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An ALE formulation for explicit Runge-Kutta Residual
Distribution

Résumé : Dans ce travail on considére la resolution de lois de conservation sur maillages mobiles par
une formulation Arbitrary Lagrangian Eulerian (ALE). On propose en particulier un formalisme ALE
pour les schémas RD explicites de (Ricchiuto and Abgrall.Comput.Phys 229, 2010). Les schémas ainsi
obtenus sont testés sur des nombreux benchmarks.
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1 Introduction

Many unsteady problems governed by conservation laws involve the movement of the boundaries. In
the numerical approximation of this phenomena additional di culties arise because the grid must adapt
at every time step to the moving boundaries. If equations are written in an Eulerian framework, this
makes necessary an intermediate step between the computation of two successive numerical solutions. In
fact, once the grid has been adapted to the new boundaries, an interpolation of the previous solution
over the new grid is essential in order to start up the computation of the new solution. On the opposite
conservation laws can be written in a Lagrangian framework, the grid is moved at the ow velocity and
the integral conservation laws are written always for the same particles. The algorithm works always on
the same grid, with the same nodes, and no interpolation step is needed. The problem of this approach
is that the grid movement is connected to the particles paths and when strong distortion are present, like
in a uid dynamic context, the method su er from instabilities because of mesh tangling: a conservative
remap step is needed, see e.g?][among many other.

The Arbitrary Lagrangian Eulerian formulation is another way of dealing with mesh movement and solves
the drawbacks of both the approaches since conservation laws are written for an arbitrary moving grid
with respect to the particles motion. In the case of large deformation, modi cations of the mesh become
mandatory, as in the Lagrangian methods. An elegant way of dealing with ALE and large deformations
is described in [?] and this method can be coupled with mesh re nement.

The appearance of the ALE approach dates back to the early eighties due to the contribution of J.Donea
[1]. The idea was found very appealing in many eld of computational continuum mechanics because the
extension of a classical Lagrangian (for solid mechanics) or Eulerian (for uid mechanics) method into
ALE formulation is straightforward and requires few lines of changes in the algorithm. In uid dynamics
the recasting of Eulerian Finite Volumes and Finite Elements has been investigated since long time, see
eg. 2, ?2,2.

In this work, we have foccussed on the formulation of the ALE approach within a Residual Distribution
method. Residual Distribution (RD) schemes represent nowadays an alternative to both Finite Volume
(FV) and Finite Elements (FE). The road to RD was paved by the early work of Ni, Rice and Schnipke
and T.J. Hughes on residual based schemes for hyperbolic problems [3[4, 5], and nally by the uctuation
splitting approach of P.L. Roe and co-workers[[6[¥]. Many of the subsequent developments are due to the
group of H. Deconinck at the von Karman Institute for Fluid dynamics. In particular, ALE formulations

of RD have been proposed in the work of Michler and Deconinck[8], who achieved rst order with an



Explicit Euler time integrator, and later Dobes and Deconinck (see e.g. [[9]) who moved to high order
time approximation (BDF3, Crank Nicholson), this obtaining have second order of accuracy.

The aim of this work is to obtain a numerical solution with second order of accuracy using a faster
explicit Runge Kutta time integrator. This is achieved using the genuinely explicit formulation proposed

in [10], and combining it with a ALE formalism. The paper is organized as follows. First we recall the
scalar conservation laws in Arbitrary Lagrangian Eulerian form, then a brief summary on scalar Residual
Distribution schemes on xed grids is given. In section Y3, always working on xed grids, we recall the
RD-RK time marching procedure of [10]. The scheme is extended to conservation laws in ALE form in
section Y4. In section Y5 two scalar test cases are used to verify the scheme's positivity and convergence.
Finally the scalar algorithm is extended to systems of conservation laws. Section Y6 is devoted to Euler
Equations of gasdynamics.

2 Scalar Conservation laws in Arbitrary Lagrangian Eulerian
formulation

We assume that we are given a domain and a eld of displacements that brings every point of the
domain from the reference positionX to the actual onex (t) and that this eld is governed by an arbitrary

given motion law
dx (t
H = )

Solving the ODE starting from the reference con guration the actual con guration through the
following mapping is

Al): x ! x(t);  x=A(X;1) (2
with the condition A(X ;0) = X . We de ne the Jacobian matrix of the mapping as
Ja = %;

and assume thatJ, = det Jo 6 0, i.e. the mapping A is assumed to be invertible. We introduce now
another set of coordinates, the Lagrangian or material coordinates , and a mapping that describes the
motion of each particle. This mapping returns the physical location, represented by the actual coordinate
X, of the particle marked with  at time t

B(t): P (); x = B( ;t) with B( ;0)= 3)
Again, the Jacobian matrix of the mapping Jg = % is assumed to satisfyJg = det Jg 6 0, i.e. the
mapping B is invertible.

If uis a conserved quantity it can be expressed as a function of the di erent coordinateg, X, and
three di erent time derivatives can be de ned. If the derivation is computed in the actual con guration,
we de ne the spatial derivative:

@ex;t) @Qu
= — 4
ot " ot (4)
If it is computed following the particle motion one has the material derivative:
@y ;t du
@) _du )

@t dt’



62 SCALAR CONSERVATION LAWS IN ARBITRARY LAGRANGIAN EULERIAN FORMULATION

Finally if it is computed following the domain motion one has the referential derivative:

@eX;t)
_— 6
ot (6)
Moreover two di erent velocities can be computed: the particle velocity and the domain velocity
@xt) _ dA(X;t) _
et d - )
@xt) _ dB( ;t) _
@ a2 ®
The chain rule provides a relation between the above derivatives and these velocities
du _@u ) ]
du_ @u ] ] )
g @tx +(a(x;t) (x;t)) r u(x;t) (10)
From continuum mechanics we also have the following
@3 _ dlg _
@ - W - \]Br a (11)
@4
—— = Jar : 12
o1, = (12)

This last relation is commonly called Geometric Conservation Law (GCL) and represents a constraint the
points of the domain have to satisfy during their arbitrary motion. This relation plays a very important
role when developing a numerical method with a moving grid; up to now we only want to make clear
that the movement of the domain is arbitrary but within hypothesis (.

The conservation of the scalar quantityu can be written, depending on convenience, in the di erent coor-
dinate frameworks. If we choose a material control volumeC(t) which contains always the same patrticles,
following them throughout all the domain, the conservation is simply stated in actual coordinates

Z

— u(x;t)dx =0 13
B op 06D (13)

Passing to material coordinates and using[(1]1) together with the chain rule[(p)

d z d
— u(X;t)Jg dX = — (u( ;t)Jg) d
dt ¢ . dt
du dJB
= —Jg + U— 14
c ade g d (14)
z au
= —+aru+ur a Jgd
c @t ®
We have derived the conservation law in integral Eulerian form
z au
+r f dx=0 (15)

c @t



Now, in ([L4), we use [10) instead of [()

Z Z
du dJB @U
—Jg+u—— d = — +(a ru+ur a Jgd
c dt®° dt c @t ( ) B
Z au
= - +r f ru dx (16)
cy @ty

The rst term can be rewritten if we compute the derivative of the conserved quantity inside a control
volume C(t), which is following the motion of the points of the domain. Note that there is a little abuse
in the notation since C(t) has been already used to represent a material volume. Transforming into
referential coordinate and using the fact that Cx does not depend on time

Z Z
@ u(x;t)dx = @ u(X ;t)Ja dX
@ty cq) Z@tx Cx 7
@u @4
= —  JadX ——  udX
Cx @tx A Cx @tx
@u j ax +  Jaur  dX (17)
Cx @tX A Cx A
So we have Z Z Z
@u _ @
— dx= = udx ur dx (18)
cry @ty @ty cq c

Substituting ( in (@ we get the integral form of conservation law written in Arbitrary Lagrangian
Eulerian Formulation (ALE)

@ Z Z
— udx + r (f u)dx=0 (19)
@ty cq 10

which express the conservation ofi contained in a moving arbitrary control volume. The equilibrium is
reached by the relative ux of u entering and leaving the volume with velocity a

It is interesting to note that the ALE formulation rapresents a generalization of both the Eulerian and
Lagrangian formulations. In fact in ([L9)

1. If = 0, the control volume is xed in space (from C(t) to C) and we get the Eulerian form (13)
2. If = a, the control volume is moving with the particle motion and we get the Lagrangian form
L3)

A di erential form of conservation law in ALE formulation is needed but its derivation is simple if we
start from the integral form (19) and we use (13)

@ VA Z

— uJa dX + Jar (f u ) dx =

@tX Cx Cx

@Jau)
= +Jdar (f u dxX =0
. @ ( )
Using the localization principle, the di erential form of conservation law in ALE formulation is derived
@Y 50 ¢ uy=o0 (20)

@t
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Itis easy to see that the requirement for volume conservation[(12) we have previously done can be derived
simply by imposing a state of uniform ow in (@. In this case we are modelling a situation in which
the ow is uniform and the domain is moving from behind.

