
HAL Id: hal-00862117
https://inria.hal.science/hal-00862117

Submitted on 16 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cartesian Intuitionism for Program Synthesis
Marta Franova

To cite this version:
Marta Franova. Cartesian Intuitionism for Program Synthesis. Cognitive 2013, May 2013, Valence,
Spain. �hal-00862117�

https://inria.hal.science/hal-00862117
https://hal.archives-ouvertes.fr

Cartesian Intuitionism for Program Synthesis

Marta Franova
Laboratoire de Recherche en Informatique, UMR8623 du CNRS

 Orsay, France
mf@lri.fr

Abstract—This paper presents two possible approaches to sci-
entific discovery, the Newtonian and the Cartesian one. The
paper explains the main difference between these two styles
and underlines the importance of each of them. Its specific
scientific contribution is presenting the less known Cartesian
approach and the main problems that can be solved by it, in
the light of our research in Automated Program Synthesis. The
paper is thus related to the creative framework of modeling
human reasoning mechanisms, cognitive and computational
models, as well as modeling brain information processing
mechanisms.

Keywords-creativity; Program Synthesis; Newtonian style;
Cartesian style; Constructive Matching Methodology

I. INTRODUCTION

This paper suggests a model of human creativity, inspired
by our experience on Program Synthesis. In the following
sections we shall describe a way of transforming a formal
specification, and possibly a partially incomplete one, into a
program computing in accordance with this specification.
Our purpose is to show that the solution we propose to this
problem strongly suggests a model for mathematical creativ-
ity.

A. Newtonian Creativity

Newtonian creativity (represented in program synthesis
mainly by ([25], [28], [4], [3], [10]) consists essentially in
the choice of a statement of the problem so that it can be
handled linearly; the problems met have to be solved at once
when met, independently of the other problems that are go-
ing to be found ‘later’. That does not go without creativity,
obviously needed to solve these problems. Thus, the creativ-
ity process in Newtonian creativity is considered as a cycle
of five distinct stages where every stage must be completed
before envisaging the next stage. These stages are the follow-
ing ones.

1. The first one is that of the preparation, where all the
important information is collected to correctly ex-
press the problem,

2. the one of incubation that supposes the contribution
of the whole personality of the mathematician,

3. the one of discovery where an inspiration occurs and
finally

4. the stage of verification.
In the case of failure, the creator is forced to undertake
5. the fifth stage which we can qualify as ‘incubation of

the failure’.

When the failure has been ‘incubated’ enough, the crea-
tor has to take up again the first four stages. This character-
izes a behavior where learning from failures is made only
after the observation of the global failure of the process of
creation. Stated in more formal way, the Newtonian ap-
proach hypothesizes that we believe in the following rigid,
‘unfriendly’ universe: There exists a universal theory, in
which the tools necessary to solve all problems are available.
This is logically expressed as follows:

[The following problem has a solution: {∃ formal frame-
work (a theory) ∀ problem}]

Failure to find a solution is answered by looking for a
new universal theory that will provide the appropriate tools.
The reader will recognize here the classical behavior of
Physics as a Science.

B. Cartesian Creativity

Cartesian creativity (represented in program synthesis
mainly by [14]) consists essentially in a ‘less conquering’ or
more ‘cautious’ approach in which the five Newtonian stages
are not so clearly distinguished. For the sake of simplicity let
us distinguish phases that run in parallel without, at first,
emphasizing their mutual dependencies.

The first phase is the phase of an informal familiarization
with the problem which results in a formulation of an infor-
mal specification of the problem that may seem, and often
is, absurd or unfeasible to solve in the standard context.

The second phase is the one where, given an informal
specification, we try to estimate what we can possibly at-
tempt in order to solve the problem. It consists in performing
two actions, specific for the given problem. The first action
is gathering the tools that might be usable in handling the
problem. These tools will be quite general since we do not
restrict ourselves to the tools usable in solving the problem.
For example, in the example that follows, the tool we chose
is the one of mathematical induction and various techniques,
such as replacing a term by a parameter. The second action is
a search for a set of minimal restrictions that are necessary
for the problem to be solved. In other word, we try to define
the largest possible context in which we can hope to solve
the problem. This is symmetrically defined as the smallest
context in which we know that no solution will be possible.

