SOMMA: Cortically Inspired Paradigms for Multimodal Processing

Mathieu Lefort 1 Yann Boniface 1 Bernard Girau 1
1 CORTEX - Neuromimetic intelligence
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : SOMMA (Self Organizing Maps for Multimodal Association) consists on cortically inspired paradigms for multi-modal data processing. SOMMA defines generic cortical maps - one for each modality - composed of 3-layers cortical columns. Each column learns a discrimination to a stimulus of the input flow with the BCMu learning rule [26]. These discriminations are self-organized in each map thanks to the coupling with neural fields used as a neighborhood function. Learning and computation in each map is influenced by other modalities thanks to bidirectional topographic connections between all maps. This multimodal influence drives a joint self-organization of maps and multimodal perceptions of stimuli. This work takes place after the design of a self-organizing map and of a modulation mechanism for influencing its self-organization oriented towards a multimodal purpose. In this paper, we introduce a way to connect these self-organizing maps to obtain a multimap multimodal processing, completing our previous work. We also give an overview of the architectural and functional properties of the resulting paradigm SOMMA.
Type de document :
Communication dans un congrès
International Joint Conference on Neural Networks, Aug 2013, Dallas, United States. 2013
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Mathieu Lefort <>
Soumis le : lundi 9 septembre 2013 - 18:03:48
Dernière modification le : jeudi 7 juin 2018 - 09:52:02
Document(s) archivé(s) le : jeudi 12 décembre 2013 - 10:16:19


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00859986, version 1



Mathieu Lefort, Yann Boniface, Bernard Girau. SOMMA: Cortically Inspired Paradigms for Multimodal Processing. International Joint Conference on Neural Networks, Aug 2013, Dallas, United States. 2013. 〈hal-00859986〉



Consultations de la notice


Téléchargements de fichiers