Developing the derivative in (20) and then substituting ([L2)

@u
Ja—, + Jdaur + Jar  (f =0
A @t, AU ar (f u)
which lead to the following equation that we will use extensively hereinafter
@u
- +r f ru=0 21
ot, (21)

3 Residual Distribution for 2D scalar conservation laws

In this section, we consider the numerical approximation of the hyperbolic conservation law derived from

15)
u .

%t+ r f(u=0 in 2R%t2][0;T] (22)
We recall how the Residual Distribution discrete second order approximation of ) is obtained. For
simplicity, we restrict ourselves to the two dimensional case, but all the discussion and the sub-sequent
developments carry on to three space dimensions without any modi cation. We start by presenting
the basic prototype scheme for steady problems, then recall one possible extension to time dependent
computations. We also recall the main design properties for these schemes.

3.1 Steady case

Consider the steady scalar conservation law
r f(uy=0; x2 (23)

We have approximated the domain through a suitable triangulation T,. The letter K denotes a generic
triangle, and the list of vertices of T is fM;gi=1,n,. By abuse of language, we identify the vertexM;
and its index j . We consider a globaly continuous approximation which is piecewice linear approximation
over each triangle

Kv

u"oGt =0 ()
j=1

with ' j the standard continuous piecewise linear Lagrange basis functions. The Residual Distribution
approximation is then obtained as follows (boundary conditions are neglected)

1. On each elementk compute the residual

z z
K= r f@")dx= f (u") nds
K @K
2. Distribute the residuals to the nodes of the element;j;k 2 K
X
K= f (24)
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3. Assemble elemental contributions. IfD; is the set of all the elements sharing nodé, we have
X K )
i =0; 8i2Ty (25)
K 2D

Of course, the main step is the decomposition4). We need to design the sub-residual:‘P‘ in such a
way that stability and convergence is garantied. The conservation relation ) can be shown, adding the
same assumptions as in the Lax Wendrof theorem, that the limit solution, if it exist, is a weak solution

of (23), see P].

In practice, and in this simpli ed setting, we can also write the subresiduals K as fractions of the total

I
residual K,
K - K K
1 I

P
and the conservation relation is rephrased as ,, K = 1. The properties of the RD scheme are
translated into properties of the <, we come to that point latter in the text.

3.2 Extension to time dependent problems

Consider now the time dependent advection equatiof

L(u) = %‘t‘+ aru=0 in 2R%t2[0T] (26)
The extension of the schemes presented in the previous paragraph is done using the analogy with stabilized
FE schemes introduced in[[11} 12, 13] (see also [14.110]). The discrete counterpart pf|(26) is written as

X x £ du x £
Wi'jd—tjdx+ wia ru,dx =0 8i2Tj (27)
K2Tnj2k K Kaor, K
with a test function w; = ' ; + ; which satis es
Z
1 wax= K (28)
Kj w0

R
Introducing the mass-matrix miK = ' jwidx, using the fact that r unjk is constant in the P! case and
condition (28), we obtain the time dependent generalization ofRD scheme:

X X du; X K K

My g + i =0 (29)
K2Dj2K K 2D

Several possible de nition of w; allow to recover a given K, a discussion of this issue can be found in

[1I0], and is beyond the scope of this paper. Note that the only place where we really use the fact that

(i) the elements are triangles, (ii) we use linear approximation and (iii) the velocity eld is constant is to

go from (27) to (29).

Here we recall two possible formulations, called respectively F1 and FZ[10]:

1
wit, = ¢ and WiFZK:'i(X)*' 3 3 (30)

lwe assumea to be constant, however see section Y2.3.1
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Figure 1: Median Duall Cell S;

The corresponding expressions for the mass matrices ﬁe

mFl = IKJ «

ij Tq i

- ik _ 0Ky 1 _ ..
3 | = jKjmft and mf?= = %+ K o = JKjm{? (31)
For both formulations, (row-wise) mass lumping leads to
LY
mi't = =i (32)
De ning the median dual cell jSij = ,p, 'KT’ (cf gure @ we obtain the Mass Lumped (ML) formu-
lation of RD
A dui X K
1Si] r + i =0 (33)
K 2D i
3.3 Design properties

3.3.1 Nonlinear conservation laws and conservation

The link between (26) and the more general case of (22) is hidden in the computation of the element
residuals JK . Very simple algebraic manipulations show that

| |
X X X . X ' X X - X '
mini+ K= m.|.<7du1+ K
) dt ! I dt ]
i2Th, K2D;j2K K 2D ; EZTh ij 2K i2K
_ duy X

—dx +
o dx

N K 2Th
so that a su cient condition to recover a global conservation statement is that

Y4
K

f (u") nds
@K

(34)
2the superscript K is omitted to simplify notation

For a more sound mathematical justi cation of the last condition, including a Lax-Wendro theorem,
the reader can refer toe.g. [15] and references therein. Note that in practice) can be satis ed either
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by directly using contour integration to compute K, as suggested in[16, 17], or by introducing an exact
Jacobian mean value linearization :

z z )
a= = a(uh)dx:—.l. @ (u)
K

dx
Kj ¢ @u

so that in the P! case, using the properties of the basis functions, we can write

Z Z Z
K = f@) nds= r f@)dx= a@") r u"dx
oK “ 1x " X (35)
=a I’Uthj: é a nju = ijj;
j2K j2K

having introduced the upwind parameter

1
ki = éa nij (36)
P
with n; the inward normal to the edge facing nodei, scaled by the edge length. Since i 2K ki =0 we
also have X
“ = ki (uj  ui) (37)
j2K;j 6i

Whether a conservative linearization is used in practice or not, in the following we will make use of5),
unduly assuming the equivalence between the fully nonlinear problem and the locally linearize done, i.e.
Z
k= a@") r'idx:
K

In particular, this allows to recast any RD scheme as

X X dus X X _
> d—tl = o (Ui up) 8i 2Ty (38)
K2D;j2K K2D;j2K; 6i
and, in the mass-lumped case, as
... du; DA .
iSij d—t' = o (Ui up) 8i 2Ty (39)
K2D;j2K; 6i

3.3.2 Upwinding

The upwind parameters k; (cf. equation )) allow to distinguish between upstream nodes and down-
stream nodes in a given element. In particular, ifkj > 0 nodei is downstream, whilek; < 0 for upstream
nodes. Multidimensional upwinding, as introduced by Roe, Deconinck and collaborators (see e.d.[18]),
corresponds to the condition

ki<0) =0 (40)

Multidimensional upwind schemes have been shown to have much reduced numerical dissipation compared
to classical upwind nite volume schemes[[18/20].
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3.3.3 Positivity and discrete maximum principle

The theory of positive coe cient schemes [21] is the guideline underpinning the construction of non-
oscillatory RD schemes. It is classically formulated for the simplied prototype (39). Here we will
say that a scheme is positive, if in ) we haveci*j( 0, 8i;j 2 K and for all element K. In this
sense, positivity can be shown to be equivalent to the so-called Local Extremum Diminishing property
[22,[23,[24], and, provided that ) is integrated with a SSP time marching scheme it leads to a discrete
maximum principle, under a time step restriction. For example, when the explicit Euler scheme is used,
one readily shows that

_yht X X
jSij—————~= cul u
K2D; j6i

c
-3

implies minu? ™ maxul
j2D j2D

n
J

. P P .o
provided that ¢ Oand t o J Si
K2D6i

For more details the interested reader can refer to e.g. [14,"24] and references therein.

