Exact computation of the Maximum Entropy Potential of spiking neural networks models

Rodrigo Cofre 1 Bruno Cessac 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : Understanding how stimuli and synaptic connectivity influence the statistics of spike patterns in neural networks is a central question in computational neuroscience. Maximum Entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. But, in spite of good performance in terms of prediction, the fitting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuro-mimetic models) provide a probabilistic mapping between stimulus, network architecture and spike patterns in terms of conditional probabilities. In this paper we build an exact analytical mapping between neuro-mimetic and Maximum Entropy models.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

Contributeur : Rodrigo Cofre <>
Soumis le : mercredi 14 mai 2014 - 20:58:55
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : jeudi 14 août 2014 - 10:55:32


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00861397, version 4


Rodrigo Cofre, Bruno Cessac. Exact computation of the Maximum Entropy Potential of spiking neural networks models. 2014. 〈hal-00861397v4〉



Consultations de la notice


Téléchargements de fichiers