The third phase starts once these choices have been done.
They are applied to the informal specification, until we suc-
ceed into obtaining a specification in which no contradiction
is still observable within the context of the problem, as it has
been defined during the second phase. This result is called a
coherent (or ‘reasonable’) specification.

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

The fourth phase consists in a sequence of attempts at
proving the validity of the coherent specification. If this suc-
ceeds, then this proof is also a solution to the problem. Fail-
ures at obtaining of proof does not lead us to reformulate the
problem, or to choose a new theory, as happens in the New-
tonian approach. A failure does not lead us further than
modifying the coherent specification.

Stated in more formal way, the Cartesian approach hy-
pothesizes that we believe in the following flexible, ‘friend-
lier’ universe: Given a problem, we will be able to find or
build a theory dedicated to solving the specific problem at
hand. Failure to find a solution will be answered by building
a theory in which a solution is possible (instead of looking
for a new existing theory). This is logically expressed as fol-
lows:

[The following problem has a solution: {∀ problems ∃
appropriate framework (a theory)}].

The reader will recognize here the classical behavior of
an artist in front of a task to execute (the specific specifica-
tion) that he will fulfill either by using existing tools (the
existing ‘universal’ theory of Art, the so-called “academic
artists”) or by creating a theory specific to his problems (the
so-called “new Art”).

These two types of creativity cannot, however, in isola-
tion render the richness of mathematician thought. We do not
yet have the weapons necessary to describe how may happen
a ‘pulsation’ between the two above approaches. We are
nevertheless able to provide a formal specification for it. A
formal specification of the pulsating between Newtonian and
Cartesian approaches is represented by inversing the order-
ing of the two quantified terms ‘theory’ and ‘problem’. New-
tonian states that ∃ a (universal) theory usable ∀ problems,
while Cartesian states that ∀ problems that ∃ a (particular)
theory.

The following of this paper will explain how the problem
of program synthesis from specification demands such a pul-
sative approach in order to find a solution. Note that auto-
matic program synthesis is difficult enough to be still unable
to be applicable to real world problems while the humans
called ‘programmers’ seem to be able to often provide solu-
tions often satisfactory.

The rest of the paper is structured as follows. In section II

we shall formalize a bit more the Newtonian and the Carte-
sian styles of the research. In section III we recall the goal of
Program Synthesis and we shall relate the main features of
the Newtonian and the Cartesian styles to program synthesis.
In section IV we shall present what we call conceptual oscil-
lation in our approach. Sections V and VI are devoted to the
main perspectives of these approaches. Section VII recalls
the main building strategy of our approach and illustrates it
on a simple example.

II. NEWTONIAN AND CARTESIAN STYLES OF RESEARCH

The main difference between these two approaches is
easily perceptible from comments pronounced by Newton
and Descartes themselves. Newton wrote: “If I have seen

further (than you and Descartes) it is by standing upon the
shoulders of Giants.”

Descartes wrote his first rule in the Discourse on the
Method of Rightly Conducting the Reason, and Seeking
Truth in the Sciences in the following way: “The first was
never to accept anything for true which I did not obviously
know to be such; that is to say, carefully to avoid precipi-
tancy and prejudice, and to comprise nothing more in my
judgement than what was presented to my mind so clearly
and distinctly as to exclude all ground of doubt.”

Newtonian science is thus established on a logic of se-
quential research, where the reference system of the problem,
that is, the axioms, the rules of inference and the mechanism
of control of the system intended to solve the problem, and
the milestones (that is, the definitions and the rules of infer-
ence of the specified concrete problem) on which we build
the solution are given at the beginning by the past history of
scientific research. It is in this perspective of work that are
situated the results of Gödel of which we will speak later.

