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Context and motivation
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Multi Electrodes Array

Figure: Multi-Electrodes Array.



Raster plot
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Figure: Raster plot/spike train.



Statistical decoding

Stimulus S — spike response R. J

Try to compute P[R | S | then P[S | R |.




Ex: Moving bar

O. Marre, D. Amodei, N. Deshmukh,K. Sadeghi,F. Soo, T. E. Holy, M. J. Berry, "Mapping a Complete Neural

Population in the Retina", J Neurosci. 32(43), 2012
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Figure 1: Ganglion cell spike trains during random bar motion. A: Position of the bar
as a function of time. B: Example of one stimulus frame; motion is perpendicular to the bar (red
arrow), Ellipse fitted to the spatial receptive field profile of one representative ganglion cell (pink).
C': Spiking activity of 180 cells in the puinea-pig retina in response to a bar moving randomly with
the trajectory shown in A. Each line corresponds to one cell, and the points represent spikes. The
order of the cells along the y-axis is arbitrary. Dv Spiking activity of 123 cells in the salamander
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Ex: Moving bar

O. Marre, D. Amodei, N. Deshmukh,K. Sadeghi,F. Soo, T. E. Holy, M. J. Berry, "Mapping a Complete Neural

Population in the Retina", J Neurosci. 32(43), 2012
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Figure 2: High-acceuracy reconstruction of the bar’s trajoctory.  A: Schematic of the linear
Adecoding method, here for 4 cells. A temporal flter is associated with each ccll. Each time the
ooll spikes, its filter is added to the ongoing reconstruction at the time of the spike. The filters
are optimized on part of the data to have the lowest reconstruction ervor and then tested on the
rest of the data. B: Prediction of the bar's position (black) from the activity of 123 cells in the
salamander retina versus the real trajectory (red). C: Prediction of the bar’s position (hlack) from
the activity of 178 cells in the guinea pig retina versus the real trajectory (red). D, E: Decoding
perfornmance plotted asainst the number of cells in the salamander (D) ansd cuinea piec (EV Gray
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To fit
Extract a probabilistic model of P[R|S ], P[S | R ] from data.

4

To predict
Apply the probabilistic model to predict the behaviour of test samples.

4

To explain
How does a neural network "encode" a stimulus.

To predict is not to explain.
(René Thom)
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Mathematics can bring in neuroscience not only techniques to solving
problems but also new concepts and questions.

Mathematics can also help to propose laws (in the same sense as in
Physics) predictive and explanatory, governing the behaviour of the brain.

Proposing new paradigms.
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A model is a representation of reality.
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The map is not the territory. (A. Korzibsky).
A model is a representation of reality.

Mathematics must be fed and controlled by experiments.
A theorem is not a sufficient justification.






From spike trains to mathematical results and questions



Ensamia|

This spike train has been generated
by an hidden dynamics / stochastic
process.

Can we infer this process from the
spike train’s analysis 7




Spike state
wi(n) €{0,1}

Figure: Spike state.
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Figure: Spike pattern.
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Figure: Spike block.
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Figure: Spike block.



Spike state
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Spike pattern

Figure: Raster plot/Spike train.




Construct:
Po [w(n) |wpTp ]

from data.




© Assume that spike statistics is generated by a (Markov) process.

@ Assume a parametric form for the transition probabilities of this
process (Ex: Linear-Non Linear, Generalized Linear Model, ...).

© Fit the parameters (Maximum likelihood, Kullback-Leibler divergence
minimization, learning methods, ...).

Q@ Generate sample probabilities and compare to data: does the model fit
and predict correctly (confidence plots, Kullback-Leibler divergence,
correlations, ...) 7

© Handle correctly the finite size sampling of data (standard statistical
tests, Central Limit theorem, convergence rate, ... ).






Example 1: The Generalized-Linear Model (GLM)

Paradigms of rates and receptive fields.
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Figure: Generalized Linear Models.




The Generalized-Linear Model (GLM)

Ak(tlHt) — Py [Wk(n) =1 ‘ Hp—1 ] ~ Ak(n|Hn—1)At = Pk(n)

Considering Conditional independence:

N
Py [w(n) ‘WZ:}) ] = H pk(n)Wk(n)(l _ pk(n))l—wk(n)
k=1



GLM Experimental Validation

""Modeling the impact of common noise inputs on the network activity of retinal ganglion cells". M.Vidne, Y.

Ahmadian, J. Shlens, J. Pillow, J.Kulkarn, A. Litke , E. J. Chichilnisky E.Simoncelli, L. Paninski. Journal of

Computational Neuroscience( 2011)
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Example 2: Handling correlations with the Maximum
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Example 2: Handling correlations with the Maximum
Entropy Principle

Measuring the statistics of

single spikes, pairs, triplets, ..., what else 7.
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Entropy Principle

E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. "Weak pairwise correlations imply strongly correlated network

states in a neural population”. Nature, 440(7087):1007-1012, 2006.
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Example 2: Handling correlations with the Maximum

Entropy Principle

E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. "Weak pairwise correlations imply strongly correlated network

states in a neural population”. Nature, 440(7087):1007-1012, 2006.
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Example 2: Handling correlations with the Maximum

Entropy Principle

Are pairwise correlations significant, although weak 7

© Compute the pairwise correlations.

