Robust estimation of microbial diversity in theory and in practice

Abstract : Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ('Hill diversities'), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.
Type de document :
Article dans une revue
ISME Journal, Nature Publishing Group, 2013, 7, pp.1092-1101. 〈10.1038/ismej.2013.10〉
Liste complète des métadonnées
Contributeur : Alain Rapaport <>
Soumis le : lundi 9 septembre 2013 - 09:17:43
Dernière modification le : jeudi 11 janvier 2018 - 15:51:48



Bart Haegeman, Jérôme Hamelin, John Moriarty, Peter Neal, Jonathan Dushoff, et al.. Robust estimation of microbial diversity in theory and in practice. ISME Journal, Nature Publishing Group, 2013, 7, pp.1092-1101. 〈10.1038/ismej.2013.10〉. 〈hal-00859547〉



Consultations de la notice