Descartes speaks about the obvious truth. As says the
commentator of Descartes Ferdinand Alquié ([11], p. 586),
the act of thought which seizes the obvious truth is the intui-
tion defined by Descartes in his Rules for the direction of the
mind. So, the study of Descartes intuition, as presented in the
book Formal Creativity [17] enables to notice that Cartesian
science is based on a logic of recursive research, where the
reference system of the problem and the milestones of con-
struction of the solution are formulated hand in hand with the
development of the solution, and where the exact demarca-
tion of the reference system and the milestones of construc-
tion is the final stage of the process, and is too a part of the
solution. The Cartesian approach thus takes into account that
the demarcation of a notion is not the initial stage but the
final stage of its formation.

The same thing is expressed by Descartes in a little more
complicated way by saying that “beginnings … can be per-
suaded well only by the knowledge of all the things which
follow later; and that these things which follow cannot be
understood well, if we do not remember all those that pre-
cede them.” [11], p. 797.

In a little more formalized way, we can thus describe the

Newtonian way by the sequence
beginning … advancement-1 … advancement-2 … ad-

vancement-n … end.

The Cartesian way can be described by the loop

��������� ���

����
where the arrow → means “leads to”. Because of the

complexity of the Cartesian way and since neither the exter-
nal observation nor the sequential transmission are suited to
the appreciation of the work made in this way, this way pre-
sents more obstacles than the Newtonian style.

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

III. PROGRAM SYNTHESIS AND APPROACHES

By program synthesis we call here the deductive ap-
proach to automatic construction of recursive programs in-
troduced in [25]. This approach starts with a specification
formula of the form ∀ x ∃ z P(x) � R(x,z), where x is a vec-
tor of input variables, z is a vector of output variables, P(x) is
the input condition. R(x,z) contains no universal quantifiers
and expresses the input-output relation, i.e. what the synthe-
sized program should do. A proof by recursion of this for-
mula, when successful, provides a program for the Skolem
function sf that represents this program, i.e. R(x,sf(x)) holds.
In other words, program synthesis transforms the problem of
program construction into a particular theorem proving prob-
lem. The role of the deductive approach is thus to build an
inductive theorem prover specialized for specification formu-
las.

Thus, there are two basic styles to approach the problem
of Program Synthesis.

A. Newtonian approach to Program Synthesis

The Newtonian approach takes as foundation the stan-
dard knowledge of the mathematical formal framework,
which inevitably inherits the negative results of Kurt Gödel.
By consulting the first paragraph of his article On formally
undecidable propositions of Principia Mathematica and re-
lated systems I [23], we can observe that the keywords of this
standard knowledge are

• exactness
• formal system justified in a logical way
• methods of demonstration reduced to some axioms

and rules of inference
• decision and undecidability
Previously, we have described the Newtonian style by the

sequence that starts by a well-defined beginning and pro-
gresses by advancements to a desired end.

The results of Gödel are said negative because they show
that the objective of synthesis of programs formulated as the
“beginning” in the classic framework cannot lead to a suc-
cessful end of the task. In other words, they show the impos-
sibility to define a formal logical framework containing the
natural numbers allowing to approach the resolution (con-
firm or counter) of specifications given in a general way.
Nevertheless, there are approaches that work in the Newto-
nian style.

In the introduction we have mentioned the most known
Newtonian approaches to program synthesis. Since the prob-
lem of proving by induction specification formulas, i.e. for-
mulas containing existential quantifiers is very difficult, re-
searchers focused on the problem of proving purely univer-
sally quantified formulas and on treating formulas with exis-
tential quantifiers by assisting the users in developing their
own proofs. The best known are the system ACL2 [5], the
system RRL [24], the system NuPRL [8], the Oyster-Clam
system [6], the extensions of ISABELLE [27], the system
COQ [26], Matita Proof Assistant [1] and Otter-Lambda [2].
All the mentioned approaches have done a very good work
in modelling human reasoning by exploring possibilities of
transformational methods to inductive theorem proving and

program synthesis. The construction calculus of [9], that is
the basis of the system COQ, is a constructive way of repre-
senting transformational methods. The approach presented in
the next section attempts to find a constructive way of solv-
ing an ‘almost’ same problem by modelling human reason-
ing based on Cartesian style of research.

