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1 INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex, France (firstname.lastname@inria.fr)

2 CEA/DSV/I2BM/Neurospin, CEA, Saclay, Bbt. 145, Point Courrier 156, 91191 Gif-sur-Yvette cedex, France (firstname.lastname@cea.fr)

ABSTRACT

We address the issue of jointly detecting brain activity andesti-
mating brain hemodynamics from functional MRI data. To thisend,
we adopt the so-called Joint-Detection-Estimation (JDE) framework
introduced in [1] and augmented in [2]. An inherent difficulty is to
find the right spatial scale at which brain hemodynamics estimation
makes sense. The voxel level is clearly not appropriate as estimating
a full hemodynamic response function (HRF) from a single voxel
time course may suffer from a poor signal-to-noise-ratio and lead
to potentially misleading results (non-physiological HRFshapes).
More robust estimation can be obtained by considering groups of
voxels (i.e. parcels) with some functional homogeneity properties.
Current JDE approaches are therefore based on an initial parcella-
tion but with no guarantee of its optimality or goodness. In this work,
we propose a joint parcellation-detection-estimation (JPDE) proce-
dure that incorporates an additional parcel estimation step solving
this way both the parcellation choice and robust HRF estimation is-
sues. As in [3], inference is carried out in a Bayesian setting using
variational approximation techniques for computational efficiency.

Index Terms— Variational EM, MRF, Biomedical signal detection,
Magnetic resonance imaging.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a powerfultool
to non-invasively study the relation between cognitive task and cere-
bral activity through the analysis of the hemodynamic BOLD sig-
nal [4]. Within-subject analysis in event-related fMRI first relies
on (i) a detection step to localize which parts of the brain are acti-
vated by a given stimulus type, and second on (ii) an estimation step
to recover the temporal dynamics of the brain response. Mostap-
proaches to detect neural activity rely on a singlea priori model
for the temporal dynamics of activated voxels also known as the
hemodynamic response function (HRF) [5]. A canonical HRF is
usually assumed for the whole brain although there has been evi-
dence that this response can vary in space or region, across subjects
and groups [6]. In addition, a robust and accurate estimation of the
HRF is possible only in regions that elicit an evoked response to an
experimental stimulus [7]. Both issues of properly detecting evoked
activity and estimating the HRF then play a central role in fMRI data
analysis. They are usually dealt with independently with nopossi-
ble feedback although both issues are strongly connected one to an-
other. To introduce more flexibility regarding the assumptions on the
HRF model, a novel approach referred to as the Joint Detection Es-
timation (JDE) framework has been introduced in [1] and extended
in [2] to account for spatial correlation between neighboring voxels
in the brain volume (regular lattice in 3D). In this latter approach, the
HRF can be estimated while simultaneously detecting activity, in a
region-based analysis, that is on a set of pre-specified regions also
namedparcelspartitioning the whole brain data set. This approach
is mainly based on: (i) the non-parametric modelling of the HRF at a
regional spatial scale (parcel-level) that provides a faircompromise

between homogeneity of the BOLD signal (reproducibility ofthe
HRF) and the increase of the signal-to-noise ratio by spatially aggre-
gating signals; (ii) prior information about the temporal smoothness
of the HRF to be estimated; and (iii) the modelling of spatialcorrela-
tion between neighboring voxels within each parcel using condition-
specific hidden Markov fields. In [1,2], posterior inferenceis carried
out in a Bayesian setting using Monte Carlo Markov Chain (MCMC)
methods. In order to overcome the high computational cost ofthis
MCMC-based approach, an alternative with similar performance has
been proposed in [3] based on Variational Expectation Maximization
(VEM) algorithm.

