
HAL Id: hal-00863223
https://inria.hal.science/hal-00863223

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Enforcement of K-step Opacity
Yliès Falcone, Hervé Marchand

To cite this version:
Yliès Falcone, Hervé Marchand. Runtime Enforcement of K-step Opacity. 52nd IEEE Conference on
Decision and Control, Dec 2013, Florence, Italy. pp.7271-7278, �10.1109/CDC.2013.6761043�. �hal-
00863223�

https://inria.hal.science/hal-00863223
https://hal.archives-ouvertes.fr

Runtime Enforcement of K-step Opacity∗

Yliès Falcone Hervé Marchand

Abstract— We study the enforcement of K-step opacity at
runtime. In K-step opacity, the knowledge of the secret is of
interest to the attacker within K steps after the secret occurs
and becomes obsolete afterwards. We introduce the mechanism
of runtime enforcer that is placed between the output of the
system and the attacker and enforces opacity using delays.
If an output event from the system violates K-step opacity,
the enforcer stores the event in the memory, for the minimal
number of system steps until the secret is no longer interesting
to the attacker (or, K-step opacity holds again).

I. INTRODUCTION

Security is a major concern in nowadays information

systems. Among existing security notions, opacity (see e.g.,

[2], [3]) is a generic and general notion used to express

several existing confidentiality concerns such as trace-based

non-interference and anonymity (cf. [3]) and even secrecy

(cf. [4]). Opacity aims at preserving unwanted retrievals

of a system secret (e.g., values of confidential variables)

by untrustworthy users while observing the system. When

examining the opacity of a secret on a given system, we

check whether there are some executions of the system which

can lead an external attacker to know the secret; in that

case the secret is said to be leaking. While usual opacity

is concerned by the current disclosure of a secret, K-step

opacity, introduced in [5], additionally models secret retrieval

in the past (e.g., K execution steps before).

Ensuring opacity on a system is usually performed using

supervisory control (cf. [6], [7], [8], [9]). Supervisory control

consists in using a so-called controller to disable undesired

behaviors of the system, e.g., those leading to reveal the

secret. Moreover, the technique of dynamic observability was

proposed in [10] to ensure opacity by dynamically restrain-

ing, at each system step, the set of observable events. Finally,

[11] enforces opacity by statically inserting additional events

in the output behavior of the system.

These techniques suffer from practical limitations prevent-

ing their applicability in some situations. Static techniques

such as supervisory control are intrusive which entail to

disable some (internal) behaviors of the underlying system.

While ensuring opacity via dynamic observability comes at

the price of destroying observable behavior of the system.

Those limitations motivate for investigating the use of other

validation techniques to ensure opacity.

We are interested in runtime validation techniques, namely

runtime verification and runtime enforcement, so as to

validate several levels of opacity on a system. Runtime

verification (cf. [12], [13], [14]) consists in checking during

∗An extended version of this paper with proofs is available as [1].
Y. Falcone is with University Grenoble 1 and LIG, Grenoble, France,
H. Marchand is with Inria Rennes Bretagne-Atlantique, Rennes, France.

the execution of a system whether a desired property holds

or not. Generally, one uses a special decision procedure, a

monitor, grabbing information in the run of an executing

system and acting as an oracle to decide property validation

or violation. Runtime enforcement (see [15], [16], [17]) is

an extension of runtime verification aiming to circumvent

property violations. Within this technique the monitor not

only observes program executions, but also modifies them,

using an internal memorization mechanism.

II. THE PROPOSED APPROACH

The problem can be depicted in Fig. 1a. A system G produces

sequences of events belonging to an alphabet Σ. Among the

possible executions of the system, some of these are said to

be secret. Some events of the system, in a sub-alphabet Σo ⊆
Σ, are observable by an external attacker through the system

interface. We assume that the attacker does not interfere with

the system (i.e., he performs only observations through the

interface) and has a perfect knowledge of the structure (even

internal) of the system. We are interested in the opacity of

the secret executions on the considered system. That is, from

a sequence of observable events, the attacker should not be

able to deduce whether (a prefix of) the current execution

of the system (corresponding to this observation) is secret or

not. In this case, the secret S is said to be opaque wrt. the

considered system and its interface.

We now sketch the techniques that we propose to analyze

and validate opacity. When model-checking (Fig. 1a) the

opacity of a secret on the system, we take its specification

to perform an analysis that provides the executions leading

to a security leakage when they are observed through the

interface of the system. This indicates existing flaws to the

system designer. When verifying opacity at runtime (Fig. 1b),

we introduce a runtime verifier which observes the same

sequence of observable events as the attacker and produces

verdicts related to the preservation or violation of the opacity.

With such a mechanism, the system administrator may react

and (manually) take appropriate measures. When enforcing

opacity at runtime (Fig. 1c), we introduce a runtime enforcer

between the system and the attacker. The sequence of observ-

able events is directly fed to the enforcer. The attacker now

observes the outputs produced by the runtime enforcer. The

runtime enforcer modifies its input sequence and produces a

new one in such a way that, on the output execution sequence

seen by the attacker, opacity is preserved wrt. the actual

execution on the initial system. Thus, the proposed runtime

enforcement automatically prevents opacity violation.