B. Cartesian approach to Program Synthesis

The Cartesian approach specifies at the beginning the
reference system in an informal way only, by a necessarily
informal formulation of the purpose to be reached. It is much
like a hypothetico-deductive method. The hypothetico-
deductive method is a procedure of construction of a theory
which consists in putting, at the start, a certain number of
loosely defined concepts or proposals that are obtained by an
analysis of experiments undertaken to specify these starting
concepts or hypotheses. Then, by deductive reasoning, are
obtained postulates that, when they are true, confirm the ef-
fectiveness of chosen concepts and hypotheses. If they are
not true, the problem, because of the loose definitions of
concepts, allows their new reformulation and the process is
thus repeated on these new still loosely defined reformula-
tions. In Cartesian style one can specify even the goal in a
rather ‘vague’ manner. This is why we introduced the term
of ‘quite precise’ purpose to indicate that this formulation,
though informal, must describe a real well-known situation.

For the construction of recursive programs from formal
specifications, it is possible to give a ‘quite precise’ purpose
by considering program synthesis as a problem of realization
or creation, rather than a decision-making problem. We
adopted this approach when starting to develop the Con-
structive Matching Methodology (CMM) for Program Syn-
thesis in 1983. In contrast with the Newtonian approach, the
keywords of our particular Cartesian approach are

• rigor, realization and creativity
• system justified in an epistemological way
• methodology of construction
• realization of a program or sufficient conditions for

the realization of such a program.
The most suitable way is thus to consider CMM as a

technology (in general sense) rather than a theory.

IV. CONCEPTUAL OSCILLATION OF CMM

Our approach oscillates between a Newtonian formula-
tion of Program Synthesis and a Cartesian formulation of the
same problem. It is clear that this purpose seems thus very
ambitious when one forgets the preliminary restrictions (not
considering efficiency of synthesised programs and proofs
by structural induction only).

In practice, this oscillation is performed in the following
way. For a given specification formula, we attempt to per-
form a constructive proof relying on the results already
achieved by CMM. In other words, we start to solve the
problem having in mind the specification ‘∃ solution
∀ problem’, where the solution is the CMM and the problem
is the given specification formula. If the power of the CMM
is not sufficient to prove the given specification formula, by
a failure analysis we try to conceptualize the problems met as

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

methods rather than heuristics. In other words, we solve the
problem by putting focus on the problem ‘∀ problem
∃ solution’ and then by a suitable process of conceptualiza-
tion based on hypothetico-deductive method we try to come
back to the specification ‘∃ solution ∀ problem’, where the
solution is now the extended CMM. This is why this ap-
proach is more the one of a mathematician trying to build a
new theory-technology rather than that of a programmer fo-
cusing on obtaining efficient programs.

In this way, we have conceptualized many new methods
in inductive theorem proving for specification formulas, for
instance: implicative generalization, predicate synthesis from
formal specification, synthesis of formal specifications of
predicates, introduction of universally quantified induction
hypotheses whenever appropriate, a particular evaluation
tool and a particular equation solving tool. We explain this
conceptual richness of inspirations of CMM proofs by the
basic method for constructing atomic formulas ‘CM-formula
construction’ that has been introduced in [13] and the most
complete presentation of which can be found in [16]. In con-
trast to the basic methods in Newtonian approaches that rely
on simplification and rewriting, our CM-formula construc-
tion is a constructive method and thus it is very suitable for
generating missing lemmas and even axioms when the given
data are incomplete as it is illustrated in [22].