However, one current limitation of all these JDE approaches
lies in the prior decomposition of the brain into functionally ho-
mogeneous regions (parcels) required so as to estimate parcel-based
HRFs. Those parcels should be small enough to guarantee the in-
variance of the HRF within each parcel but large enough to contain
reliable information for the estimation. This spatial scale trade-off
is currently decided on an appropriate external a priori parcellation.
Ideally, the parcellation should instead be reconsidered while esti-
mating the HRF directly from the BOLD signal. We propose thento
further constrain the HRF estimation by incorporating for parcel es-
timation an additional layer in the model and to carry out inference
in a variational setting. In this novel Joint-Parcellation-Detection-
Estimation (JPDE) model, a parcel is a set of connected voxels with
different individual HRFs but that can be seen as local perturbations
of the same parcel-specific HRF pattern. The hemodynamics esti-
mation reduces then to the identification of a limited number(say
K) of such HRF patterns. We relax the assumption of a unique HRF
model by parcel by considering voxel-varying HRFs but to reduce
the number of parameters to be estimated, these HRFs are modelled
as realizations of aK-component mixture model. As a by product, a
parcellation estimation can be derived by considering thateach set of
connected voxels in the same HRF group defines a parcel. The group
variables will be governed by a hidden Markov Model to enforce
spatial correlation,i.e. favor group assignments to vary smoothly.
Finally, the overall scheme will iteratively and alternately identify
parcels and HRF groups. The proposed approach makes the JDE
framework fully automatic and more flexible. It is based on a VEM
algorithm to derive estimates of the HRF, the Neural Response Lev-
els (NRLs), the corresponding labels (activated/non-activated vox-
els) and the HRF group labels.

The rest of this paper is organized as follows. In Section 2, the
JDE framework is presented and extended to JPDE with a whole-
brain model. The new model inference is detailed in Section 3. Fi-
nally, results on realistic artificial fMRI data are reported in Sec-
tion 4, and some conclusions are drawn in Section 5.

2. A JOINT DETECTION-ESTIMATION MODEL

Matrices (resp. vectors) are denoted with bold upper (resp.lower)
case letters such asP (resp.h). A vector is by convention a column
vector. The transpose is denoted byt. Unless stated otherwise, sub-
scriptsj,m, k, i andn are respectively indexes over voxels, stimulus



types, HRF groups, activation classes and time point. The Gaussian
distribution with meanµ and varianceΣ is denoted usingN (µ,Σ).

2.1. Observation BOLD model

Let us partition the set of voxels (P) in the brain intoK groups,
each of them having homogeneous functional properties,i.ea unique
HRF model:P = (Pk)k=1:K . At a voxelj, the fMRI time series
yj is measured at times(nTR)n=1:N , N being the number of scans
andTR the time of repetition. The number of different stimulus
types or experimental conditions isM . For a given voxel, a BOLD
signal model (the same for all voxels) is used in order to linkthe
observed dataY = {yj ∈ R

N , j ∈ P} to the voxel-dependent
HRFshj ∈ R

D+1 and to the response magnitudesA = {am,m =
1 : M} with am = {am

j , j ∈ P} andam
j being the magnitude at

voxel j for conditionm. More specifically, the observation model at
each voxelj ∈ P is expressed as follows:

yj = Sjhj + P ℓj + εj , with Sj =
M∑

m=1

am
j Xm (1)

whereSjhj is the summation of the stimulus-induced components
of the BOLD signal. The binary matrixXm = {xn−d∆t

m , n = 1 :
N, d = 0 : D} is of sizeN × (D + 1) and provides informa-
tion on the stimuli occurrences for them-th experimental condi-
tion, ∆t < TR being the sampling period of the unknown HRFs
hj = (hd∆t)d=0:D. We denote byH = {hj , j ∈ P} the set of
all HRFs. The scalaram

j ’s are weights that model the transition be-
tween stimulations and the neurovascular response. This response
is a consequence of the neuronal excitation which is commonly as-
sumed to occur with stimulations. It follows that theam

j ’s are gen-
erally referred to as Neural Response Levels (NRL). The restof the
signal is made of matrixP , which corresponds to physiological ar-
tifacts accounted for via a low frequency orthonormal function basis
of sizeN × O. With each voxelj is associated a vector of low
frequency driftsℓj ∈ R

O which has to be estimated. These vec-
tors may be grouped into the same matrixL = {ℓj , j ∈ P}. Re-
garding the observation noise, theεj ’s are assumed to be indepen-
dent withεj ∼ N (0,Γ−1

j ) at voxelj (see Section 2.2.1 for more
details). The set of all unknown precision matrices is denoted by
Γ = {Γj , j ∈ P}.
Detection is handled through the introduction of activation class as-
signmentsQ = {qm,m = 1 : M} whereqm =

{
qmj , j ∈ P

}
and

qmj represents theactivation classat voxelj for experimental condi-
tionm. Without loss of generality, the number of classes considered
here isI = 2 for activated (i = 2) and non-activated (i = 1) voxels.
Finally, joint parcellation is performed by introducing another set of
hidden variablesZ = {zj , j ∈ P} wherezj ∈ {1 : K} denotes the
group or HRF class at voxelj (zj = k means that voxelj belongs
to thek-th group).