These runtime validation techniques have several advan-

tages. First, these techniques are not intrusive. Indeed, a

runtime verification or runtime enforcement framework does

observable

events

Attacker

in
te

rf
a
c
e

o
n

S opaque?Σo

GΣ(S)

(a) System vs Opacity

obs.

events

o
n

in
te

rf
a
c
e Attacker

reaction

Runtime

Verifier

verdicts

Admin

Σo

GΣ(S)

(b) Opacity Verification

obs.
eventso

n
in

te
rf

ac
e

Attacker

opaque
sequence

Enforcer
Runtime

Σo

GΣ(S)

(c) Opacity Enforcement

Fig. 1. Several ways to validate the opacity of a secret on a system

not suppose being able to modify the internal behavior of

the monitored system. It is particularly useful when dealing

with legacy code, leading model-checking to become obso-

lete since the internal system behavior cannot be modified.

Moreover, the proposed runtime-based approaches do not

distort the internal nor the observable behavior of the system.

Furthermore, checking the opacity at runtime allows to react

to misbehaviors; as shown with runtime enforcement in this

paper. Ensuring opacity with runtime enforcement also has

the advantage to modify the observable behavior of the

system in a minimal way: our runtime enforcers minimally

delay the initial execution sequence.

III. PRELIMINARIES AND NOTATION

A. Execution sequences

Unless otherwise specified, considered functions are total.

N denotes the set of non-negative integers. Considering a

finite set of elements E, a sequence s over E is a function

s : I → E where I is the integer interval [0, n] for some

n ∈ N. A language over E is a set of sequences over E.

We denote by E∗ the universal language over E (i.e., the set

of all finite sequences over E), by E+ the set of non-empty

finite sequences over E. Furthermore, for n ∈ N\{0, 1}, the

generalized Cartesian product of E is En def

= E×E×· · ·×E,

i.e., the Cartesian product of E of dimension n. The empty

sequence of E∗ is denoted by ǫE or ǫ when clear from the

context. The length of a finite sequence s ∈ E∗ is noted |s|.
For a sequence s ∈ E+ and i < |s|, the (i+1)-th element of

s is denoted by si, and the subsequence containing the i+1
first elements of s is denoted s···i. For s, s′ ∈ E∗, we denote

by s ·s′ the concatenation of s and s′, and by s � s′ the fact

that s is a prefix of s′ (i.e., when ∀i ∈ [0, |s| − 1] : si = s′
i

and |s| ≤ |s′|). The prefix-closure of a language L wrt. E∗

is defined as Pref(L)
def

= {s ∈ E∗ | ∃s′ ∈ E∗ : s · s′ ∈ L}.

Given s′ � s, |s− s′|
def

= |s| − |s′|.
Behaviors of systems are modeled by Labelled Transitions

Systems (LTS for short) whose actions belong to a finite set

Σ. Sequences of actions are named execution sequences. The

formal definition of an LTS is as follows:

Definition 1 (LTS): A deterministic LTS is a 4-tuple G =
(QG , qG

init
,Σ, δG) where QG is a finite set of states, qG

init
∈

QG is the initial state, Σ is the alphabet of actions, and

δG : QG × Σ → QG is the partial transition function.

We consider an LTS G = (QG , qG
init

,Σ, δG). We write q
a
→G

q′ for δG(q, a) = q′ and q
a
→G for ∃q′ ∈ QG : q

a
→G q′.

We extend →G to arbitrary execution sequences by setting:

q
ǫ
→G q for every state q, and q

sσ
→G q′ whenever q

s
→G q′′

and q′′
σ
→G q′, for some q′′ ∈ QG . For any language L ⊆ Σ∗

and set of states X ⊆ QG , we set ∆G(X,L)
def

= {q ∈ QG |

∃s ∈ L, ∃q′ ∈ X : q′
s
→G q}. L(G)

def

= {s ∈ Σ∗ | qG
init

s
→G}

denotes the set of execution sequences of G. Given a set

of marked states FG ⊆ QG , the marked language of G is

LFG
(G)

def

= {s ∈ Σ∗ | ∃q ∈ FG : qG
init

s
→G q}, i.e., the

execution sequences that end in FG . Notations apply to finite-

state machines which are LTSs with an output function.