V. NEWTONIAN AND CARTESIAN PERSPECTIVES

In many cases, including Program Construction, re-
searchers and engineers look at their problems in a goal
driven perspective, that is, they try to select beforehand axi-
oms useful for obtaining a particular proof. This approach
becomes however less and less successful when it is applied
to goals of increasing complexity requiring less and less triv-
ial lemmas, especially when it becomes necessary to simul-
taneously take into account all the axioms, together with the
set of their consequences. In the specific case of Program
Synthesis, we have seen, in section III, that the Newtonian
approach has been very successful in producing systems that
request human help as soon as some ‘creativity’ is needed in
order to provide a lemma or a heuristic not already included
in the system library. Since one of ultimate goals is modeling
some form of mathematical creativity by building a com-
puter simulation of these creative steps, we had to adopt a
new perspective, the one of Cartesian intuitionism.

When non-trivial lemmas are generated in an autono-
mous way by the computer system itself, and when it is re-
quired that we simultaneously take into account axioms and
the set of their consequences, our CMM fits into Cartesian
intuitionism as Descartes himself specified it by defining:

• a form of constructive intuition, in the Latin version
of his Rules for the direction of the mind

• the ability of thinking as isolated, one of many mu-
tually dependant features in §62 of The principles of
the philosophy ;

• clear and distinct perception in §45 and §46 of The
principles of the philosophy;

• the four rules of his method, in his Discourse on the
method.

Thus, the research program of CMM approaches the con-
struction of axioms and intermediate lemmas and the theo-
rem proving system in dependence on the specifications of
program synthesis. It is important to note that these three
stages (generating missing axioms – in case of undecidabil-
ity, generating missing lemmas, developing the procedure of
demonstration or of control) are interdependent and that the
advances of one of three stages can modify the internal ob-
jective of the two others.

VI. ASSESSMENT AND PERSPECTIVES OF CMM

The stage relative to the procedure of demonstration was
elaborated in all our publications until 2000 [12]. An ex-
perimental system called Proofs Educed by Constructive
Matching for Synthesis (PRECOMAS) showing the well-
founded character of the CM-formula construction that is the
basis for CMM was developed in the 90s [15].

The stage relative to the specification of the intermediate
lemmas advances well and concerns also the scientific do-
main known as ‘computational creativity’ [20], [21].

The stage which concerns the clear and distinct percep-
tion (in the Cartesian sense) of the targeted strategic recur-
sive axiomatization has begun in the article [19]. It must be
improved and pursued by an adequate formalization of dif-
ferent fundamental interrelated problems which are met in
the oscillatory design of the recursive systems, namely

• one - multiple (part - whole)
• static - dynamic (permanence - change)
• finite - infinite (visible - invisible)
• complete - incomplete (rigor - creativity).
In Program Synthesis, the problem between a whole and

its parts is expressed as a strong and special interdependence
between the diverse parts of the system, because a part or the
whole can itself assume the failure cases and the weaknesses
of the other parts. For example, the failure of a resolution of
an equation can call in a recursive way the system for help.
Or, the deductive parts of the system can call inductive parts,
and vice versa. This particular interdependence is described
by Descartes as “the distinction which is made by the
thought” presented above as “the ability of thinking as iso-
lated, one of many mutually dependant features.”

The problem of the oscillation between a static represen-
tation and a dynamic representation appears in the process of
search and creation of the structures and the mechanisms of
the control of proofs. This process oscillates between a for-
malized shape and an informal shape of a given mechanism.
As we said above, the definitive demarcation which consists
of fixing a final version of the mechanism is only made at the
end of development of the whole system.

The problem of the regulation of the finite and the infi-
nite appears in program synthesis especially by the fact that
an infinite visible variety of possible formal specifications
must be managed by finite invisible structures. In other
words, the final system of Program Synthesis has to repre-
sent a finite solution of the infinite problem ‘to think of eve-
rything at the same time’. So, for this problem, Ackermann’s
function in an oscillatory version models in a curiously
proper way the solution which we envisage for this problem.

