J. Bakkenist, . Ch, and M. Kastan, DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, vol.268, issue.6922, pp.499-506, 2003.
DOI : 10.1089/027245700429864

J. Bartkova, ATM Activation in Normal Human Tissues and Testicular Cancer, Cell Cycle, vol.4, issue.6, pp.838-845, 2005.
DOI : 10.4161/cc.4.6.1742

E. Batchelor, Recurrent Initiation: A Mechanism for Triggering p53 Pulses in Response to DNA Damage, Molecular Cell, vol.30, issue.3, pp.277-289, 2008.
DOI : 10.1016/j.molcel.2008.03.016

J. Braga and J. Mcnally, A Reaction-Diffusion Model to Study RNA Motion by Quantitative Fluorescence Recovery after Photobleaching, Biophysical Journal, vol.92, issue.8, pp.2694-2703, 2007.
DOI : 10.1529/biophysj.106.096693

A. Cangiani and R. Natalini, A spatial model of cellular molecular trafficking including active transport along microtubules, Journal of Theoretical Biology, vol.267, issue.4, pp.614-625, 2010.
DOI : 10.1016/j.jtbi.2010.08.017

URL : https://hal.archives-ouvertes.fr/hal-00637805

L. C. Cantley and B. Neel, New insight into timor suppression: PTEN suppresses timor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc. Natl. Acad. Sci. USA 96, pp.4240-4245, 1999.

A. Ciliberto, B. Novak, and J. Tyson, Steady States and Oscillations in the p53/Mdm2 Network, Steady states and oscillations in the p53/Mdm2 network, pp.488-493, 2005.
DOI : 10.4161/cc.4.3.1548

J. Clairambault, Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.12-67, 2009.
DOI : 10.1051/mmnp/20094302

C. Cole and J. J. Scarcelli, Transport of messenger RNA from the nucleus to the cytoplasm, Current Opinion in Cell Biology, vol.18, issue.3, pp.299-306, 2006.
DOI : 10.1016/j.ceb.2006.04.006

C. Defranco, M. E. Chicurel, and H. Potter, A General RNA-Binding Protein Complex That Includes the Cytoskeleton-associated Protein MAP 1A, Molecular Biology of the Cell, vol.9, issue.7, pp.1695-1708, 1998.
DOI : 10.1091/mbc.9.7.1695

L. Dimitrio, J. Clairambault, and N. , A spatial physiological model for p53 intracellular dynamics, Journal of Theoretical Biology, vol.316, pp.9-24
DOI : 10.1016/j.jtbi.2012.08.035

URL : https://hal.archives-ouvertes.fr/hal-00726014

J. Elia?, L. Dimitrio, J. Clairambault, and R. Natalini, The p53 protein and its molecular network: Modelling a missing link between DNA damage and cell fate, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1844, issue.1, pp.232-247
DOI : 10.1016/j.bbapap.2013.09.019

J. Elia? and J. Clairambault, Reaction???diffusion systems for spatio-temporal intracellular protein networks: A beginner's guide with two examples, Computational and Structural Biotechnology Journal, vol.10, issue.16, 2014.
DOI : 10.1016/j.csbj.2014.05.007

J. Falck, J. Coates, and S. Jackson, Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage, Nature, vol.19, issue.7033, pp.605-6011, 2005.
DOI : 10.1038/sj.emboj.7600463

M. Fiscella, Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner, Proc. Natl. Acad. Sci. USA 94, pp.6048-6053, 1997.
DOI : 10.1073/pnas.94.12.6048

. Freefem++, an open source, high level integrated developmental environment for numerical solving partial differential equations

P. N. Friedman, The p53 protein is an unusually shaped tetramer that binds directly to DNA, Proc. Natl. Acad. Sci. USA 90, pp.3319-3323, 1993.

T. M. Gottlieb, Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis, Oncogene, vol.21, issue.8, pp.1299-1303, 2002.
DOI : 10.1038/sj.onc.1205181

S. L. Harris and A. Levine, The p53 pathway: positive and negative feedback loops, Oncogene, vol.12, issue.17, pp.2899-2908, 2005.
DOI : 10.1038/sj.onc.1208615

P. Hinow, The DNA Binding Activity of p53 Displays Reaction-Diffusion Kinetics, Biophysical Journal, vol.91, issue.1, pp.330-342, 2006.
DOI : 10.1529/biophysj.105.078303

S. Hong, Measurement of Protein 53 Diffusion Coefficient in Live HeLa Cells Using Raster Image Correlation Spectroscopy (RICS), MEASUREMENT of Protein 53 Diffusion Coefficient in Live HeLa Cells Using Raster Image Correlation Spectroscopy (RICS), pp.31-36, 2010.
DOI : 10.4236/jbnb.2010.11004

A. Joerger and A. Fersht, The Tumor Suppressor p53: From Structures to Drug Discovery, Cold Spring Harbor Perspectives in Biology, vol.2, issue.6, p.919, 2010.
DOI : 10.1101/cshperspect.a000919

J. Keener and J. Sneyd, Mathematical Physiology I: Cellular Physiology second ed, 2009.

J. K. Kim and T. Jackson, 2013 Mechanisms That Enhance Sustainability of p53 Pulses, PLoS ONE, vol.8, issue.6

M. Kracikova, A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis, Cell Death and Differentiation, vol.28, issue.4, pp.576-588
DOI : 10.1038/cdd.2012.155