2.2. Hierarchical model of the complete data distribution
With standard additional assumptions [1–3], and omitting the de-
pendence on the parameters to be specified later, the distribution
of both the observed and hidden variables can be decomposed as
p(Y ,A,H,Z,Q) = p(Y |A,H) p(A |Q) p(H |Z) p(Q) p(Z).

2.2.1. Likelihood

In [8], an autoregressive (AR) noise model has been adopted to ac-
count for serial correlations in fMRI time series. It has also been
shown in [8] that a spatially-varying AR noise model helped to con-
trol false positive rate. In the same context, we will therefore assume
εj ∼ N (0,Γ−1

j ) with Γj = σ−2
j Λj whereΛj is a tridiagonal

symmetric matrix which depends on the AR(1) parameterρj [1]:

(Λj)1,1 = (Λj)N,N = 1, (Λj)n,n = 1+ρ2j for n = 2 : N−1 and
(Λj)n+1,n = (Λj)n,n+1 = −ρj for n = 1 : N−1. The likelihood
can therefore be written as:

p(Y |A,H;L,θ0) ∝
∏

j∈P

|Γj |
1/2 exp

(
−
1

2
y
t
jΓjyj

)
, (2)

where|Γj | = σ−2N
j |Λj | and|Λj | = 1−ρ2j , θ0 = {ρj , σ

2
j , j ∈ P}

andyj = yj −P ℓj − Sjhj .

2.2.2. Model priors

Neuronal response levels.Akin to [1–3], the NRLs are assumed
to be statistically independent across conditions:p(A;θa) =∏
m

p(am;θm) whereθa = {θm, m = 1 : M} and θm gath-

ers the parameters for them-th condition. A mixture model is
then adopted by using the allocation variablesqmj to segregate ac-
tivated voxels (qmj = 2) from non-activated ones (qmj = 1). For
the m-th condition, and conditionally to the assignment variables
qm, the NRLs are assumed to be independent:p(am | qm;θm) =∏
j∈P

p(am
j | qmj ;θm) with p(am

j | qmj = i;θm) ∼ N (µmi, vmi) and

θm = {µmi, vmi, i = 1, 2}. We also writeµ={µm,m = 1 : M}
with µm = {µm1, µm2} and v = {vm,m = 1 : M} with
vm = {vm1, vm2}. For non-activated voxels we set for allm,
µm1=0. The other parameters have to be estimated.
Activation classes.As in [2, 3], we assume prior independence be-
tween theM experimental conditions regarding the activation class

assignments. It follows thatp(Q) =
M∏

m=1

p(qm;βm) where we as-

sumed in addition thatp(qm; βm) is a spatial Markov prior, namely
an Ising model with interaction parameterβm [2]:

p(qm;βm) ∝ exp
(
βmU(qm)

)
, (3)

where U(qm) =
∑

j∼j′ δ(q
m
j , qmj′ ) and∀(a, b) ∈ R

2 , δ(a, b) =

1 if a = b and 0 otherwise. The notationj ∼ j′ means that the
summation is over all neighboring voxels. The neighboring system
covers a 3D scheme through the brain. The unknown parameters
are denoted byβ = {βm,m = 1 : M}. In what follows, we will
consider a 6-connexity 3D neighboring system.
HRF groups. In order to promote parcellation regularity, we use
here a spatial Markov prior, namely an Ising model with interaction
parameterβz :

p(Z;βz) ∝ exp
(
βzU(Z)

)
, (4)

where U(Z) =
∑

j∼j′ δ(zj , zj′). We use here the same 6-
connexity 3D neighboring system as before.
HRF. In contrast to [1–3] where a unique HRF is used for a
whole parcel and where a smoothness constraint is imposed for
the HRF by controlling its second order derivative, we definehere
p(H|Z) =

∏
j∈P

p(hj | zj) wherep(hj | zj = k) ∼ N (h̄k, Σ̄k).

The distribution onhj is expressed conditionally to the HRF group
variablezj . Regularity across neighbouring voxels is then favored
via the Markov prior onZ.

