H. Luo and S. Puthusserypady, A Sparse Bayesian Method for Determination of Flexible Design Matrix for fMRI Data Analysis and systems?I: regular papers, IEEE Trans. on Circuits, vol.52, issue.12, pp.2699-2706, 2005.

V. P. Oikonomou, K. Blekas, and L. Astrakas, A Sparse and Spatially Constrained Generative Regression Model for fMRI Data Analysis, IEEE Transactions on Biomedical Engineering, vol.59, issue.1, pp.58-67, 2012.
DOI : 10.1109/TBME.2010.2104321

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594

S. Donnet, M. Lavielle, P. Ciuciu, and J. Poline, Selection of temporal models for event related fMRI, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.992-995, 2004.
DOI : 10.1109/ISBI.2004.1398707

R. B. Hara and M. J. Sillanpaa, A review of Bayesian variable selection methods: what, how and which, Bayesian Analysis, vol.4, issue.1, pp.85-118, 2009.
DOI : 10.1214/09-BA403SUPP

M. Smith and L. Fahrmeir, Spatial Bayesian Variable Selection With Application to Functional Magnetic Resonance Imaging, Journal of the American Statistical Association, vol.102, issue.478, pp.417-431, 2007.
DOI : 10.1198/016214506000001031

C. Bakhous, F. Forbes, T. Vincent, L. Chaari, M. Dojat et al., Adaptive experimental condition selection in event-related fMRI, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.1755-1758, 2012.
DOI : 10.1109/ISBI.2012.6235920

URL : https://hal.archives-ouvertes.fr/cea-00710489

L. Chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu, Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach, IEEE Transactions on Medical Imaging, vol.32, issue.5
DOI : 10.1109/TMI.2012.2225636

URL : https://hal.archives-ouvertes.fr/inserm-00753873

S. Poline and . Dehaene, Fast reproducible identification and largescale databasing of individual functional cognitive networks, BMC Neurosci, vol.8, p.91, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00784462

K. J. Friston, W. Penny, C. Phillips, S. J. Kiebel, G. Hinton et al., Classical and Bayesian Inference in Neuroimaging: Theory, NeuroImage, vol.16, issue.2, pp.465-483, 2002.
DOI : 10.1006/nimg.2002.1090

S. Badillo, T. Vincent, and P. Ciuciu, Impact of the joint detectionestimation approach on random effects group studies in fMRI, 7th Proc. ISBI, pp.376-380, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00854626