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

The problem of the oscillation between completeness and
incompleteness is described in an informal way by the notion
of pulsation which allows a controlled oscillation between
rigor and creativity. In a concrete way, the CM-formula con-
struction allows such a controlled oscillation and has influ-
ences on all the CMM.

These four fundamental problems are stemming from our
perception of Cartesian intuitionism. They appear as ideas of
directions to be developed and to be formalized. These tasks
will continue in our future work.

The power of CMM was illustrated on a number of inter-

esting problems such as n-queens, the quotient and the rest of
two numbers, a problem in robotics and more recently the
construction of a definition of Ackermann’s function with
respect to the second variable [18]. This last illustration is
important because it shows the capacity of the system to find
another form of defining axioms, the final version of which
is not known beforehand.

CMM is even suitable for proving some purely univer-
sally quantified theorems. The advantage lies in the fact that,
in contrast for instance to [7], during a proof of a universally
quantified formula, a formula containing existential quantifi-
ers can be generated which replaces the problem of unifica-
tion in the framework of inductive theorem proving and thus
it seems to be conceptually more natural.

In the following section we shall recall our CM-formula
construction and we shall give a very simple example to il-
lustrate it.

VII. CM-FORMULA CONSTRUCTION

A. Formulation

In the following, for simplicity, let us suppose that the
formula to be proven has two arguments, that is to say that
we need to prove that F(t1,t2) is true, where F is the given
theorem. We introduce a new type of argument in the predi-
cates a feature of which has to be proven true, we call ab-
stract arguments. They are denoted by � (or �’ etc.) in the
following. The abstract argument replaces, in a purely syn-
tactical way, one of the arguments of the given formula. The
first step is choosing which of the arguments will be replaced
by an abstract argument, �. Thus, the value of this argument
is looked upon as being known and, in a usual proof, its char-
acteristics are used in order to prove the given formula. In
our approach, we ‘forget’ for some time these characteristics
and we concentrate on studying the features � should have so
as insuring that the theorem with a substituted argument is
true.

Suppose that we have chosen to work with F(t1,�). We
shall then look for the features shown by all the � such that
F(t1,�) is true. Given axioms defining F and the functions
occurring in t1, we are able to obtain a set C expressing the
conditions on the set { � } for which F(t1,�) is true. In other
words, calling ‘cond’ these conditions and C the set of the �
such that cond(�) is true, we define C by C = {� � cond(�)}.
We can also say that, with the help of the given axioms, we
build a ‘cond’ such that the formula: ∀ � ∈ C, F(t1,�) is true.
We thus propose a ‘detour’ that will enable us to prove also

the theorems that cannot be directly proven by the so-called
simplification methods, i.e., without this ‘detour’. Using the
characteristics of C and the definition axioms in order to
perform evaluations, and also using the induction hypothesis,
we shall build a form of � such that F(t1,�). Even though it is
still ‘�’ and only for the sake of clarity, let us call �C an
axiom evaluated form to which, possibly, the induction hy-
pothesis has been applied. It is thus such that F(t1,�C) is true.
We are still left with a hard work to do: modify �C in such a
way that �C and t2 will be made identical, which finally com-
pletes the proof. [16] gives a detailed description of handling
the abstract argument in a rigorous framework.

B. Example

In this section we shall give a very simple illustration of
the CM-formula construction. The goal will be to synthesize
a recursive program for computing the last element of a non-
empty list. The formal specification ∀ x ∃ z1 ∃ z2 F(x,z1,z2)
for this problem writes

∀ x ∃ z1 ∃ z2 { x � nil � x = app(z1,cons(z2,nil)) }. (1)
We shall name sf1 the Skolem function for z1 and sf2 the

Skolem function for z2.The definition for the function ap-
pend ‘app’ writes
 app(nil,v) = v. (2)
 app(cons(c,u),v) = cons(c,app(u,v)). (3)

With respect to the input condition x � nil the structural
induction principle means to prove in the base step ∃ z1 ∃ z2
cons(a,nil) = app(z1,cons(z2,nil)), where a is an arbitrary
constant. The induction step means to represent x in the form
x = cons(b,l), where l � nil, to suppose the induction hy-
pothesis ∃ e1 ∃ e2 l = app(e1,cons(e2,nil)) and prove cons(b,l)
= app(z1,cons(z2,nil)). In this induction hypothesis e1 is
sf1(l) and e2 is sf2(l).