3.3.4 Order of accuracy and Godunov Theorem

Detailed analysis of the accuracy ofRD schemes, and the related constraints on the discretization can
be found in [19,[25] for the steady case, and ir_[26, 24, 10] for the time dependent case. In tRé case,

the main result is that schemes admitting a set of uniformly bounded distribution coe cientsare second

order accurate.

As shown e.g. in[19], a generalization taRD of Godunov's theorem [27], states that a linear scheme
cannot be positive and second order simultaneously. Some nonlinearity is necessary to combine both
properties. This point is addressed in sectiorj 3.4]2.

3.4 Distribution strategies

We brie y discuss the distribution strategies later tested in the numerical benchmarks. Then, we present
rst examples of linear schemes, which are either positive or second order accurate. Last, we describe
how nonlinear schemes are obtained.

3.4.1 Linear positive schemes

In this paper we consider two linear positive schemes. The rstis eRD formulation of the Lax-Friedrich's
scheme for which the steady part of the discrete equations is obtained by setting
1, KX
+ 3 (Ui ) (41)
j2K
i6i

K — LxF _—
i i é

The scheme can be shown to be positive under the condition®  max;»k jk;]j.

The second linear positive scheme we use is Roe's optimal N scheré [7], obtained by setting

= V=K oun) (42)
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where the in ow state is computed

X X 1
Uin = Nk; uj; with N = kj+ (43)
ji2K j2K
The scheme is readily shown to be positive [7] and is multidimensional upwind. In this form, in the nonlin-
ear case the N scheme is conservative only if an exact Jacobian linearization is used. A modi ed variant,
formally very similar, but allowing to compute the element residual directly by contour integration, is
discussed in detail in [1617].

Note that for both the LxF and N schemes, the distribution coe cients are not explicitly de ned, which
makes the use of the Petrov-Galerkin analogy of section Y1.2 impossible. For this reason, these schemes
are usually integrated in time using the lumped formulation ).

3.4.2 Linear second order schemes

We will test two linear second order schemes. The rst is aRD reformulation of the SUPG scheme of
[5], obtained simply by setting
1 1
.K = .SUPG = — + 7k 44
i i 3 JKJ 1 ( )
. P L1
In our tests we have set = jK]j 2k ikij =2

The second scheme we have tested is the multidimensional upwind LDA schernie 28] obtained by setting

= A = KN (45)

3.4.3 Nonlinear schemes

In this paper we compare results obtained with two di erent strategies to construct nonlinear discretiza-
tions. The rst, is based on a blending of a high order and of a positive linear schemes. In the steady
case, the B scheme is de ned by

F=P= 1 1u O+ F (46)

where the blending coe cient 1(u") has to be of orderO(h) (or smaller) when the solution is smooth and
of order I(u") 1 when the solution is discontinuous. Several de nition of this coe cient are possible
and we refer to [19] for a thorough discussion. Here, we have tested the heuristic de nition proposed by
Deconinck and co-workers (see e.g. in[29] and references therein)

| = Pjil (47)

In particular, we have tested the multidimensional upwind LDA-N scheme obtained by blending the LDA
and the N scheme. Note that in the time dependent case, the mass matrix of the LDA-N becomes

Kj

miPA N =@ iummP 1l

i (48)
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while the blending parameter should now include the whole residual, namely

o
1= pl 1 (49)
il
with 7 @b g
k. @i h noo JKjdu oy
= @t+r f(u') dx and | 3 dt+ i (50)
K

Of course, the equations|(4P){(5P) are somewhat unclear since the meaning %"—t needs to be made more
precise to be able to evaluate the parametet. This will be made more precise in sectiof 315.

We have compared the results of the multidimensional upwind LDA-N scheme with those obtained with
a non-upwind discretization built starting from the LxF scheme. In the steady case, the main idea
behind this construction is that, while in general the distribution coe cient obtained as the ratio

LxF

Fo— i

i K
is unbounded, its sign gives a correct reference to build a positive scheme. In the unsteady case, we
proceed as before by replacing © by * asin (50). The idea is then to apply a nonlinear limiter
function to F allowing to preserve the sign of the discretization coe cients, while yielding a bounded
distribution. Several constructions satisfying these requirement are discussed in[30] to which we refer
for details. In this work, we have considered the LLxF scheme obtained by setting

iLLXF = F i (51)

where ()* =max(0; ).

Before introducing the explicit time marching procedure used in the paper, two remarks are necessary.
The rstis that, as thoroughly discussed in [31], when trying to approximate smooth solutions the LLxF
scheme obtained in this way gives in practice a very erratic convergence to steady state, and yields
solutions polluted by spurious modes. Instead, in presence of discontinuities, the LLXF scheme provides
sharp and monotone results. As shown in the reference, this fact can be related two an ill-conditioning of
the algebraic equations obtained, and, in more heuristic terms, to the lack of an upwinding mechanism.
To correct this aw in smooth regions, following [31], we have modi ed the distribution coe cient. In
particular we will consider the LLxFs scheme which is obtained by setting

1
iLL><Fs — iLL><F + (uh)ﬂki (52)
where the second term is associated to the SUPG streamline di usion, while the smoothness monitor
is de ned as 0 1
. 1
(u") = min @1; WA (53)
ukakg hZ
with hx the element reference sizey = maxj.k ju;j and " = 10 0. It is easy to show that the

de nition ( can detect the discontinuties. Infact (u") is of order O(1) in smooth region where

dissipation is needed to damp oscillations and of ordeO(h 1) across discontinuities where the LLxF

scheme behave nicely computing well-resolved pro les. Lastly, we remark that in the time dependent
case, the computation of ™F (equation (51))) and of , should be done by using residuals which include
in the residuals the time variation, as in equations [49) and [(50).
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3.5 Genuinely explicit RK- RD time marching procedure

Due to the presence of the mass matrix, the use of the general prototyp9) leads inevitably to schemes
requiring the solution of a nonlinear system of algebraic equations, even if explicit time integration tech-
niques are used. For this reason, time dependent implementations dRD always feature some form
of implicit time integration [12Z,] 13] 14] 32, [33], or a fully coupled space-time formulation [[17]-34[_35].
Moreover, positivity preservation always requires the satisfaction of time step constraints[[36,14], unless
some form of nonlinear time (or space-time) discretization is used [37, 34, B5]. This leads to expensive
methods, when compared to e.g. FV with Runge Kutta time integration.