For the complete model, the whole set of parameters is denoted by
Θ =

{
Γ,L,µ, v,β, βz, (h̄k, Σ̄k)1≤k≤K

}
and belong to a setΘ.

3. ESTIMATION BY VARIATIONAL EM

We propose to use an Expectation-Maximization (EM) framework to
deal with the missing data namely,A ∈ A, H ∈ H, Q ∈ Q, Z ∈



Z. LetD be the set of all probability distributions onA×H×Q×Z.
EM can be viewed as an alternating maximization procedure ofa
function F on D, F(p,Θ) = Ep

[
log p(Y ,A,H,Q,Z |Θ)

]
+

G(p) whereEp

[
.
]

denotes the expectation with respect top and
G(p) = −Ep

[
log p(A,H,Q,Z)

]
is the entropy ofp. At iteration

(r), denoting the current parameter values byΘ
(r−1), the alternat-

ing procedure proceeds as follows:

E-step: p(r)A,H,Q,Z = argmax
p∈D

F(p,Θ(r−1)) (5)

M-step: Θ(r) = argmax
Θ∈Θ

F(p
(r)
A,H,Q,Z,Θ) (6)

However, the optimization step in Eq. (5) leads top(r)A,H,Q,Z =

p(A,H,Q,Z |Y ,Θ(r−1)), which is intractable for our model.
Hence, we resort to a variational EM variant in which the intractable
posterior is approximated as a product of four pdfs onA, H, Q
andZ respectively. The intractable E-step is instead solved over
D̃, a restricted class of probability distributions chosen asthe set
of distributions that factorize as̃pA,H,Q,Z = p̃Ap̃H p̃Qp̃Z where
p̃A, p̃H , p̃Q and p̃Z are probability distributions onA, H, Q and
Z respectively. It follows then that our E-step becomes an approxi-
mate E-step, which can be further decomposed into four stages that
consist of updating the four pdfs,̃pH , p̃A, p̃Q andp̃Z , in turn using
four equivalent expressions ofF whenp factorizes as iñD. At iter-
ation (r), with current estimates denoted byq(r−1)

A , q
(r−1)
Q , q(r−1)

Z

andΘ(r−1), the updating rules become (using the Kullback-Leibler
divergence properties):

E-H: p̃(r)H (h) ∝ exp
(
E

p̃
(r−1)
A

p̃
(r−1)
Z

[
log p(h |Y ,A,Z;Θ(r−1)

])

(7)

E-A: p̃(r)A (A) ∝ exp
(
E

p̃
(r)
H

p̃
(r−1)
Q

[
log p(A |Y ,H,Q;Θ(r−1))

])

(8)

E-Q: p̃(r)Q (Q) ∝ exp
(
E

p̃
(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
(9)

E-Z: p̃(r)Z (Z) ∝ exp
(
E

p̃
(r)
H

[
log p(Z |Y ,H;Θ(r−1)]) . (10)

TheM-step writes (sinceΘ andG(p(r)A,H,Q,Z) are independent):

M: Θ
(r) = argmax

Θ

E
p̃
(r)
A

p̃
(r)
H

p̃
(r)
Q

p̃
(r)
Z

[
log p(Y ,A,H,Q,Z;Θ)

]
.

(11)

For theE-H and E-A steps it follows from standard algebra that
q
(r)
H and q

(r)
A are both Gaussian distributions:̃p(r)H =

∏
j∈P

p̃
(r)
Hj

and p̃
(r)
A =

∏
j∈P

p̃
(r)
Aj

, wherep̃(r)Hj
∼ N (m

(r)
Hj

,Σ
(r)
Hj

) and q
(r)
Aj

∼

N (m
(r)
Aj

,Σ
(r)
Aj

). More specifically, assuming current values for the

m
(r−1)
Aj

, Σ(r−1)
Aj

andp̃(r−1)
Qm

j
, therth iteration starts with:

• E-H step: Compute

Σ
(r)−1
Hj

= V1 + V2 (12)

m
(r)
Hj

= Σ
(r)
Hj

(m1 +m2), (13)

whereV1 =
∑

m,m′

Σ
(r−1)
Aj

(m,m′)Xt
mΓ

(r−1)
j Xm′ + S̃t

jΓ
(r−1)
j S̃j ,

V2 =
K∑

k=1

p̃
(r−1)
Zj

(k)Σ̄
−1
k , m1 = S̃t

jΓ
(r−1)
j (yj − P ℓ

(r−1)
j ) and

m2 =
K∑

k=1

Σ̄
−1
k p̃

(r−1)
Zj

(k)h̄k. Hereabove,̃Sj =
M∑

m=1

m
(r−1)
Am

j
Xm

andm(r−1)
Am

j
,Σ(r−1)

Aj
(m,m′) denote respectively them and(m,m′)

entries of the mean vectorm(r−1)
Aj

and covariance matrixΣ(r−1)
Aj

of

the current̃p(r−1)
Aj

.

