@) PN s}
Jr~i
7. () . o1
B-Z: py (Z) o exp (Eﬁg) logp(Z]Y, H; © D (10) The expression in (14) is intractable but a number of approxi

mation techniques are available. In particular, we can use a
mean-field like algorithm (fixing the neighbours to their mea
value) as described in [9] in whichgm= (g™) can be approxi-
mated bygom (g™) = .IE_IP qqm (qf") with, if ¢ = 1, gom (i) o

J

N(mA ( ) ,Ufmz,Um'L)pm(Q] - i|q~jaﬁm7vm) Where(j
For the E-H and E-A steps it follows from standard algebra that & partlcular configuration af™ updated at each iteration accordlng

TheM-step writes (since® andg(pX)H .z) are independent):
M: @7 = argmax E_i) - [logp(Y, A, H,Q, Z;0)] .
© Py PPy Py
(11)

('r) (r) _ “‘(T) to a specific schemey j denotes neighbouring voxels §o and
and are both Gaussian distributiongi’;) = _ ~
T andd, ' = LD (g 1% o om) o exploms(d]') + fim > o(a7 o))
~J
andp’y) = 11 P By, whereply) ~ N(m{), £()) andg|) ~  see 9] for details.
") (j)ep - ) e E-Z step: This step is similar to th&e-Q one. Calculations
N(mAj,EAj) More specifically, assuming current values for theyield to similar form ofpz(z) = [[ pz,(z;) wherepyz, (k) o

m(AT]fl), Exjfl) andpy, Tml) ther™" iteration starts with: e ate) i€P

e E-H step: Compute N(ma;shy =", 3 )pm(Z; = k| Z~;; 6-) whereZ is a par-
(-1 ticular configuration ofz updated at each iteration according to a

Ty, =VitVa specific scheme and  pm (2| Z~;;8:) x

exp{— ;trace(EgJ)_E_]g_l)_l) + B Zl 5(z5,21)}
3

e M step: The maximization step can also be divided into four sub-
steps involving separatelfy, o), 8, (¢,T) and (hy, $k)1<r<k-

For the(p, o) and (h, Xx)1<k<x Sub-steps, closed forms can be
analytically derived for the updates. However, numerieabtution

is required for the other sub-steps. For more details, ttezdsted
reader can refer to [3].

(12)

mip) = B (m1 + mo), (13)

¥ B m,m) XY X+ SiTY S,

m,m’

Z ~(7‘ 1)( )2;1’ my = Stl-\(r 1)(

whereV; =

— P¢¢Yy and



4. ILLUSTRATIONS

In this section, the JPDE is validated and compared to theepar
based JDE approach. Experiments have been conducted fariadrti
fMRI signal generated according to the observation modebin(1).
We simulated a random mixed sequence of indexes codindy/fes

2 different stimuli. These two sets of trials (30 trials peirmst-
lus) were then multiplied by stimulus-dependent and spacging
NRLs, which were generated according to the prior distrdutn
Section 2.2.2. To this end, we generated 2D slices compds2@d o
x 20 binary label®Q™ (activated and non-activated voxels) for each
stimulus typem. Then, we simulated normally-distributed NRLs:
ajlg; =1 ~ N(0,05), aj|q; = 2 ~ N(2,0.5), a] | q]
1 ~ N(0,0.5), andaj | ¢ = 2 ~ N(2.8,0.5). HRFs have been
also simulated for each voxel conditionally to a parcediatmask
and according to the prior distribution in Section 2.2.2.isTpar-
cellation mask £Z) is composed of two parcels having the same
size. Within each parcel, all voxels share the same HRF jpaer 5. CONCLUSION

rametershk.and k. The first experiment conducted he're ai.ms atye proposed an extension (JPDE) to the joint detectiomresiton
demonstrating the robustness of the proposed approactiabpa  framework that does not depend on the choice of an initiaihbra
estimating the HRFs in comparison with parcel-based JDEhifn  parcellation. Preliminary experiments showed that thigregch
simulation, the same HRF prior parameters have been usédtior achieved similar and even better results than the standakil J
parcels (1 actual HRF group). For estimation we assume tws HRand future work includes the application of our method td BEa
groups (one for each parcel) for JPDE. For JDE, the two pauarel dhatasets on th? Whg'? br?ln.. In addition, ﬂl"s ”ﬁw.framm'@s
considered as one parcel (with a single HRF model). Regguesn the question of mode| selection, In particular the issue g

. . . the right number of HRF groups at bést. in a sparse manner so
timated NRLs, results (not displayed here) show that JDEG&m 5 to capture the spatial variability in hemodynamic teriéts while

robust in terms of Mean Square Error (MSE), which was expecte enabling the reproducibility of parcel identification agsofMRI
due to the model mis-specification in the JPDE caeeSEpr = datasets. This question should be the most critical to atidur
0.020 and M SEsppr = 0.025). However, estimated HRFs show approach but also the most interesting to neuroscientistase of

that the new approach allows retrieving more accurate HREga ~ SUccess. For this specific point, we shall investigate warial ap-
the new mixture prior. Fig. 1[left] shows reference andreated proximations of standard information criteria such as tlagdsian

As regards activation detection, Fig. 2 plots the ROC cufeeboth
algorithms. These activation classification results shiost §PDE
allows well detecting activations, and even slightly outpens
JDE.

1.0

S

0.7]

0.6 0.8 1.0

0.0 0.2 0.4
Fig. 2. ROC curves for activation classification using JDE and JPDE

HRFs using both methods (red and yellow curves correspotiteto Information Criterion.
HRF expectation across each parcel). From a qualitativepoat,
it is worth noticing that the proposed method better esisdhe
HRF tail compared to JDE. In terms of MSE, obtained values con
firm the superiority of our approach from a quantitative \pemnt
(MSE;pr = 1.70107° and M SEjppr = 3.091077).
Experience 1 Experience 2

0. 0.35
e S -
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Fig. 1. Ground truth and estimated HRFs using JDE and JPDE.

(5]

The second experiment has been conducted to validate thstrob [6]
ness of the proposed approach when the HRF properties of the
considered parcels are really different (two actual HRFugs).

For estimation, X = 2 is still assumed for JPDE while JDE can- [7]
not account for more than one HRF group. Fig. 1[right] iliagts
reference and estimated HRFs with both methods (red andwyell
curves correspond to the HRF expectation across each paitel
is clear that the proposed approach allows retrieving ateUiRF
estimates for each parcel, while JDE estimates a HRF whezh li
between the two groups (Parcel IMSEjppr = 5.34107°,
MSEjpE 1.1010~%; Parcel 2. MSEyppg = 1.44107°,
MSEjpr = 1.36107%). This results confirms the superiority
of the proposed approach in allowing variability of HRFscmsr
voxels compare to the single HRF model assumed in JDE.

(8l
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