The explicit RK- RD formulation of [L0] provides one possible solution to this aw, allowing genuinely
explicit time marching. Starting from the general prototype (@, the scheme proposed in[[10] is obtained
as follows :

1. Time integration is performed by SSP an Runge-Kutta (RK) scheme. In this work we focus on the
scheme obtained with the second order 2-stages method which, for the generic ODE

du
— 4+ =
at e(u)=0
reads
— + e =0; el:e(un)

1
— t&=0; &= S(e(u)+ e(u))
with  ug = ux u",andu"*! = u, ande(u) = r f (u). In the following we use the notations

fauwy=r f@")andf(u)=r % f(u")+ f(uy

2. Each RK step is discretized in space by means of the Petrov-Galerkin statemen?), however
two di erent approximations of the equation are used in the Galerkin part and in the bubble part,
namely (cf. equation (27) and subsequent text)

4 4

uh
' —t"+r fo(u") dx+ i
kK2p; K

o

t

+r f u") dx=0 (54)

: e P
where Ty is a properly de ned stage-shiftedtime incrementde nedas  Ux = U™+ 4 K Uj-
For the two-stage RK scheme considered here we have

Uy=0 and U;=u; u" (55)
Rearranging terms, and using the properties of the test functionw; = ' ; + ; (cf. section Y1.2,
equations (28) and [29)), one obtains
z h ogh X X o X
u u u
- tk k + mllj( tk J + iK K (k) =0 (56)
K2D;j2K K 2D
having set 7

KW= r £ ") dx
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3. Mass lumping is applied to the Galerkin integrals in (56) (see e.g.[]38] are references therein). Two
possible choices are proposed in[L0] and considered here. Either only the term containing the new
values of the unknown is lumped, leading to the Selective Lumping (SL) formulation

0 1
X X o
iSi] 7utk = @ R m® Ltk A (57)
K 2D ; i2K

with mff the Galerkin mass matrix, and with the short notation
X U

m

RK (k) _
i - I
j2K

+ K KK
I

A simpler update is obtained by lumping all the Galerkin integrals, which leads to the Global
Lumping (GL) formulation

n — 0 X
Uk Uk RK (k

K 2D

iSij

The schemes obtained in this way are genuinely explicit, in the sense that no algebraic problem needs to
be solved. For a more general derivation, and a truncation error analysis of the scheme obtained we refer
to [I0] . The specic form of the scheme is readily obtained by using the mass matrix and distribution
coe cients presented in sections Y1.2 and Y1.4. For clarity, for each scheme, we will replace when necesary
the superscript RK (k) with XXX (k) where XXX is the shorthand notation for the scheme.

4 Residual Distribution schemes for moving grids

The objective of the following paragraph, and of the paper, is to recast the RK-RD schemeq (57) and
(8) in an ALE formalism. The starting point is the unstable Galerkin approximation of ALE equations
presented in section Y1. The discrete counterpart of the GCL naturally arise in the approximation. (but
for a rigorous study about the implication of the GCL on the numerical scheme cf.[[2,?]): two di erent
algorithms that likewise close the problem are presented. One is explained through the work of Dobes
and Deconinck with a BDF2-RD scheme, the other consists basically in the approach due to Farhat for
Explicit/Implicit Euler, Crank-Nicholson and Runge-Kutta time integrators. Then we move to stabilized
Finite Elements and again we provide the extension of both the algorithms afromentioned. As a last step
of the section the RK-RD approximation of the scalar ALE equations is presented.

4.1 Galerkin Finite Element method

We start with the approximation of (20) both in time and space. The domain is initially approximated
with an unstructured triangulation [, then mapping @) produce a time-continuous transformation of
the grid X ! ,(t). The time discretization will make us evaluate the grid at instants t" generating a
setof grid H(t")= .

Moreover we ask our numerical method to satisfy a discrete version of the GCL condition2), often
referred to as Discrete Geometric Conservation Law (DGCL). Referring to the interpretation previously
given, we are asking the method to preserve the state of uniform ow.We start with the simple Galerkin
Finite Element space approximation which allows us a simple satisfaction of the GCL at a discrete level.
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We proceed in building the classical Galerkin method on }ge conservation law in ALE framework[(20),

with solution u", test function ' ; and grid velocity " = ' j belonging to the space of piecewise
j2K
linear polynomials 7
h
@) g Wy ) tidx =0 (59)
POt

Since the the con guration x does not depend on time and assuming% =0 we can take the time
X
derivative outside the integral

@ z z
= Yidau"dX + tdar (F(U") MuM)dX =0
@tX X X
h
Passing to the current coordinatesx we have the Galerkin approximation for )
@ Z z
= Ciuldx + it (F@")y  PuMdx =0 (60)
@t h (1)
If the ow is uniform we get the time continuous and space discrete approximation of )
VA VA
@ ydx = ar h dx
@t o
X 1@K) _ X 1 h
§ @ - ey I’ dX
K 2D X K 2D K (1)
which reads as follows Z
LU ro Mdx (61)
@t K (t)

From ( we clearly see that the satisfaction of the the GCL at a discrete level is related to the time
scheme that one is using to integrate the conservation law. If one usdBDF 3 rather then RK 2 then, the

di erent approximations of the left-hand side will lead to di erent ways of verifying exactly (61)] We
stress the fact that the DGCL is speci ¢ to the time scheme. If equation [61), approximated in time with
the same scheme used to integrate the conservation law, is exactly satis ed, then the method is said to
satisfy the Discrete Geometric Conservation Law

4.2 An example of a DGCL satisfying scheme

A very useful time integrator is BDF 2 which provide second order accuracy in time. We explain how to
satisfy the DGCL for BDF 2 following a method proposed by Dobes in eRD framework [9]. The weak
form is obtained starting from a sligthly di erent form of (obtained by splitting the ALE ux term
and using the fact that a = a(u)

J
@Y 5@ yr ou daur =0 62)
@t
Since we want to satisfy the GCL condition we substitute ) into the above equation
Z Z Z
@ @4

Ja'iup dX + Ja'i a@wM M oruhdx

— - "iupdX =0
@tX X x @tx X o
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The last term is usually re ered to as Geometric Source Term. After some calculation the algorithm is
rewritten

Z
X X K iu: X i X
me QUK IL) ’t') o tpawhy M oruhox 7@Kt‘ meu =0 (63)
K2D;j2K @ X n(t) K 2D ; @ X j2K
where r‘h"@ = o+ % is the Galerkin mass matrix. As we can see, satisfying the GCL is completely

di erent from satis ng the DGCL for which we have to discretize both the derivatives with the same
time discrete operator. Proceeding in this fashion we are sure to balance, element by element, the volume
variation in the time step with the integral of the grid velocity ux along the boundaries of the element

®1).
This approach has a nice recasting into &RD framework. In fact the second term in @) is already in a
quasi-linear form, so it can be written in a RD form through a conservative linearization. Since the grid
velocity is approximated with P! interpolation the correct conservative linearization of the ALE part is

immediate Z

X
M ruhdx= rujKj= o oruiKj
(1 j2K 3

The upwind parameter with the ALE correction naturally becomes

— 1 X
k=3@ ) (64)

[f n*1. n. n lgre the coe cients of BDF 2, the Galerkin RD scheme then reads

X X n+1an+1ju_n+1+ annjun+ nlen 1ju_n1 X X
G J J J G n+l n+l
i n + i Kioup
K2D;j2K K 2D j2K

X n+1an+lj+ annj+ n 1an 1jX

t
K 2D ; j2K

My u; =0 (65)

where © = % is the distribution coe cient for the Galerkin method. Relation (6satis es the DGCL
by construction. This is supposed to be just an example since Galerkin method for hyperbolic problems

is unstable.

4.3 An approach a la Farhat

Keeping in mind that our objective is a method verifying the time discrete counterpart of @), in this
paragraph we proceed in a di erent way, according to what suggested by Farhat in[[39]. The main idea
is that many of the most used time discretizations satisfy naturally the DGCL condition by the choice of
a proper grid velocity and of a proper quadrature rule for the integrals.

First, we present some useful results that will be use everywhere hereinafter. Integrating (§1) in the
timeslab t";t"*' provides

tz+lz
jKji"™ K" = r Ndxdt (66)

TG
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We have already observed that great care has to be put, when building the numerical method, in order
to satisfy exactly the above equation. This can be done with simple geometry and algebra. Since the

triangle area can be computed agK j = > Xj Kj with
j2K
i intl in 1X n+l n
KKt =5 (x; kj) (xj k)
j2K
= }X xM*L=2 0 gen+l e g n*l=2ndl o yn |
2. i i j j i i
i
—_ X kn+1=2 n+1 n
= J. X| X] (67)
i2K
If we set the grid velocity
n+1
RS R (68)
y t
We can recast [67) in the following form
Z
K" K"t roo,dx (69)

K n+l =2

We have proved that, in order to satisfy (66), a natural choice for the grid velocity is (68) while the
con guration on which we perform integrations should be the midpoint one betweent” and t"*! .