• E-A step: Compute Σ
(r)
Aj

= (
I∑

i=1

∆
(r)
ij + H̃

(r)
j )−1 and

m
(r)
Aj

= Σ
(r)
Aj

(
∑I

i=1 ∆
(r)
ij µ

(r)
i + X̃

(r)t

j m
(r)
Hj

)

with µ
(r)
i =

[
µ
(r)
1i . . . µ

(r)
Mi

]t

and∆
(r)
ij = diagM

[
p̃
(r−1)

Q1
j

(i)/v
(r)
1i , . . . , p̃

(r−1)

QM
j

(i)/v
(r)
Mi

]
where

X̃
(r)
j =

[
gt1 | · · · | g

t
M

]t
with gm = Γ

(r)
j (yj − P ℓ

(r)
j )tXm and

H̃
(r)
j is aM ×M matrix whose(m,m′) entry is

H̃
(r)
j (m,m′) = trace(Σ(r)

Hj
Xm

t
Γ

(r)
j Xm′)

+m
(r)t

Hj
X

t
mΓ

(r)
j Xm′m

(r)
Hj

• E-Q step: It comes

p̃
(r)
Q (Q) =

M∏

m=1

p̃
(r)
Qm(qm) (14)

with p̃
(r)
Qm

(qm) = pm(qm |am = m
(r)
A (m);v(r)

m , β(r)
m )

wherepm is a Potts model with interaction parameterβ
(r)
m and ex-

ternal fieldα(r)
m = {α(r)

mj , j ∈ P}

with α
(r)
mj = −1

2
Σ

(r)
Aj

(m,m)
[
1/v

(r)
m1, 1/v

(r)
m2

]t
i.e.

pm(qm;v(r)
m , β(r)

m ) ∝ exp{
∑

j∈P

(
α

(r)
mj(q

m
j )

+
β
(r)
m

2

∑

j∼i

δ(qmi , qmj )
)
} .

The expression in (14) is intractable but a number of approxi-
mation techniques are available. In particular, we can use a
mean-field like algorithm (fixing the neighbours to their mean
value) as described in [9] in which̃qQm (qm) can be approxi-
mated byq̃Qm(qm) =

∏
j∈P

q̃Qm
j
(qm

j ) with, if qmj = i, q̃Qm
j
(i) ∝

N (mAj (m);µmi, vmi)pm(Qm
j = i | q̃m∼j ;βm,vm), whereq̃m is

a particular configuration ofqm updated at each iteration according
to a specific scheme,∼ j denotes neighbouring voxels toj, and
pm(qmj | q̃m∼j);βm,vm) ∝ exp{αmj(q

m
j ) + βm

∑
l∼j

δ(q̃mj , qml )}.

See [9] for details.
• E-Z step: This step is similar to theE-Q one. Calculations
yield to similar form of p̃Z(z) =

∏
j∈P

p̃Zj (zj) where p̃Zj (k) ∝

N (mHj ; h̄
(r−1)
k , Σ̄

(r−1)
k )pm(Zj = k | z̃∼j ;βz) wherez̃ is a par-

ticular configuration ofz updated at each iteration according to a
specific scheme and pm(zj | z̃∼j ;βz) ∝

exp{− 1
2
trace(Σ

(r)
Hj

Σ̄
(r−1)−1
zj ) + βz

∑
j∼l

δ(zj , z̃l)}.

• M step: The maximization step can also be divided into four sub-
steps involving separately(µ,σ), β, (ℓ,Γ) and (h̄k, Σ̄k)1≤k≤K .
For the(µ,σ) and(h̄k, Σ̄k)1≤k≤K sub-steps, closed forms can be
analytically derived for the updates. However, numerical resolution
is required for the other sub-steps. For more details, the interested
reader can refer to [3].