@ Find the probability distribution which maximizes the statistical
entropy and reproduces the observed pairwise correlations = Gibbs
distribution.

© Fit and predict.



Example 2: Handling correlations with the Maximum

Entropy Principle

E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. "Weak pairwise correlations imply strongly correlated network

states in a neural population”. Nature, 440(7087):1007-1012, 2006.
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Example 2: Handling correlations with the Maximum

Entropy Principle

Extensions:
e Ganmor-Schneidman-Segev, 2012: taking into account instantaneous
triplets, quadruplets;
@ Marre et al, 2009: One step memory pairwise Markov process;

@ Vasquez et al, 2012: General form of events can be taken into account
from general theory of Gibbs distributions and Perron-Frobenius
theorem;

@ Nasser et al, 2013: Monte Carlo approach to spatio-temporal Gibbs
sampling.



A statistical model makes assumptions

o GLM:

@ Assumption of conditional independence;
© Questionable interpretation of parameters.

o MaxEnt:

@ Assumption of stationarity;

@ Questionable interpretation of parameters;
© Which events to choose ?

© Exponential complexity;

© Overfitting ?



Some mathematical remarks, answers and new questions



What could be the hidden process 7



What could be the hidden process 7

R.Cofré,B. Cessac: "Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks

with chemical and electric synapses’, Chaos, Solitons and Fractals, 2013.
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What could be the hidden process 7

The sub-threshold variation of the membrane potential of neuron k at time
t is given by:

Cogp = ~8Lu(Vi— 1) = ngj (t,w)(Vk — Ej)

ngj +Ik( )

Cy is the membrane capacity of neuron k. Ix(t) = l,EeXt)( t) + ogék(t),

(ext)

where i, ’(t) is a deterministic external current (“stimulus").



What could be the hidden process 7

8ki(t) = 8ki(tf (W) + Gijayi(t — £/ (w)), t>tj(w),



What could be the hidden process 7

Mathematical answers

@ In this example, the hidden process is non Markovian: it has an infinite
memory, although it can be well approximated by a Markov process.

@ Without gap-junctions the transition probabilities can be explicitly
computed. The form is similar to GLM (conditional independence and
interpretation of parameters).

e With gap-junctions the conditional independence breaks down. The
explicit form of the transition probabilities has (not yet) been
computed.

@ The statistics of spike is described by a Gibbs distribution (even in the
non stationary case). In the stationary case, it obeys a Maximum
Entropy Principle.



Is there any relation between GLM like models and MaxEnt
7



Is there any relation between GLM like models and MaxEnt
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Can we hear the shape of a Maximum Entropy potential ?

H(1)

H(2)

log P [w(D) w{?_l }

H(n)



H1)

H(2)

H)

Can we hear the shape of a Maximum Entropy potential ?

X
R
o

H*= min ||h|o



Can we hear the shape of a Maximum entropy potential

Two distinct potentials H(1), H(3) of range R = D + 1 correspond to the
same Gibbs distribution (are “equivalent"), if and only if there exists a
range D function f such that (Chazottes-Keller (2009)):

H® (wg’) = HO (wg’> _f (wOD_l) +f <w1D> ra, (1)

where A = P(Hg?) — P(HzW).



Can we hear the shape of a Maximum entropy potential

Summing over periodic orbits we get rid of the function f

R

R
> G(wo"h) = H*(wo"h) — RP(HY), (2)

n=1 n=1

We eliminate equivalent constraints.



Can we hear the shape of a Maximum entropy potential

Given a set of transition probabilities P [w(D) ‘woD_l } > 0 there is a

unique, up to a constant, MaxEnt potential, written as a linear combination
of constraints (average of spike events) with a minimal number of terms.
This potential can be explicitly (and algorithmically) computed.
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Combinatorial Explosion of constraints

A GLM like model has typically O(N?) parameters where N is the
number of neurons.

o The equivalent MaxEnt potential has generically 2Nk — 2N(R-1)

parameters, non linear and redundant functions of the GLM
parameters.

=

@ Intractable determination of parameters;
@ Stimulus dependent parameters;
e Overfitting.

BUT Real neural networks are not generic



MaxEnt approach might be useful if there is some hidden law of nature/
symmetry which cancels most of the terms of its expansion.



Finite size effects



Finite size effects

Having a nice mathematical model for spike statistics will be really efficient
if one can control/ predict finite size effects:

Fluctuations (Central Limit theorem; infinitely divisible distributions)
Errors on parameters estimations.
Convergence rate (Large deviations; concentrations inequalities)

Statistical tests (Neymann-Pearson, ...);



Paradigm changes 7



Paradigm changes 7

Thomas S. Kuhn, (1922-1996)



T, vadius vector

Johannes Kepler Isaac Newton Albert Einstein Bernhard Riemann
(1571 - 1630) (1642-1727) (1879-1955) (1826-1866)



Receptive field

The receptive field of a sensory neuron is a region of space in which the
presence of a stimulus will alter the firing of that neuron. (wikipedia)
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Characterizing the collective response to stimull.