We found the result of [39] for which it is crucial to establish in ) where the time integral must be
computed and the same question arise for the grid \ﬁlocit)h Since the left-end side is always computed

n+1

exactly, an appropriate scheme for evaluating exactly ,, T p dx dt is presented

AR 4 Z
r pdxdt= 't r p dx (70)

K Kn+%
tn

This result is very useful once we have discretized in time[(60).

4.3.1 Explicit Euler

Discretizing in time (@ with an explicit Euler tme discretisation, we have
z z

— "iUp dx +
h(t) n(t)

it f@)) M odx=0

We have still to face the problem of satisfying the DGCL, both and (t) are unde ned infact. Imposing
a uniform ow, one sees that the satisfaction of the DGCL conditon passes through9). Setting ; =
and () = ﬂ” we close the problem
Z Y4 Z
tiuptt dx updx +t iro (Fly  pul)dx =0 (71)

n+1 n n+l =2
h h h

i
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4.3.2 Implicit Euler

We proceed as before, setting ; =
again satis ed.
Z VA Z

Cuntt dx Ciufdx +t e f@uptt)  auptt o dx =0 (72)

j and p(t) = ﬂ*l and we found that the DGCL condition is

B
B

n+1
h

In fact imposing a uniform ow, one nds (§9).

4.3.3 Crank-Nicholson

Also in this case, the imposition of a uniform ow leads to equation (69) which is exactly satis ed for

;= ;and n(t)= . Hence we have

J
z z  Z
tiup Liup + - e (FR™) pup™)

n+1 n 2 n+1
h h h 1

s (ful) ) =0

4.4 Stabilized Finite Elements and Residual Distribution
The Galerkin method provide a centered approximation of the advective part leading to an unstable nu-
merical solution. To cure this problem the stabilized Finite Element method is invoked in this paragraph.

We consider now the addition to the Galerkin scheme of a proper stabilization operator, which we shall
denote by Ly, depending on some bubble function ; (cf. Y1.2 equation [(2]) and sub-sequent text).
Several choices are possible

1. Using the conservation law in conservative form[(2p) one gets

4
X
Ly = i @(JAt”) +dar (f u) dX (73)
K K x @ X
2. Using the mixed formulation (21))
4
X
Ly = i @u +r f ru dx (74)
Kk K @ty

3. [39] within a Finite Element method in [39] uses instead the Eulerian formulation

z
X

Ly = i %L:” fdx (75)
K K

In the next section we show two di erent ways of formulating a GCL-satisfying stabilized FE-RD using
(73) as stabilization term.
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4.4.1 Dobes Closure for explicit Euler time stepping

We can rearrange the weak form as

z h
@) Jar (F@W")  "u") widX =0 82T, (76)
v Ot «
where the test function isw; = ' ; + ;.
We get
Z
X X KL X i X
¢ 7@183') + wi a(u™) " ruMdx —@@K: mif u; =0
K2D;j2K X () K2D; X j2K

where r’h}j‘ is the general mass matrix that depends on the test function, introduced in sectionZ).
Discretizing the time derivative with Explict Euler, lumping the mass-matrix, and using the FEM- RD
analogy

ISt sty X X ISTT ST

t 1 t
K2D; j2K

u'=0 (77)

For the presence of the Geometric Source Term, the above scheme is not written in the compact prototype
form but one can prove that a sub-element positivity property still holds. The scheme for a single element
is written

ik N+l N+l 5 oenion X ik N+l n
S L . S L O G O LSt B LSl B
3t i2K 1 3t
S = KM+ KM 3t o 3t X &y
I an+1j an+1jC“ ! an+1j |
j2K;j 6i

Positivity is ensured with the following CFL-like condition
JK"j+ JK

t
3cK

8i;K 2 Th

Dobes used this approach together with second order implicit time schemes, in particular BDF2 with
consistent mass-matrix - getting the stabilized version of the algorithm of paragraph (2.2.2) - and Crank-
Nicholson with lumped mass matrix, obtaining very good results. We have to mention only that, if a
consistent mass-matrix formulation is used, then positivity is spoiled.

4.4.2 Another closure for explicit Euler time stepping

We suggest another closure to the problem which is somewhat simpler. We start again from equation
discretized in time with Euler-Explicit time stepping, we split again the ALE ux term, nally we
use grid velocity (6§) and midpoint con guration.

Z Z Z
—~ wiu" dx + wi(r f@d) 4 rud)dx wiulr L dx=0 (78)

( t) n+l =2 n+1 =2

If a uniform ow is imposed one gets
z Z z

w; dx widx = t w;ir p dx
n+1 n
h h h
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It is easy to check that the above equation is veri ed exactely. In fact for property (28) we have
X K s in+tl in X K g
P KT KT =t i ropdx
K 2D i K 2D i h

Thus, we get again [69) which is an identity.

Z S on+l Z ‘n
w; u" dx wiu"dx =
) ) 79
z z 1, (79)
wi utttooul dx + ot w; —h Yh dx
! h h [ h
n+l =2 n+l =2 2
Substituting (79) in (78] and we sum the last term of the above equation with the last one in [78)
Z
1+ VI
* 7|’ h n+l =2 Wi Up Un X
z (80)

+ 0t wi (r f(ud) h rup)dx =0

n+l =2
Finally, using the analogy with Residual Distribution method, and lumping the Galerkin mass matrix :

X iK N+l =2; X X
1+ ?tl’ h JK 3 J in+1 .
K 2D ; K 2D j

And the nal algorithm reads

ST At ur =t o KMun (81)
K 2D ; i

where the median dual cell area of[(39), here evaluated at midpoint con guration, has to be modi ed to
take into account the grid distortion

_ X t iK N+l =2

. 1=2. _ J J

s = 5t W T3
K 2D i

(82)

The method satis es the DGCL by construction and it is extremely easy to prove this again, by simply
assuming a uniform state in the method presented so far.

Apart from the ALE ux part in the upwind parameter k;, the formulation follows very closely the proto-
type scheme in Eulerian formulation, an extension of the results regarding positivity should be straight-
forward. A modi ed median dual cell area appear to take into account mesh distortion 1+ Ttr o
Strictly speaking this scalar quantity can be also negative (in a critical situation of very fast compression
for the mesh) spoiling every positive coe cient analysis. In practice, if the grid displacements within the
time step are of orderh then this term is of order O(h?) and does not a ect the positivity properties

of the scheme.. In all the computations performed and reported in the following sections, even the ones

involving large mesh distortion, the positivity of jSi"J'l :zj was always maintained.
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4.5 Two-stage RK- RD time stepping

A direct extension of the method described to the RKRD time marching of section Y2 cannot be per-
formed. The problem that we have to face is related to the de nitions of the stage-shifted time increment
@ which, in the rst step, is zero. This breaks the terms balance leading to the breaking of the DGCL.
A simple way to x this inconvenient is to carefully modify the stabilization term equation ( In
particular, the Galerkin part discretized with a RK 2, with " = , and midpoint con guration, writes
z z
—~ Couldx + e fh oru", dx
( t) n+l =2
z
iour o, dx=0

n+l =2
For the stabilization one, also computed at midpoint con guration, we have

x Z oh x Z
dx + o f@m™ , ru" dx =0
K2Di Kn+1=2

i
Kep; K"

Now, in analogy with the notation introduced in section Y2, we set
4

h
o
RGO = : er f@h) rut, dx
K n+l =2 t
or equivalently X
RK (k) _ m< Uk LKk KK
i ij j i
j2K t

In particular exploiting the two RK steps read
8

< iRK(l): i(uh)n
P 1 n 83
RK (2 us u
i @ - mi|j< L +% (UM + o unn (83)

j2K

Finally we can give the following result of which we report the proof in appendix[A.

Proposition 4.1 (Second order two stage ALE RK- RD schemes) The DGCL satisfying ALE for-
mulation of schemes [(5F) and [(5B) is de ned by
0 1
_ k X X uk
J.Sin+1_2j Utl - @ iRK (k) mﬁ tJA (84)

K j

in the Selective Lumping case, with

t
mg = 1+ - n mg (85)
and +1 =2 P
. N+l= n
2 JS yj tul — ) FK (1)
) 122,47 i P (86)
>JSin+ Ju| . ui _ iRK 2)

in the Global Lumping case.
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Apart from the ALE part in the de nition of the upwind parameter, the only di erences respect to Eu-
lerian version (57) is the presence of the modi ed median dual cell areq (§2) and of a modi ed Galerkin
mass matrix, while for Global Lumping we obtain a very similar expression to ), with the exception
of the modi cation of the median dual cell area.

The following sections are devoted to the numerical assessment of the accuracy and robustness of the
schemes obtained for both scalar problems and for the perfect gas Euler equations.

5 Numerical results for scalar problems

The scalar experiments we show here are used to test the formulation presented so far. The test cases are
exactely the ones performed by[[10] with an explicit RK2 scheme: we expect to recover the same results,
in terms of accuracy and non-oscillatory behaviour, when the grid is moving with an arbitrary motion
and the RK2-ALE scheme presented in the previous section is used.

All the schemes, modi ed in the proper way for RK2 time integrator of section Y2 are used here. We
have just to remember that, for ALE computations, the upwind parameter takes into account the grid
movement and follows the de nition (§4) which is recalled below

_1 .
ki—é(a )nl

All the de nition which involves k; has been revisted.
For all the experiments the time step is computed in order to verify the CFL condition

| S
t=CFLmin P21 (87)
i2Th K 2D |

where CFL = 0 :8 has been adopted.

5.1 Convergence properties

To test the accurac%of the method we use the simple case of linear advection of a smooth sinusoidal hill
3%'+aru=0; a:[O;l];x2[8;1] [0;2]; t 2 [0;1]
5 Up = cos(2r ) ifr 025r= (x 0:5)2 +(y 0:5)2
" Up=0 otherwise

We choose four unstructured grid with characteristic lenghtsh 2 f 1=30; 1=50; 1=80; 1=160g. The refer-
ence domainX =( X; Y ) is mapped according to

X=X +sin 2X sin Y 0Olsin 2t ;0:2sin 4t (88)

At t =1, the mapping is the identity x = X , so we can compare the ALE solution with the Eulerian one
easily. In gure E] the third grid ( h = 1=80) is shown with the correspondent mapping.

Al the results collected in gure B]shows that second order of accuracy, when expected, is achieved. The
ALE convergence curve almost collapse on the classical one. The Blended LDA-N on smooth solution
should collapse to the LDA scheme but it converges more slowly, only with ordef.:5 instead. This is due
to the fact that the advecting hill is very narrow and the presence of strong gradients cause the switch
to a rst order N scheme.
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Figure 2: Linear Advection. Mapping for the grid and example of the numerical solution

5.2 2D Burger equation

The non-linear Burger equation is a good test to see how the schemes behaves near discontinuities
8
2%+aru=0; a=[uu;x2[ L1 [ L1}t2[01]
U =1 if x2[ 06 0:1] [ 0:350:15]
>
“ug=0 otherwise

The reference grid size ith = 1=80. The domain is mapped in a similar way as ), according to
x=X +0:2sin X sin Y sin 2t ;sin 4t

Only results with formulation F1 are shown but the use of formulation F2 leads to very similar results.

First we consider the linearity preserving LDA and SUPG scheme in gure§ 4[ 5[ b and(]7. As expected,
these two schemes gives very good results when computing smooth solutions, and fails when computing
discontinuities. Oscillations appears on the shock and at the tail of the rarefaction wave. The important
observation is that the ALE results, far from the discontinuity, are very close to the Eulerian ones, on
the tail of the rarefaction even better.

The non-linear schemes LLxFs and LDA-N are designed to capture discontinuities very well. This is
shown in gures [8,[9,[10 and[Il. We have seen that SL formulation, unfortunately, does not allow us
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Figure 3: Linear Advection. Order of Convergence

to maintain positivity hence oscillation still appear but are less pronounced compared to linear schemes.
With GL formulation this problem is cured provided that some dissipation is introduced due to mass-
lumping [10]. The ALE results reproduce very well the Eulerian ones and they are even better for the
tail of the rarefaction wave.

RK2-SL-F1 LDA

02 L L L L L L L L L

Figure 4: 2D Burger Equation, F1-SL LDA scheme. Left and middle: 20 equispaced isolines betwedh
and 1 at time t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3
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RK2-GL-F1 LDA

Figure 5: 2D Burger Equation, F1-GL LDA scheme. Left and middle: 20 equispaced isolines betweeh
and 1 at time t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3

RK2-SL-F1 SUPG

T T
EUL: sym ——
EUL'y=03 ——

ALE: Sym =seeeen
1| ALETY=03 -

Figure 6: 2D Burger Equation, F1-SL SUPG scheme. Left and middle: 20 equispaced isolines betweén
and 1 attime t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3

RK2-GL-F1 SUPG

Figure 7: 2D Burger Equation, F1-GL SUPG scheme. Left and middle: 20 equispaced isolines betweén
and 1 at time t = 1. left, Eulerian. right ALE. Bottom: comparison of the solution along the symmetry
line and along the liney =0:3



28 5 NUMERICAL RESULTS FOR SCALAR PROBLEMS

RK2-SL-F1 LLXFs

Figure 8: 2D Burger Equation, F1-SL LLxFs scheme. Left and middle: 20 equispaced isolines betweén
and 1 at time t = 1. left, Eulerian. right ALE. Bottom: comparison of the solution along the symmetry
line and along the liney =0:3

RK2-GL-F1 LLxFs

T T
EUL: sym ——
EUL'y=03 ——

ALE: Sym =seeeen
ALE:y=03 -------

Figure 9: 2D Burger Equation, F1-GL LLxFs scheme. LEft and middle: 20 equispaced isolines between
Oand 1 attime t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3

RK2-SL-F1 LDA-N

Figure 10: 2D Burger Equation, F1-SL LDA-N scheme. Left and middle: 20 equispaced isolines between
Oand 1l attime t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3
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RK2-GL-F1 LDA-N
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EUL: sym ——
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Sym weeeeen

3

ALE:
ALE:y=03 -------

Figure 11: 2D Burger Equation, F1-GL LDA-N scheme. LEft and middle: 20 equispaced isolines between
Oand 1 attime t = 1. left, Eulerian. right ALE. Right: comparison of the solution along the symmetry
line and along the liney =0:3
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6 Application to the perfect gas Euler Equations

In this section, we consider the applications of the ALE formulation proposed to the perfect gas Euler
equations
@

- P 2. .
@t+r f=0 in 2R%t2[0;T] (89)
with conserved variables and ux given by
2 3 2
u %
8 u 7 _ 8 u2+p wv Z

U—§ v é f(U)—g W vZ2+p (90)

E Hu Hv

where is the uid density, u = (u;v) is the ow speed, E is the total energy per unit mass,H is the
total entalpy per unit mass

H=E+ "

For polytropic ideal gas thermodynamic properties are completely de ned by the following pair of equa-

tions of state
RT

1

where we have introduced the internal energy per unit masse and the temperature of the uid T.
Combining the two equations we obtainp as a function of e and

p(e; ) =( e

The Euler equations are closed with the de nition of internal energy

p(T; )= RT,; e(T)=

e= E %kuk

since we are able to express the pressure as function of the unknowyru; v; E .

The Euler equations constitute a hyperbolic system, in particular given a vector 2 R?, the ux Jacobian
K(u; ) = % admits a complete set of real eigenvalues and linearly independent eigenvectors. The
eigenvalues ofK(u; ) are

14(u; )=u c(u)k k; 2:3(U; )= u

where c(u) = P p= s the speed of sound.

6.1 Implementation details

We give in this section a few remarks on the implementation of the schemes for systems, the interested
reader can consult [I19,30[31,10] for more details. The schemes presented in section Y3.6, with the
distribution strategies presented in section Y1.4 extend formally to hyperbolic systems of conservation
laws, with the obvious change in dimensions for the residuals ¥ and X (cf. equations (1) and (5Q))
which now are vectors, and for the upwind parametersk; which are now matricesk; = K (u;n;)=2 (cf.
equation )). The sign and ()* operators needed in the schemes are now computed by standard
eigenvalue decomposition, while ¥ in the LxF scheme is now replaced by the largest among the spectral
radii of the k; matrices. Nonlinear schemes are implemented by using the same de nitions of section
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Y1.4.3 only applied via a characteristic variable decomposition. For example, the blended scheme is now

de ned as .

LDA N _ LDA N
i - m M'm
m=1
wherer r, is the m-th eigenvector of the matrix K (u; @), with @ the unit vector parallel to the ow speed,
and with .
A N ) PA s N with 1= PLml
] ]mJ
j2K

with scalar projected quantities ' obtained as

with ", the m-the left eigenvector ofK (u;@). A similar projection is performed for the LLxF scheme,
details are omitted for brevity. For the Euler equations, following [10], the LLxFs scheme ) is replaced
by the LLxF-SUPG scheme

LLXF  SUPG _ LLxF SUPG
i =1 ) o

where the smoothness sensor is a scalar computed as (cf. equati¢n|(53))
0 1
1

(uM=min @; ————
gl

where' ¥ is an approximation of the entropy residual computed as

K-~ K —
S S =t

with "¢ the left eigenvector corresponding to the entropy wave.

6.2 Numerical results

We present three tests to show that the accuracy and robustness of the ALE discretization proposed. The
rst is a grid convergence study on the advection of a smooth constant density vortex. The second test
case is a two-dimensional Riemann problem allowing to compare the Eulerian and ALE implementation
on a complex non-smooth problem. The last test is a simple application involving a moving boundary.

For the rst two tests, the following mapping used

X=X +0:1sin 2X sin 2Y sin 2 3,
y=Y +0:1sin 2X sin 2Y sin 2 t3,,

All computations have been performed with a time step computed according to

t=CFLmin P32
i2Th K 2D |

with CFL =0 :8.
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Figure 12: Advection of a vortex: 15 equispaced pressure isolines between level 94 and 101. From left
to right : LDA (Eulerian), LDA (ALE), SUPG (Eulerian), and SUPG (ALE). All schemes based on the
formulation F1 with selective lumping

6.2.1 Advection of a Vortex

The accuracy of the schemes is measured on the advection of a constant density vortex. The test case
is the one used in[[4D]. The ow velocity is given by the sum of a constant freestream velocity plus a
circumferential perturbation

Uup=(6;0+ wu

where, settingxc = x 05, yc.=y 05, ! =15(cosAr +1) andr = P xZ2+vy2, u=0ifr 025
else

u=(_( Ye Xc)!

Density is chosen constant o = 1:4, the pressure is a given by
Po=Pm+*t P

cos (8r) N 4r sin(8r)

+ 2rz 4
8 7 12 “r C

15 .
= — 2 4 8 4
p @ )2 cos(4r )+8r sin(4r )+

The constant C is xed such that the pressure atr = 0:25is the freestream pressurg, = pm = 100. The
maximum Mach number is M " =0:8.

The problem is solved on a square domaifD; 1] [0; 1]Juntila naltime tmax = 1=6. The domain is approx-
imated with four unstructured triangulations with elements reference sizeh 2 f 1=40; 1=80; 1=160, 1=320g.

In gure I3] we report a qualitative comparison of the pressure contour lines, showing that the ALE
results closely follow the one in Eulerian framework. The grid convergence behavior is reported in gure
[I4. The convergence curves are qualitatively similar to the ones obtained for the scalar advection of a
smooth prole. Second order of accuracy is achieved also in ALE framework for both the lumped and
the selective formulation. The lowest convergence rate (equal to 1.5) is observed for the LDA-N scheme
but, again, this is due to a switch to the rst order N scheme in regions where strong gradients of the
vortex are present.
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Figure 13: Advection of a vortex: 15 equispaced pressure isolines between level 94 and 101. From left to
right : LDA-N (Eulerian), LDA-N (ALE), LLxF-SUPG (Eulerian), and LLXF-SUPG (ALE). All schemes

based on the formulation F1 with selective lumping
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Figure 14: Advection of a vortex. Order of Convergence
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Figure 15: 2D Riemann Problem: initial solution

6.2.2 A 2D Riemann problem

This test case is contained in[[1F7]. We use it to test the shock-capturing capabilities of the schemes. With
reference to the notation of the gure [I5, the initial solution is given by
8

% 15 0 0 15 state a

uvop = 0:1379928 12060454 12060454 @0290323 state b ©1)
% 0:5322581 12060454 0 €8 state c
0:5322581 0 12060454 @8 state d

The structure of the solution is complex. Two normal shocks are interacting with two oblique shocks.
This interaction generates two couples of symmetric lambda shocks with the appereance of contact dis-
continuities emanating from each of the4 triple points. The amount of uid that passes through the
upper lambda shock structures (hence through two oblique shocks) is then pushed by the pressure gradi-
ent between statea and b into a transonic jet against the normal shock. The domain is a boX0; 1] [0; 1]
and it is approximated through a structured triangulation with element reference sizeh = 1=200. The
nal time is tyax = 0:8.

Only the non-linear schemes are expected to give postive and second order accurate results, hence results
in gure are referred only to the LDA-N and LLXF-SUPG schemes. The LDA-N case is shown in
gure [6}7] The ALE results are overlapped, almost everywhere, with the ones obtained with Eulerian
formulation on a xed grid. As in that case, only when the global lumped formulation is used, we get
positive results. With selective lumping, the solution is quite monotone but small oscillations appears
near the discontinuities.
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Figure 16: 2D Riemann problem computed with LDA-N scheme and RK2-F1-SL formulation. Top: 30

equispaced density isolines between maximum and minimum values of 1.65 and 0.1. Top left: Eulerian

formulation. Top right: ALE formulation. Middle: comparison of the solutions along the symmetry line.

Bottom: comparison of the solutions aty = 0:85
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Figure 17: 2D Riemann problem computed with LDA-N scheme and RK2-F1-GL formulation. Top left:
35 equispaced density isolines for Eulerian formulation. Top right: 35 equispaced density isolines for ALE
formulation. Middle: comparison of the solutions along the symmetry line. Bottom: comparison of the
solutions aty = 0:85
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Figure 18: 2D Riemann problem computed with LLXF-SUPG scheme and RK2-F1-SL formulation. Top
left: 35 equispaced density isolines for Eulerian formulation. Top right: 35 equispaced density isolines for
ALE formulation. Middle: comparison of the solutions along the symmetry line. Bottom: comparison of
the solutions aty = 0:85



38 6 APPLICATION TO THE PERFECT GAS EULER EQUATIONS
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Figure 19: 2D Riemann problem computed with LLXF-SUPG scheme and RK2-F1-GL formulation. Top
left: 35 equispaced density isolines for Eulerian formulation. Top right: 35 equispaced density isolines for
ALE formulation. Middle: comparison of the solutions along the symmetry line. Bottom: comparison of
the solutions aty = 0:85
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Figure 20: Topology for the grid. Left: compression. Right: expansion.