B. Observational behavior

The observation interface between a user and the system

is specified by a sub-alphabet of events Σo ⊆ Σ. The

user observation through an interface is then defined by a

projection, denoted by PΣo
, from Σ∗ to Σ∗

o that erases in

an execution sequence of Σ∗ all events not in Σo. Formally,

PΣo
(ǫΣ)

def

= ǫΣ and PΣo
(s · σ)

def

= PΣo
(s) · σ if σ ∈ Σo and

PΣo
(s) otherwise. This definition extends to any language

L ⊆ Σ∗: PΣo
(L)

def

= {µ ∈ Σ∗
o | ∃s ∈ L : µ = PΣo

(s)}. In

particular, given an LTS G over Σ and a set of observable

actions Σo ⊆ Σ, the set of observed traces of G is TΣo
(G)

def

=
PΣo

(L(G)). Given two execution sequences s, s′ ∈ Σ∗,

they are equivalent w.r.t. PΣo
, noted s ≈Σo

s′ whenever

PΣo
(s) = PΣo

(s′). Given two execution sequences s, s′ such

that s′ � s, s\s′ is the suffix of s that permits to extend s′ to

s, and |s− s′|Σo

def

= |PΣo
(s)| − |PΣo

(s′)| corresponds to the

number of observable events that are necessary to extend s′

into s. Conversely, given L ⊆ Σ∗
o, the inverse projection of

L is P−1
Σo

(L)
def

= {s ∈ Σ∗ | PΣo
(s) ∈ L}. Given µ ∈ TΣo

(G),

[[µ]]GΣo

def

= P−1
Σo

(µ) ∩ L(G) (noted [[µ]]Σo
when clear from

context) is the set of observation traces of G compatible

with µ, i.e., execution sequences of G having trace µ. Given

µ′ � µ, we note [[µ′/µ]]Σo

def

= [[µ′]]Σo
∩ Pref([[µ]]Σo

) the set

of traces of G that are still compatible with µ′ knowing that

µ′ is the prefix of µ that occurred in the system.

C. K-delay state estimators

To generate runtime verifiers and enforcers, we will need

the notion of K-delay state estimator introduced in [5].

Intuitively, a K-delay state estimator, according to the ob-

servation interface of a system, indicates the estimated states

of the system during the K previous steps.

We consider the set of l-tuples of states, for l ≥ 2, of

G. Elements of Ql model partial sequences of states. A set

m ∈ 2Q
l

is called an l-dimensional state mapping. We denote

by m(i) the set of the (l − i)th state of elements of m.

Intuitively, m(0) corresponds to the current state estimate

whereas m(i) corresponds to the state estimate knowing that

i observations have been made. We also need to define:

• the shift operator ◭: 2Q
l

× 2Q
2

→ 2Q
l

s.t.

m ◭ m2
def

= {(q2, . . . , ql+1) ∈ Ql |
(q1, . . . , ql) ∈ m ∧ (ql, ql+1) ∈ m2},

• the observation mapping Obs : Σo → 2Q
2

s.t.

Obs(σ)
def

= {(q1, q2) | ∃s ∈ Σ+ : PΣo
(s) = σ ∧ q1

s
→G q2},

• the function ⊙l : 2
E → 2E

l

s.t. ⊙l(E)
def

= {(e, . . . , e) |
e ∈ E}, for a set E.

Based on the previous operations, K-delay state estimators

are defined as follows:

Definition 2 (K-Delay State Estimator): For G, a secret

S, a projection PΣo
, the K-delay state estimator is an LTS

D = (MD,mD
init

,Σo, δD) s.t.:

• MD is the smallest subset of 2Q
K+1

reachable from mD
init

with δD,

• mD
init

def

=
{

tq ∈ ⊙K+1({q}) | q ∈ ∆G({q
G
init

}, [[ǫ]]Σo
)
}

,

• δD : MD × Σo → MD defined by ∀m ∈ MD, ∀σ ∈ Σo :
δD(m,σ)

def

= m ◭ Obs(σ).
A K-delay state estimator, for G, is an LTS whose states

contain suffixes of length K of “observable runs” that are

compatible with the current observation on G. On each

transition fired by σ ∈ Σo, possibly visited states more than

K steps ago are forgotten, and the current state estimate

is updated: for a transition, the arriving state is obtained

using the shift operator (◭) and putting in front (at the

location of the current state estimate) compatible current

states according to the state estimate at the previous step

(i.e., Obs(σ) “filtered” by ◭).

D. K-step (state-based) Opacity

Opacity is defined on the observable and unobservable be-

haviors of the system. We consider that confidential informa-

tion is directly encoded by means of a set of states S ⊆ QG .

If the current execution is t ∈ L(G), the attacker should not

be able to deduce, from the knowledge of PΣo
(t) and the

structure of G, that the current state of the system is in S.

Confidentiality requirements may also prohibit inferring

that the system went through a secret state in the past. To take

into account this particularity, K-step opacity was introduced

in [5]1. Intuitively, K-step opacity takes into account the

opacity of the secret in the past and also allows to say

that the knowledge of the secret becomes worthless after

the observation of a given number of actions.