G. Lahav, Dynamics of the p53-Mdm2 feedback loop in individual cells, Mdm2 feedback loop in individual cells, pp.147-150, 2004.
DOI : 10.1038/ng1293

S. Lain and D. Lane, Improving cancer therapy by non-genotoxic activation of p53, European Journal of Cancer, vol.39, issue.8, pp.1053-1060, 2003.
DOI : 10.1016/S0959-8049(03)00063-7

J. Lee and T. Paull, ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex, Science, vol.308, issue.5721, pp.551-554, 2005.
DOI : 10.1126/science.1108297

A. Levine, The paths to death and differentiation, Cell Death and Differentiation, vol.18, issue.9, pp.1391-1392, 2011.
DOI : 10.1038/cdd.2011.41

M. Li, Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2, Science, vol.302, issue.5652, pp.1972-1975, 2003.
DOI : 10.1126/science.1091362

D. C. Link, Identification of a Novel TP53 Cancer Susceptibility Mutation Through Whole-Genome Sequencing of a Patient With Therapy-Related AML, JAMA, vol.305, pp.15-1568, 2011.

A. Loewer, The p53 response in single cells is linearly correlated to the number of DNA breaks without a distinct threshold, BMC Biology, vol.11, issue.1, p.114, 2013.
DOI : 10.1186/gb-2006-7-10-r100

L. Ma, A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. USA, pp.14266-14271, 2005.
DOI : 10.1073/pnas.0501352102

E. Nagy, Basic Equations of the Mass Transport through a Membrane Layer first ed, 2012.

K. Puszy´nskipuszy´nski, B. Hat, and L. , Oscillations and bistability in the stochastic model of p53 regulation, Journal of Theoretical Biology, vol.254, issue.2, pp.452-465, 2008.
DOI : 10.1016/j.jtbi.2008.05.039

K. Ribbeck and D. Görlich, Kinetic analysis of translocation through nuclear pore complexes, The EMBO Journal, vol.20, issue.6, pp.1320-1330, 2001.
DOI : 10.1093/emboj/20.6.1320

L. A. Segel, Simplification and scaling, SIAM Rev, pp.547-571, 1972.
DOI : 10.1137/1014099

S. Shreeram, Wip1 Phosphatase Modulates ATM-Dependent Signaling Pathways, Wip1 Phosphatase Modulates ATM-Dependent Signaling Pathways, pp.757-764, 2006.
DOI : 10.1016/j.molcel.2006.07.010

S. Shreeram, Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase, The Journal of Experimental Medicine, vol.2, issue.13, pp.2793-2799, 2006.
DOI : 10.1128/MCB.02240-05

J. M. Stommel, A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking, The EMBO Journal, vol.18, issue.6, pp.1660-1672, 1999.
DOI : 10.1093/emboj/18.6.1660

M. Sturrock, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, Journal of Theoretical Biology, vol.273, issue.1, pp.15-31, 2011.
DOI : 10.1016/j.jtbi.2010.12.016

URL : https://hal.archives-ouvertes.fr/hal-00669200

D. Y. Vargas, Mechanism of mRNA transport in the nucleus, Proceedings of the National Academy of Sciences, vol.102, issue.47, pp.17008-17013, 2005.
DOI : 10.1073/pnas.0505580102

K. H. Vousden and D. Lane, p53 in health and disease, Nature Reviews Molecular Cell Biology, vol.331, issue.4, pp.275-283, 2007.
DOI : 10.1038/nrm2147

J. Wagner, p53???Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, Proc. Natl. Acad. Sci. USA, pp.53-55, 2005.
DOI : 10.1049/ip-syb:20050025

R. L. Weinberg, D. Veprintsev, and A. Fersht, Cooperative Binding of Tetrameric p53 to DNA, Journal of Molecular Biology, vol.341, issue.5, pp.1145-1159, 2004.
DOI : 10.1016/j.jmb.2004.06.071

D. B. Young, Identification of Domains of Ataxia-telangiectasia Mutated Required for Nuclear Localization and Chromatin Association, Journal of Biological Chemistry, vol.280, issue.30, pp.27587-27594, 2005.
DOI : 10.1074/jbc.M411689200

T. Zhang, P. Brazhnik, and J. Tyson, Exploring Mechanisms of the DNA-Damage Response: p53 Pulses and their Possible Relevance to Apoptosis, Cell Cycle, vol.6, issue.1, pp.85-94, 2007.
DOI : 10.4161/cc.6.1.3705

X. P. Zhang, F. Liu, and W. W. , Two-phase dynamics of p53 in the DNA damage response, Proc. Natl. Acad. Sci. USA, pp.8990-8995, 2011.
DOI : 10.1073/pnas.1100600108

Z. Zhao, p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal, Genes & Development, vol.24, issue.13, pp.1389-1402, 2010.
DOI : 10.1101/gad.1940710

F. Murray-zmijewski, E. A. Slee, and X. Lu, A complex barcode underlies the heterogeneous response of p53 to stress, Nature Reviews Molecular Cell Biology, vol.443, issue.9, pp.702-712, 2008.
DOI : 10.1038/nrm2451