The solution of the base step: Since the right hand side of

the equation in (1) contains the existentially quantified vari-
ables, this side is replaced by the abstract argument �. We
thus have C = {� � cond(�)} = { � � cons(a,nil) = �}. The
goal is now to make � and app(z1,cons(z2,nil)) identical. In
this case, using (2), the CM-term transformer presented in
[14] returns z1 = nil and z2 = a. The base step is thus solved.

Let us consider the induction step. In this step, we have C

= {� � cond(�)} = { � � cons(b,l) = �}. By applying the in-
duction hypothesis to cons(b,l) we obtain {�C �
cons(b,app(e1,cons(e2,nil))) = �C}. The goal now is to trans-
form �C i.e., cons(b,app(e1,cons(e2,nil))) into the form
app(z1,cons(z2,nil)). Using (3), the CM-term transformer
returns z1 = cons(b,e1), z2 = e2. The proof is thus performed
and the program for sf1 and sf2 is trivially extracted.
 sf1(cons(a,nil)) = nil. (4)
 sf1(cons(b,l)) = cons(b,sf1(l)). (5)
 sf2(cons(a,nil)) = a. (6)
 sf2(cons(b,l)) = sf2(l). (7)

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

This example is interesting not only as a very simple il-
lustration of CM-formula construction, but also as a sugges-
tion to use program synthesis as a powerful unification tool.

VIII. CONCLUSION

We have been able to express formally the difference be-
tween strictly scientific approach (Newtonian) and an ‘artistic’
one (Cartesian) closer to what is generally understood by crea-
tivity (scientific, artistic, etc.). The purely scientific approach
expresses the work to perform as ∃ theory ∀ problems. The
‘artistic’ approach expresses the work to perform as ∀ prob-
lems ∃ theory.

This is a new result about the difference between Science
and Art. Scientific mind will stick as far as possible to the
Newtonian approach and resorts to the Cartesian one in cases
of failures only. Inversely, the creative artist sticks to the
Cartesian one and the academic one to the Newtonian.

ACKNOWLEDGMENT

I would like to express my warmest thanks to Michèle
Sebag, my research group director at L.R.I., and Yves
Kodratoff who helped me to express the ideas presented in
this paper.

The structure of this paper was improved thanks to the
comments of anonymous referees.

REFERENCES
[1] A. Asperti, C. S. Coen, E. Tassi and S. Zacchiroli: “User

interaction with the Matita proof assistant”; Journal of
Automated Reasoning, August 2007, Volume 39, Issue 2, pp
109-139.

[2] M. Beeson, “Mathematical induction in Otter-Lambda”;
Journal of Automated Reasoning, Volume 36, Issue 4, April
2006, pp. 311-344.

[3] W. Bibel, “On syntax-directed, semantic-supported program
synthesis”, Artificial Intelligence 14, 1980, pp. 243-261.

[4] S. Biundo and F. Zboray, “Automated induction proofs using
methods of program synthesis”; Computers and Artificial
Intelligence, 3, No. 6, 1984, pp. 473-481.

[5] R. S. Boyer and J S. Moore, “A computational logic
handbook”; Academic Press, Inc., 1988.

[6] A. Bundy, F. Van Harnelen, C. Horn, and A. Smaill, “The
Oyster–Clam system”, In Proc. 10th International Conference
on Automated Deduction, vol. 449 of LNAI, Springer,1990,
pp. 647–648.

[7] A. Bundy, D. Basin, D. Hutter, and A. Ireland, “Rippling:
Meta-level guidance for mathematical reasoning”, Cambridge
University Press, 2005.

[8] R. L. Constable, Implementing Mathematics with the Nuprl
Proof Development System, Prentice-Hall, 1986.