Definition 3 (K-step opacity): For K ∈ N, the secret

S is K-step opaque on G under the projection PΣo
or

(G, PΣo
,K) opaque if

∀t ∈ L(G), ∀t′ � t : |t− t′|Σo
≤ K ∧ t′ ∈ LS(G)

⇒ ∃s ∈ L(G), ∃s′ � s : s ≈Σo
t ∧ s′ ≈Σo

t′ ∧ s′ /∈ LS(G).
The secret S is K-step opaque on G if for every execution

t of G, for every secret execution t′ prefix of t with an ob-

servable difference inferior to K, there exist two executions

s and s′ observationally equivalent respectively to t and t′

s.t. s′ is not a secret execution.

Remark 1: If S is (G, PΣo
,K) opaque then S is

(G, PΣo
,K ′) opaque for K ′ ≤ K. Moreover, 0-step opacity

corresponds to “current” opacity (as defined in [2]).

Example 1: Consider Σo = {a, b}.

1Compared with [5], for simplicity, we only consider a unique initial state
and deterministic LTSs.

q0 q′
0

q1 q2 q3

q4 q5 q6
b

τ

a

a b a
a,b

b

a
b

a,b

(a) G1

q0 q1 q2

q4 q5 q3

τ

a

a
bb

b a

(b) G2

Fig. 2. Several systems with secret states (red squares)

• On G1 (Fig. 2a), the secret is not (G1, PΣo
, 0)-opaque,

as after the observation of a trace in b∗ ·a·b, the attacker

knows that the system is currently in a secret state (but

does not know whether it is q2 or q5).

• On G2 (Fig. 2b), the secret is (G2, PΣo
, 1) opaque.

However, the secret is not (G2, PΣo
, 2) opaque as only

τ ·a ·b ·a is a compatible execution with the observation

a · b · a. After the last a has occured, the attacker can

deduce that the system was in state q2 two steps ago.

IV. VERIFICATION OF OPACITY AT RUNTIME

A. Characterizing opacity on the observable behavior

To validate opacity with runtime techniques, we need to

characterize K-step opacity in terms of observable behavior.

Proposition 1: S ⊆ QG is (G, PΣo
,K) opaque iff

∀µ ∈ TΣo
(G), ∀µ′ � µ : |µ−µ′| ≤ K ⇒ [[µ′/µ]]Σo

6⊆ LS(G).
S is (G, PΣo

,K) opaque if for each observable system trace

µ, and each of its prefixes µ′ with less than K observations

less than µ, if there exists an execution compatible with µ′

ending in a secret state, then there exists another compatible

execution that does not end in a secret state.

In the sequel, the set of traces, for which the K-step

opacity of the secret is revealed, is formally defined by:

leak(G, PΣo
, S)

def

=
{

µ ∈ TΣo
(G) |

∃µ′ � µ :|µ− µ′| ≤ K ∧ [[µ′/µ]]Σo
⊆ LS(G)

}

.
(1)

Corollary 1: S is (G, PΣo
,K) opaque iff

leak(G, PΣo
, S) = ∅.

In some cases, it is interesting to characterize the set of traces

that reveal the secret at exactly k steps with k ≤ K:

leak(G, PΣo
, S, k)

def

= {µ ∈ TΣo
(G) | (3) ∧ (4)}, (2)

with
∃µ′ � µ : |µ− µ′| = k ∧ [[µ′/µ]]Σo

⊆ LS(G), (3)

∀µ′ � µ : |µ− µ′| < k ⇒ [[µ′/µ]]Σo
6⊆ LS(G). (4)

That is, there exists an observation trace that reveals the

opacity of the secret k steps ago (3) and every observation

trace which is produced strictly less than k steps ago does

not reveal the opacity (4). Furthermore, one may notice that
⋃

0≤k≤K leak(G, PΣo
, S, k) = leak(G, PΣo

, S).

B. Synthesizing Runtime Verifiers

We present how we runtime verify the opacity of a secret

on a given system using a monitor. A monitor captures, for

each observation µ ∈ Σ∗
o, what the attacker can infer about

the current execution of the system and the possible leakage

of the secret w.r.t. the considered opacity. A monitor can be

used by an administrator to discover opacity leakages on the

system and take appropriate reactions.

Definition 4 (Runtime verifier): A runtime verifier (R-

Verifier) V is a finite-state machine (QV , qV
init

,Σo, δV , D,Γ
V)

where ΓV : QV → D is the output function. D
def

=
{leak0, . . . , leakK, noleak} is the truth domain.

We now state the properties that an R-Verifier should satisfy:

Definition 5 (R-Verifier soundness and completeness):

An R-Verifier V is sound and complete w.r.t. G, PΣo
, S

whenever ∀µ ∈ TΣo
(G), ∀l ∈ [0,K] :

ΓV(δV(q
V
init

, µ)) = leakl ⇔ µ ∈ leak(G, PΣo
, S, l)

∧ ΓV(δV(q
V
init

, µ)) = noleak ⇔ µ /∈ leak(G, PΣo
, S).

An R-Verifier is sound (⇒ direction) if it never gives a false

verdict. It is complete (⇐ direction) if all observations raise

an appropriate “leak” verdict: a noleak verdict when the

opacity is preserved, a leakl verdict when the opacity leaks at

l observable steps on the system. R-Verifiers are synthesized

directly from K-delay state estimators.