4. ILLUSTRATIONS

In this section, the JPDE is validated and compared to the parcel-
based JDE approach. Experiments have been conducted on artificial
fMRI signal generated according to the observation model inEq. (1).
We simulated a random mixed sequence of indexes coding forM =
2 different stimuli. These two sets of trials (30 trials per stimu-
lus) were then multiplied by stimulus-dependent and space-varying
NRLs, which were generated according to the prior distribution in
Section 2.2.2. To this end, we generated 2D slices composed of 20
x 20 binary labelsQm (activated and non-activated voxels) for each
stimulus typem. Then, we simulated normally-distributed NRLs:
a1
j | q

1
j = 1 ∼ N (0, 0.5), a1

j | q
1
j = 2 ∼ N (2, 0.5), a2

j | q
2
j =

1 ∼ N (0, 0.5), anda1
j | q

2
j = 2 ∼ N (2.8, 0.5). HRFs have been

also simulated for each voxel conditionally to a parcellation mask
and according to the prior distribution in Section 2.2.2. This par-
cellation mask (Z) is composed of two parcels having the same
size. Within each parcel, all voxels share the same HRF priorpa-
rameters̄hk andΣ̄k. The first experiment conducted here aims at
demonstrating the robustness of the proposed approach especially in
estimating the HRFs in comparison with parcel-based JDE. Inthis
simulation, the same HRF prior parameters have been used forboth
parcels (1 actual HRF group). For estimation we assume two HRF
groups (one for each parcel) for JPDE. For JDE, the two parcels are
considered as one parcel (with a single HRF model). Regarding es-
timated NRLs, results (not displayed here) show that JDE is more
robust in terms of Mean Square Error (MSE), which was expected
due to the model mis-specification in the JPDE case (MSEJDE =
0.020 andMSEJPDE = 0.025). However, estimated HRFs show
that the new approach allows retrieving more accurate HRFs due to
the new mixture prior. Fig. 1[left] shows reference and estimated
HRFs using both methods (red and yellow curves correspond tothe
HRF expectation across each parcel). From a qualitative viewpoint,
it is worth noticing that the proposed method better estimates the
HRF tail compared to JDE. In terms of MSE, obtained values con-
firm the superiority of our approach from a quantitative viewpoint
(MSEJDE = 1.7010−5 andMSEJPDE = 3.0910−7).
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Fig. 1. Ground truth and estimated HRFs using JDE and JPDE.

The second experiment has been conducted to validate the robust-
ness of the proposed approach when the HRF properties of the
considered parcels are really different (two actual HRF groups).
For estimation,K = 2 is still assumed for JPDE while JDE can-
not account for more than one HRF group. Fig. 1[right] illustrates
reference and estimated HRFs with both methods (red and yellow
curves correspond to the HRF expectation across each parcel). It
is clear that the proposed approach allows retrieving accurate HRF
estimates for each parcel, while JDE estimates a HRF which lies
between the two groups (Parcel 1:MSEJPDE = 5.3410−6 ,
MSEJDE = 1.1010−4 ; Parcel 2: MSEJPDE = 1.4410−6 ,
MSEJDE = 1.3610−4). This results confirms the superiority
of the proposed approach in allowing variability of HRFs across
voxels compare to the single HRF model assumed in JDE.

As regards activation detection, Fig. 2 plots the ROC curvesfor both
algorithms. These activation classification results show that JPDE
allows well detecting activations, and even slightly outperforms
JDE.
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Fig. 2. ROC curves for activation classification using JDE and JPDE.

5. CONCLUSION
We proposed an extension (JPDE) to the joint detection-estimation
framework that does not depend on the choice of an initial brain
parcellation. Preliminary experiments showed that this approach
achieved similar and even better results than the standard JDE
and future work includes the application of our method to real 3D
datasets on the whole brain. In addition, this new frameworkraises
the question of model selection, in particular the issue of choosing
the right number of HRF groups at besti.e. in a sparse manner so
as to capture the spatial variability in hemodynamic territories while
enabling the reproducibility of parcel identification across fMRI
datasets. This question should be the most critical to validate our
approach but also the most interesting to neuroscientists in case of
success. For this specific point, we shall investigate variational ap-
proximations of standard information criteria such as the Bayesian
Information Criterion.
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