6.2.3 An application: wind tunnel with wall de ection

We have seen that, for all the test cases that we have run, the ALE formulation proposed here works well
and we are able to recover almost the same result of Eulerian formulation. A very simple application,
just to see the use of ALE formulation, is shown, involving moving boundaries. In this case Eulerian
formulation cannot work without an interpolation step. The Eulerian formulation with the interpolation
step has not been implemented, henco no comparison is given for this case.

We have a 2D channel[2 1] with an hinge on the lower surface placed atx = 0:25. This hinge allows a
rigid de ection of the lower wall which is governed by the following exponential motion law for angle
de ned from the horizontal axis

= max 1 €eF t Cswitch

s (92)
()= max 2max 1 € (t towren )= > 1 switch

We choose the following values
tswitch = 1 .25, = 0 .05, max = 200

The nal time for our simulation is tnh,x = 2:5. The domain is approximated with an unstructured
triangulation with an element reference sizeh = 1=160. During the simulation the grid is distorted
solving a Laplace equation along every abscissa with boundary conditions given by the ap displacement
at that abiscissa. In gure the mapping for the grid is shown. Since shock waves are expected, we
have tested only the non-linear schemes LDA-N and LLxF-SUPG. The formulation choosen is F1-GL.
The Mach number at the inlet is M = 3.

From the experiments we can observe that, after the transient, the shock structure nds a stable con g-
uration close to the the analytical solution (Mach re ection of the shock at the upper surface) att w 1:2.
Immediately after the wall de ects an unsteady interaction, between the shock and the expansion wave
rising from the corner, is observed. The shock wave, while it is going back, takes an S-shaped con gura-
tion. In particular, in the region near the lower wall, the shock seems to be particularly strong becouse
of the interaction between the accelerating ow, in expansion after the corner, and the compressed region
at the outlet. Finally, at t w 2:5, the supersonic Prandtl-Mayer expansion is recovered.

7 Conclusion

A novel method for the solution of hyperbolic equations in ALE framework has been presented in this
paper. First conservation laws have been written in Arbitrary Lagrangian Eulerian formulation (ALE).
Their derivation is addressed in section Y1.
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Figure 21: Mach 3 wind tunnel. Top row : LDA-N-F1-GL. Bottom row : LLxF-SUPG RK2-F1-GL. 50
equispaced density isolines between extreme values 022 65 at di erent time instants

Figure 22: Mach 3 wind tunnel. Top row : LDA-N-F1-GL. Bottom row : LLXxF-SUPG RK2-F1-GL. 50
equispaced density isolines between extreme values 022 65 at di erent time instants
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Figure 23: Mach 3 wind tunnel. Top row : LDA-N-F1-GL. Bottom row : LLxF-SUPG RK2-F1-GL. 50
equispaced density isolines between extreme values 022 6:5 at di erent time instants
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PDE are discretized in space with a Residual Distribution (RD) approximation.For the sake of com-
pletness, we recall several properties oRD. We also recall an explicit Runge Kutta 2 RD scheme on
xed grid for conservation laws written in Eulerian framework. We have extended the above scheme to
equation in ALE form and we ended up with a scheme that results in minor modi cations respect to the
Eulerian algorithm. Particular emphasis is put on the Discrete Geometrical Conservation Law. .

The method has been studied extensively through theorical investigation and numerical experiments.
Numerical results were in good agreement with Eulerian ones. The two advection test cases provides
numerical evidence that convergence order is not spoiled when arbitrary grid distortions are involved,
when the solution remains smooth. The Burger's equation test case and the Riemann problem showed
the ability to handle well discontinuities.

Unfortunately in this paper we did not have the opportunity to cover some aspects that were not clear
enough or that, in our opinion, deserve further studies, in particular it remains to analyse rigorously the
positivity preserving propserties of this new scheme for scalar problems.

To conclude we mention possible future developments:

1. Grid adaptation not only to moving boundaries but also through a mechanism of node inser-
tion/removal in order to re ne the grid where strong gradients of the solution are expected. A
succesfull algorithm has been already implemented by Guardone and Isola in a Finite Volume in
[41]

2. The extension to third order accurate solutions through high order space and time approximations.
RD schemes that converges with order higher then two have been studied extensively for the steady
case. The extension of the present work to third order should involve higher order elements and
also an high order time discretization such as RK3.
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A Proof of proposition 4.1 ]

We start with the Selective Lumping case. For the rst step (k = 1) assembling [4.5)[4.5) and at the
same time using [79)

z ut  up tZ
i Nk + — ir o, utooul odx+
n+l =2 t 2 n+l =2
Z
+ wi (r f(up) p rup)dx =0
n+l =2
In a RD formalism
X K n+1=2; 1 un X X X
(1+ r h)J 3 I Un n h — i kjnu]_n - t i(Uh)

K 2D i K 2D i i K 2D i
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Using the de nition (82), then the rst line of (84)Jis prooved.
For the second step k = 2) the algebra is a little longer. We put in evidence the clear fact

x Z x Z z

Ik Tk 1k
u u u
i—Ndx = w; — dx ' —Ndx (93)
Kap, Kn+i=2 Kop, Knii=2 t n+l =2 t
Again assembling [4.5){(4.5) and at the same time using[(79)
Z n+1 n Z n+1
u u t u up
' i h h dx + — ' it h h dx +
n+l =2 t n+l =2 t
Z Z
1 , ,outooul
E n+l =2 ir h U%-}- UE dx n+l =2 ! : t - dX+
X z ul oyn 1 X z
+ wi N dx + = wi(r f@p) , rul)dx+
K2Di K n+l =2 t 2K2Di K n+l =2
X A
1 _ | L
+ wi r f(up) h ru, dx=0
2 K n+l =2
K 2D

, un+1 UR

R
Now we sum and subtract the quantity 7‘ nazo il h——¢ dx. The term with plus sum with
the rst term of the above equation, the term with minus sum with the second, the third and the fourth

ones ‘ t up*toup ‘ t ut - up
1+ —r " dx 1+ —r ' ———" dx

n+l =2 2 7h ! t n+l =2 2 h : t

x Z 1 n 1 X z

uh uh n n

+ W ——2dx + = wi (r  f(up) p T up) dx+

K2Di Kn+1:2 t 2K2Di Kn+1:2

1 X z 1 1
+§ wi r f(up) h rup dx =0
Kn+1:2

K 2D i

The last three terms can be rewritten compactly with (4.5),

Z
t Un+l un
n+l =2 t
4
X 1 n
_ iRK(z)+ 1+—tr . 'iuh tuhdx
n+l =2

K 2D i

Developing both the modi ed mass matrices but lumping only the one on the right-hand side, then using

de nitions (§2) and (85), (84) is nally proven.

Let us now consider the case of Global Lumping. The rst step remain the same and has been already
prooved

For the second step k = 2) assembling [4.5)(4.5), togheter with (79)(93)

Z n+1l Z 1
u ufl t ut*t + un
N dx + tir N dx+
n+l =2 t 2 n+l =2 t
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1 ut ul
= irn U+ ulodx Y dx+
2 n+l =2 n+l =2 t
Z Z
X u% uﬂ 1 X n n
+ i———dx + = wi (r f (up) p T up) dx+
K2D| K n+l =2 t K2Di K n+l =2
1 X z 1 1 —
> s e wi rf(up) h ru, dx =0

Summing the rst and the fourth term togheter and the second and third too
Z

n+l 1 n+l 1
U Un gy, T I S Y
n+l =2 t 2 n+l =2 t
X z ul oun 1 X z
+ wi N dx + wi(r fup) o, oruf)dx+
KZDi Kn+1=2 t 2K2Di Kn+1=2
x Z
1 4 ! 1o o
+ wi r f(up) h rup dx =0
2 K 2D : K n+l =2
The last three terms can be rewritten compactly with (4.5), while the rst two terms sum up
z
t ur*t ot X
1+ —r , 'i——Ndx= RKG)
n+l =2 2 t

K 2D ;

Developing the mass matrix, lumping it and using {82) we get the second line of (86).
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