Proposition 2: For G, S ⊆ QG , the R-Verifier V = (QV ,
qV
init

, Σo, δV ,D,Γ
V) built from the K-delay state estimator

D = (MD,mD
init

,Σo, δD) of G where QV = MD, qV
init

=
mD

init
, δV = δD, and ΓV : QV → D defined by

• ΓV(m) = noleak if ∀k ∈ [0,K] : m(k) /∈ 2S ,

• ΓV(m) = leakl where l = min{k ∈ [0,K] | m(k) ∈
2S} otherwise,

is sound and complete w.r.t. G, PΣo
, S and K-step opacity.

V. ENFORCEMENT OF OPACITY AT RUNTIME

We build runtime enforcers for K-step opacity. An underly-

ing hypothesis is that the system is live, i.e., not deadlocked

and always produces events, e.g., a reactive system. Roughly

speaking, the purpose of a runtime enforcer is to read some

(unsafe) execution sequence produced by G (input to the

enforcer) and to transform it into an output sequence that

is safe regarding opacity (see Fig. 1c).

A runtime enforcer acts as a delayer on an input sequence

µ, using its internal memory to memorize some of the events

produced by G. It releases a prefix o of µ containing some

stored events, when the system has produced enough events

so that the opacity is ensured, i.e., when the enforcer releases

an output o (the only sequence seen by the attacker), then

either this sequence does not reveal the opacity of the secret

or the system has already produced a sequence µ � o,

making the knowledge of o obsolete to the attacker. For

instance, if the enforcer releases a sequence o leaking the

secret at k ≤ K steps, it has already received a sequence µ
from the system s.t. |µ| − |o| > K − k.

Let us illustrate informally how we enforce opacity.

Example 2 (Principle of enforcing opacity): On G2, the

secret is not (G2, PΣo
, 2) opaque because of the observation

sequence a ·b ·a. A runtime enforcer will delay this sequence

in such a way that, when the attacker determines that the

system was in a secret secret, it is always more than K = 2
steps ago on the real system. That is, some of the events

produced by the system will be retained inside the enforcer

memory. Intuitively, for the aforementioned sequence, the

expected behavior of a runtime enforcer is as follows.

Sequence of G2 Obs. sequence Memory Output

τ ǫ ǫ ǫ

τ · a a ǫ a

τ · a · b a · b ǫ a · b

τ · a · b · a a · b · a a a · b

τ · a · b · a · a a · b · a · a ǫ a · b · a · a

τ · a · b · a
+

a · b · a
+

ǫ a · b · a
+

When the system produces the sequence τ · a, the enforcer

should not modify the observation trace a which is safe

regarding opacity. When the system produces the sequence

τ ·a ·b, the enforcer observes a ·b and lets the system execute

normally (we expect the system execution to be minimally

modified). Then, when the system produces a new a, the

enforcer memorizes this event (the attacker still sees a · b).
Next, when the system produces another a, the system was in

a secret state 3 steps ago. Thus, the enforcer can release the

first stored a. Indeed, when the attacker observes a · b ·a, the

system has produced a ·b ·a ·a, and was in the secret state q2
three steps ago: (G2, PΣo

, 2) opacity of S is thus preserved.

Finally, the last received a and subsequent ones can be freely

output by the enforcer since they preserve 2-step opacity.

A. Defining Runtime Enforcers

We define a generic notion of runtime enforcers which are

special finite-state machines. By reading events, they produce

enforcement operations that delay the input trace or release

some already stored events to ensure opacity.

Definition 6 (Enforcement operations Ops and memory):

The memory of runtime enforcers is a list whose elements

are pairs consisting of an observable event and an integer.

The set of possible configurations of the memory is thus

M(T) =
⋃T

i=0(Σo×N)i. When an element (σ, d) ∈ Σo×N

is inside the memory, it means that the event σ has to

be retained d units of time before being released by the

enforcer to preserve opacity. Enforcement operations take

as inputs an observable event and a memory content (i.e.,

a special sequence of events, detailed later) to produce in

output an observable sequence and a new memory content:

Ops ⊆ 2(Σo×M(T))→(Σ∗
o×M(T)).

Examples of enforcement operations consist of memorizing

input events or halting the underlying system. In Section V-

C, we define enforcement operations dedicated to opacity.

Definition 7 (Generic R-Enforcer (R-Enforcer(Ops))):

An R-Enforcer E is a 6-tuple (QE , qE
init

,Σo, δE ,Ops,
ΓE ,M(T)) defined relatively to a set of observable events

Σo and parameterized by a set of enforcement operations

Ops. The finite set QE denotes the control states, qE
init

∈ QE

is the initial state. δE : QE × Σo → QE is the transition

function. The function ΓE : QE → Ops associates an

enforcement operation to each state.