[9] T. Coquand, G. Huet, “Constructions: A higher order proof
system for mechanizing mathematics”, in Proc.
EUROCAL'85, Vol. 1, Springer-Verlag, 1985, pp. 151-185.

[10] N. Dershowitz, U.S. Reddy, “Deductive and inductive
synthesis of equational programs”; JSC Vol. 15, Nos. 5 and 6,
1993, 463-466.

[11] R. Descartes, “Oeuvres philosophiques” (3 vol.). Edition de F.
Alquié. T. 1; Classiques Garnier, Bordas, 1988.

[12] M. Franova, www.lri.fr/~mf/mf.publications.html
[13] M. Franova, “CM-strategy : A methodology for inductive

theorem proving or constructive well-generalized proofs”; in
Proc. of the Ninth IJCAI; 1985, pp. 1214-1220.

[14] M. Franova, “Fundamentals of a new methodology for
program synthesis from formal specifications: CM-
construction of atomic formulae”; Thesis, Université Paris-
Sud, November, Orsay, France, 1988.

[15] M. Franova, “Precomas 0.3 user guide”, Research Report
No.524, L.R.I., October, 1989.

[16] M. Franova, “Constructive Matching methodology and
automatic plan-construction revisited”, Research Report
No.874, L.R.I., 1993.

[17] M. Franova, “Créativité Formelle: méthode et pratique -
conception des systèmes ‘informatiques’ complexes et brevet
épistémologique”, Publibook, 2008.

[18] M. Franova, “A construction of a definition recursive with
respect to the second variable for the Ackermann’s function”,
Research Report No.1511, L.R.I., 2009.

[19] M. Franova, “The role of recursion in and for scientific
creativity”, in Cybernetics and Systems 2010, Proc. of the
20th EMCSR, 2010, pp. 573-578.

[20] M. Franova and Kodratoff Y., “On computational creativity:
‘inventing’ theorem proofs”, in Proc. 18th ISMIS, LNAI
5722, Springer, 2009, pp.573-581.

[21] M. Franova and Y. Kodratoff, “Two examples of
computational creativity: ILP multiple predicate synthesis and
the ‘assets’ in theorem proving”, in J. Koronacki, Z. W. Ras,
S.T. Wierzchon, J. Kacprzyk, (eds.) Advances in Machine
Learning II: Dedicated to the Memory of Professor Ryszard S.
Michalski, Springer-Verlag, 2010, pp. 155-174.

[22] M. Franova, Kooli M., “Recursion manipulation for robotics:
Why and how?”, in: Proc. of the Fourteenth Meeting on
Cybernetics and Systems Research, Austrian Society for
Cybernetic Studies, Austria, 1998, pp. 836-841.

[23] K. Gödel, “Some metamathematical results on completeness
and consistency, On formally undecidable propositions of
Principia Mathematica and related systems I, and On
completeness and consistency”, in From Frege to Godel, A
source book in mathematical logic, 1879-1931, Harvard
University Press, 1967, pp. 592-618.

[24] D. Kapur, “An overview of Rewrite Rule Laboratory (RRL)”,
J. Comput. Math. Appl. 29(2), 1995, pp. 91–114.

[25] Z. Manna, R.Waldinger, “A deductive approach to program
synthesis”, ACM Transactions on Programming Languages
and Systems, Vol. 2., No.1, January, 1980, pp. 90-121.

[26] C. Paulin-Mohring, B. Werner, “Synthesis of ML programs in
the system Coq”, Journal of Symbolic Computation, Volume
15, Issues 5–6, May–June 1993, pp. 607–640.

[27] L. C. Paulson, “The foundation of a generic theorem prover”,
Journal of Automated Reasoning, September 1989, Volume 5,
Issue 3, pp. 363-397.

[28] D. R. Smith, “Top-down synthesis of simple divide and
conquer Algorithm”, Artificial Intelligence, vol. 27, no. 1,
1985, pp. 43-96.

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications

