J. Gama and M. M. Gaber, Learning from Data Streams: Processing Techniques in Sensor Networks, 2007.

C. Aggarwal, Data Streams: Models and Algorithms, 2007.
DOI : 10.1007/978-0-387-47534-9

G. Cormode, S. Muthukrishnan, and W. Zhuang, Conquering the Divide: Continuous Clustering of Distributed Data Streams, 2007 IEEE 23rd International Conference on Data Engineering, pp.1036-1045, 2007.
DOI : 10.1109/ICDE.2007.368962

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O. Callaghan, Clustering data streams: theory and practice, IEEE Transactions on Knowledge and Data Engineering, vol.15, issue.3, pp.515-528, 2003.
DOI : 10.1109/TKDE.2003.1198387

S. Guha, N. Mishra, R. Motwani, and L. O. Callaghan, Clustering data streams, IEEE Symposium on Foundations of Computer Science, pp.359-366, 2000.

C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A Framework for Clustering Evolving Data Streams, VLDB, pp.81-92, 2003.
DOI : 10.1016/B978-012722442-8/50016-1

M. R. Ackermann, M. Maartens, C. Raupach, K. Swierkot, C. Lammersen et al., StreamKM++, Journal of Experimental Algorithmics, vol.17, issue.1, pp.2-4, 2012.
DOI : 10.1145/2133803.2184450

M. Shindler, A. Wong, and A. Meyerson, Fast and accurate k-means for large datasets, NIPS, pp.2375-2383, 2011.

F. Cao, M. Ester, W. Qian, and A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, SDM, pp.326-337, 2006.
DOI : 10.1137/1.9781611972764.29

Y. Chen and L. Tu, Density-based clustering for real-time stream data, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.133-142, 2007.
DOI : 10.1145/1281192.1281210

I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer et al., Adaptive Diagnosis in Distributed Systems, IEEE Transactions on Neural Networks (special issue on Adaptive Learning Systems in Communication Networks), pp.1088-1109, 2005.
DOI : 10.1109/TNN.2005.853423

J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, vol.36, issue.1, pp.41-50, 2003.
DOI : 10.1109/MC.2003.1160055

B. J. Frey and D. Dueck, Clustering by Passing Messages Between Data Points, Science, vol.315, issue.5814, pp.972-976, 2007.
DOI : 10.1126/science.1136800

X. Zhang, C. Furtlehner, and M. Sebag, Data Streaming with Affinity Propagation, ECML/PKDD, pp.628-643, 2008.
DOI : 10.1007/978-3-540-87481-2_41

URL : https://hal.archives-ouvertes.fr/inria-00289679

X. Zhang, C. Furtlehner, J. Perez, C. Germain-renaud, and M. Sebag, Toward autonomic grids, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, 2009.
DOI : 10.1145/1557019.1557126

URL : https://hal.archives-ouvertes.fr/inria-00393825

E. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.100-115, 1954.
DOI : 10.1093/biomet/41.1-2.100

D. Hinkley, Inference about the change-point from cumulative sum tests, Biometrika, vol.58, issue.3, pp.509-523, 1971.
DOI : 10.1093/biomet/58.3.509

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, Identifying suspicious URLs, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.681-688, 2009.
DOI : 10.1145/1553374.1553462

W. Fan, H. Wang, and P. S. Yu, Active Mining of Data Streams, SDM, 2004.
DOI : 10.1137/1.9781611972740.46

S. M. Muthukrishnan, Data Streams: Algorithms and Applications, Foundations and Trends?? in Theoretical Computer Science, vol.1, issue.2, pp.117-236, 2005.
DOI : 10.1561/0400000002

URL : http://ce.sharif.edu/courses/90-91/1/ce797-1/resources/root/Data_Streams_-_Algorithms_and_Applications.pdf

S. Nittel, K. T. Leung, and A. Braverman, Scaling clustering algorithms for massive data sets using data streams, Proceedings. 20th International Conference on Data Engineering, p.830, 2004.
DOI : 10.1109/ICDE.2004.1320061

P. S. Bradley, U. M. Fayyad, and C. Reina, Scaling clustering algorithms to large databases, Knowledge Discovery and Data Mining, pp.9-15, 1998.

T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: an efficient data clustering method for very large databases, SIGMOD, pp.103-114, 1996.

G. Dong, J. Han, L. V. Lakshmanan, J. Pei, H. Wang et al., Online mining of changes from data streams: Research problems and preliminary results, ACM SIGMOD Workshop on Management and Processing of Data Streams, 2003.

B. Dai, J. Huang, M. Yeh, and M. Chen, Adaptive clustering for multiple evolving streams, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.9, pp.1166-1180, 2006.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, SIGKDD, pp.226-231, 1996.

M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints, IEEE Transactions on Knowledge and Data Engineering, vol.23, issue.6, pp.859-874, 2011.
DOI : 10.1109/TKDE.2010.61

Z. Harchaoui and . Telecom-paristech, Kernel methods for detection (méthodesméthodes`méthodesà noyaux pour la détection), 2008.

Z. Harchaoui, F. Bach, and E. Moulines, Kernel change-point analysis KDD Cup 1999 data (com- puter network intrusion detection), NIPS, pp.609-616, 2009.

W. Lee, S. J. Stolfo, and K. W. Mok, A data mining framework for building intrusion detection models, Proceedings of the IEEE Symposium on Security and Privacy, pp.120-132, 1999.

W. Wang, X. Guan, and X. Zhang, Processing of massive audit data streams for real-time anomaly intrusion detection, Computer Communications, vol.31, issue.1, pp.58-72, 2008.
DOI : 10.1016/j.comcom.2007.10.010

S. Papadimitriou, A. Brockwell, and C. Faloutsos, Adaptive, Hands-Off Stream Mining, VLDB, pp.560-571, 2003.
DOI : 10.1016/B978-012722442-8/50056-2

A. Arasu and G. S. Manku, Approximate counts and quantiles over sliding windows, Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '04, pp.286-296, 2004.
DOI : 10.1145/1055558.1055598

B. Babcock and C. Olston, Distributed TopK monitoring, SIGMOD, pp.28-39, 2003.

X. H. Dang, W. Ng, and K. Ong, An error bound guarantee algorithm for online mining frequent sets over data streams, Journal of Knowledge and Information Systems, 2007.

J. Gama, R. Rocha, and P. Medas, Accurate decision trees for mining high-speed data streams, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.523-528, 2003.
DOI : 10.1145/956750.956813

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, Finding hierarchical heavy hitters in streaming data, ACM Transactions on Knowledge Discovery from Data, vol.1, issue.4, 2008.
DOI : 10.1145/1324172.1324174

M. Leone, M. Sumedha, and . Weigt, Clustering by soft-constraint affinity propagation: applications to gene-expression data, Bioinformatics, vol.23, issue.20, p.2708, 2007.
DOI : 10.1093/bioinformatics/btm414

X. Zhang, W. Wang, K. Norvag, and M. Sebag, K-AP: Generating Specified K Clusters by Efficient Affinity Propagation, 2010 IEEE International Conference on Data Mining, pp.1187-1192, 2010.
DOI : 10.1109/ICDM.2010.107

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, Localitysensitive hashing scheme based on p-stable distributions, Proceedings of the twentieth annual Symposium on Computational Geometry (SCG), pp.253-262, 2004.
DOI : 10.1145/997817.997857

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=