Informally an R-Enforcer performs a transition by reading

an event produced by the system. The arriving state of the

transition is associated to an enforcement operation which

is applied to the current event and the memory content. In

the following we abbreviate δE(q, a) = q′ by q
a

−→E q′. The

notion of run is naturally transposed from its definition for

LTSs: for a trace µ = σ0 · · ·σn−1 of length n run(µ, E) =
(q0, σ0/α0, q1) · (q1, σ1/α1, q2) · · · (qn−1, σn−1/ αn−1, qn),

with ∀i ∈ [0, n − 1] : ΓE(qi+1) = αi. In the remainder,

E = (QE , qE
init

,Σo, δE ,Ops, ΓE , M(T)) designates an R-

Enforcer and µ ∈ Σ∗
o designates the current observation trace

of the system input to the R-Enforcer. We formalize how

R-Enforcers(Ops) react to input traces through the standard

notions of configuration and derivation.

Definition 8 (Semantics of R-Enforcer(Ops)): A configu-

ration is a 3-tuple (q, µ, c) ∈ QE × Σ∗
o × M(T) where q

denotes the current control state, µ the remaining trace to

read, and c the current memory configuration.

• A configuration (q′, µ′, c′) is derivable in one step from the

configuration (q, µ, c) and produces the output2 o ∈ Σ∗
o,

and we note (q, µ, c)
o
→֒ (q′, µ′, c′) if and only if µ =

σ · µ′ ∧ q
σ

−→E q′ ∧ ΓE(q′) = α ∧ α(σ, c) = (o, c′).
• A configuration C ′ is derivable in several steps from a

configuration C and produces the output o ∈ Σ∗
o, and we

note C
o

=⇒E C ′, if and only if

∃k ≥ 0, ∃C0, . . . , Ck : C = C0 ∧ C ′ = Ck

∧∀i ∈ [0, k[, ∃oi ∈ Σ∗
o : Ci

oi
→֒ Ci+1

∧o = o0 · · · ok−1.
We define the transformation performed by an R-Enforcer,

with a set of enforcement operations Ops.

Definition 9 (Trace transformation): E transforms µ into

the output trace o � µ as defined by the relation ⇓E⊆ Σ∗
o ×

Σ∗
o, where ǫ refers to ǫΣo

:

• ǫ ⇓E ǫ,
• µ ⇓E o if ∃q ∈ QE , ∃c ∈ M(T) : (qE

init
, µ, ǫM)

o
=⇒E

(q, ǫ, c).
The empty sequence ǫ is not modified by E (i.e., when the

system does not produce any event). The observation trace

µ ∈ Σ∗
o is transformed by E into the trace o ∈ Σ∗

o, when

the trace is transformed from the initial state of E , starting

with an empty memory. Note that the resulting memory

configuration c depends on the sequence µ\o of events read

by the R-Enforcer but not produced in output yet as we shall

see in the remainder of this section.

B. Enforcing the opacity at runtime

Before defining this enforcement notion more formally, we

first formalize, for a given trace of G, which of its prefixes

can be safely output.

Definition 10 (Prefixes that are safe to output): For K-

step opacity, a trace µ ∈ TΣo
(G), we say that it is safe to

output µ′ � µ, noted safe(µ, µ′), if

µ′ /∈ leak(G, PΣo
, S)

∨∃k ≤ K : (µ′ ∈ leak(G, PΣo
, S, k) ∧ |µ| − |µ′| ≥ K − k).

That is, it is safe to produce µ′ � µ if either µ′ does not

reveal the opacity or it reveals the opacity at k steps but it

was produced on the system more than k steps ago. Note that

when it is safe to produce a given trace, then all its prefixes

are safe to produce:

∀µ, µ′ ∈ TΣo
(G) : safe(µ, µ′) ⇒ ∀µ′′ ≺ µ′ : safe(µ, µ′′).

2Note that o can be ǫ if the enforcer chooses to not produce an output.

Furthermore, by convention, we will only consider systems

for which it is safe to produce ǫ, i.e., when some sequences

of [[ǫ]]Σo
are not secret. Under the assumption that the system

is alive, for a given trace, there always exists one of its

extension traces which is safe to output, i.e.,

∀µ ∈ TΣo
(G), ∃µ′ ∈ TΣo

(G) : µ � µ′ ∧ safe(µ′, µ).

e.g., any µ′ s.t. |µ′−µ| > K. Moreover, the set of traces that

lead a given sequence to be safe is extension-closed, i.e.,

∀µ′ ∈ TΣo
(G) :(∃µ ∈ TΣo

(G) : µ′ � µ ∧ safe(µ, µ′))

⇒ (∀µ′′ ∈ TΣo
(G) : µ � µ′′ ⇒ safe(µ′′, µ′)).

1) Expected properties for runtime enforcers.: We now

explain what we mean exactly by opacity enforcement, and

what are the consequences of this definition on the systems

and secrets. The following constraints are expected to hold

for the enforcers we aim to synthesize.

• soundness: the output trace should preserve the opacity

of the system;

• transparency: the input trace should be modified in a

minimal way, namely if it already preserves opacity it

should remain unchanged, otherwise its longest prefix

preserving opacity should be issued.

On Example 2, soundness entails a runtime enforcer to e.g.,

output a · b (instead of a · b · a) when G2 produces τ · a · b · a.

Transparency entails a runtime enforcer to e.g., output a · b ·
a · a (instead of any prefix) when G2 produces τ · a · b · a · a.

Remark 2: There always exists a trivial, sound but gen-

erally non transparent, enforcer delaying every event by K
units of time for K-step opacity.

The formal definition of opacity-enforcement by a runtime

enforcer relates the input sequence produced by the program

fed to the enforcer and the allowed output sequence so that

the enforcer is sound and transparent.

Definition 11 (Enforcement of opacity by an enforcer):

The R-Enforcer E enforces the K-step opacity of S w.r.t.

PΣo
on a system G if ∀µ ∈ TΣo

(G), ∃o � µ : µ ⇓E o ⇒

µ /∈ leak(G, PΣo
, S) ⇒ o = µ (5)

µ ∈ leak(G, PΣo
, S) ⇒ o = max

�
{µ′ � µ | safe(µ, µ′)}. (6)

A sound and transparent R-Enforcer always produces maxi-

mal safe sequences:
Proposition 3: For a sound and transparent R-EnforcerE:

∀µ ∈ TΣo
(G), ∀o � µ :

µ ⇓E o ⇒
(

safe(µ, o) ∧ ∀o ≺ o′ � µ : ¬ safe(µ, o′)
)

.
Most of the previous enforcement approaches (e.g., [18],

[14]) used enforcement mechanisms with a finite but un-

bounded memory under the soundness and transparency

constraints. Since we are setting our approach in a general

security context, we go one step further on the practical

constraints expected for a desired enforcement mechanism

dedicated to opacity. Here we consider that the memory

allocated to the enforcer has a given size3:

• do-not-overflow: the size of the partial trace memorized

by the enforcer does not exceed the allocated memory size.

3Besides memory size limitation, this constraint can represent the desired
quality of service, e.g., maximal allowed delay.

2) When is the opacity of a secret enforceable on a sys-

tem?: After stating the constraints on runtime enforcement

for opacity, we need to delineate the systems, interfaces and

secrets s.t. opacity is enforceable using runtime enforcers.

Existence of sound and transparent R-Enforcers with un-

bounded memory for opacity relies first on the provided

characterization of opacity preservation on the observable

behavior as finitary properties (Section III-D) and second

on existing results in enforcement monitoring of finitary

properties (see e.g., [18], [14]). Now, the existence of an

R-Enforcer for K-step opacity relies only on the do-not-

overflow constraint of a memory of size T , defined as

max
µ∈TΣo (G)

{

min{|µ \ o| | o � µ ∧ safe(µ, o)}
}

≤ T.

The previous enforcement criterion is not usable in practice

and is not computable generally. Thus, we will give a more

practical and decidable enforcement criterion using K-delay

state estimators. To each state of the K-delay state estimator,

we have seen that it is possible to determine the opacity

leakage. Intuitively, the reasoning is as follows. If we reach

a state in the K-delay state estimator s.t. it leaks the 2-step

opacity of the secret (i.e., the attacker knows that the system

was in a secret state 2 steps ago). Then for K ≥ 2, the

enforcer has to delay the last event produced by the system

by K − 1 units of time. Indeed, after that, the attacker will

know that the system was in a secret state K + 1 steps ago.

This knowledge is safe w.r.t. K-step opacity.

The criterion on K-delay state estimators uses the follow-

ing lemma, which is a direct consequence of the accuracy of

state estimators.

Lemma 1: Given a system G, a projection map PΣo
, and

a secret S, the states of the K-delay state estimator D =
(QD, qD

init
,Σo, δD) are s.t.:

∀µ1, µ2 ∈ TΣo
(G) : δD(mD

init
, µ1) = δD(mD

init
, µ2) ⇒

∃k ∈ [0,K] : µ1, µ2 ∈ leak(G, PΣo
, S, k)

∨ µ1, µ2 /∈ leak(G, PΣo
, S).

All traces ending in a given state of the state estimator reveal

or preserve opacity in the same way. Thus, in a K-delay state

estimator D = (QD,mD
init

,Σo, δD), to each state m ∈ QD,

we can associate the delay to hold (i.e., after which it is safe

to “release”) the last received event of the trace leading to

this state in order to preserve opacity: ∀m ∈ QD :

hold(m)
def

=

{

K + 1− k when (7)
0 otherwise (i.e., when (8))

with:
∃k ∈ [0,K], ∀µ ∈ TΣo

(G) :

δD(mD
init

, µ) = m ⇒ µ ∈ leak(G, PΣo
, S, k)

(7)

∀µ ∈ TΣo
(G) :

δD(mD
init

,µ) = m ⇒ µ /∈ leak(G, PΣo
, S)

(8)

Equivalently, using an R-Verifier V = (QV , qV
init

,Σo,
δV ,D,Γ

V) for G and K-step opacity, and synthesized from

D (thus QD = QV and qD
init

= qV
init

), ∀µ ∈ TΣo
(G) :

hold(δD(mD
init

, µ)) = K + 1 − k when ΓV(δV(q
V
init

, µ)) =
leakk. Thus, synthesis of R-Enforcers will rely on the

synthesis of R-Verifiers.

Proposition 4: Let D = (QD,mD
init

,Σo, δD) be the K-

delay state estimator associated to G. The K-step opacity of

the secret S is enforceable by an R-Enforcer with a memory

of size T iff max{hold(m) | m ∈ QD} ≤ T .

Consequently, enforcement of a K-step opacity with a mem-

ory of a given size is decidable.

C. Synthesis of runtime enforcers

To address the synthesis of runtime enforcers for opacity, we

first define their primitives: the enforcement operations.

1) Enforcement operations: Let us define some auxiliary

operations. In the following, we will use the following nota-

tions for the memory of R-Enforcers. For a pair (σ, d) ∈ Σo×
N, (σ, d).delay

def

= d. For two memory configurations c, c′ s.t.

c = ((σ1, d1) · · · (σt, dt)), c
′ = ((σ1, d1) · · · (σt′ , dt′)) with

t′ ≤ t,:

• c↓Σo

def

= σ1 · · ·σt,

• (c \ c′)↓Σo
is ǫΣo

if c = c′ and the sequence of events

σt′+1 · · ·σt otherwise.

Definition 12 (Auxiliary operations): For a memory M of

size T , given t ≤ T and c = (σ1, d1) · · · (σt, dt) ∈ M(T),
free and delay (M(T) → M(T)) are defined as follows:

• delay(c)
def

= (σ1, d1 − 1) · · · (σt, dt − 1), with t ≤ T ;

• free(c)
def

= (σi, di) · · · (σt, dt), with 1 ≤ i ≤ t and

∀j ∈ [1, i− 1] : cj .delay ≤ 0 ∧ ∀j ∈ [i, t] : cj .delay > 0.
The operation delay consists in decrementing the delay of

each element inside the memory. Intuitively, this operation

is used when one step has been performed on the system,

and thus the stored events revealing the opacity have to be

retained for one unit of time less. The operation free consists

in outputting the events that currently do not leak opacity

(with a negative or null delay). The following operations are

those actually used by the runtime enforcers.

Definition 13: The enforcement operations are defined as

follows where σ ∈ Σo, c = (σ1, d1) · · · (σt, dt) ∈ M(T).

• stored(σ, c)
def

= (o, c′ · (σ, d)), with c′ = free ◦ delay(c),
o = (c \ c′)↓Σo

;

• dump(σ, c)
def

= (o, c′′) with

• c′
def

= free ◦ delay(c),
• o

def

= c↓Σo
· σ if c′ = ǫM and (c \ c′)↓Σo

else,

• c′′
def

= (c \ c′) · (σ, 0) if c′ 6= ǫM and ǫM else;

• off(σ, c)
def

= dump(σ, c);

• halt(σ, c)
def

= (ǫΣo
, ǫM).

For d ∈ [1,K], the stored operation is issued when the

event submitted to the R-Enforcer should be delayed by d
unit(s) of time in order to preserve opacity. This operation

consists in first releasing the events preserving the opacity

(using free ◦ delay) and appending the event with the needed

delay to the memory. The dump operation is issued when

the submitted event does not reveal the opacity. The event

is submitted but not necessarily produced in output. The R-

Enforcer first releases the events preserving the opacity. After

this step, if the memory is empty, then the event is appended

to the output sequence. Otherwise, the event is appended

in the memory with delay 0 so as to first be released in

the future and preserve the order of the input trace. The

off operation is issued by an R-Enforcer when the opacity

will not be revealed whatever are the future observable

events produced by the system. Thus, the R-Enforcer can

be switched off. Although the off has the same definition as

the dump operation, such an enforcement operation is useful

in practice since it reduces the overhead induced by the R-

Enforcer. The halt operation is issued when the considered

notion of opacity is irremediably revealed. This operation

consists in ignoring the submitted event, erasing the memory,

and stopping the underlying system.

2) Synthesis of R-Enforcers: We propose now to address

the synthesis of R-Enforcers relying on K-delay state esti-

mators and the function hold.

Proposition 5: Given G, S and Σo ⊆ Σ, the R-Enforcer

E = (QE , qE
init

,Σo, δE , {halt, stored, dump, off | d ∈
[1,K]},ΓE , M(T)), built from the K-delay state estimator

D = (MD,mD
init

,Σo, δD) of G where QE = MD, qE
init

=
mD

init
, δE = δD, and ΓE : QE → {off, dump, stored, halt |

d ∈ [1, T]} defined by:

• ΓE(m) = off if hold(m) = 0 ∧ ∀m′ ∈ ∆D({m},Σ∗
o) :

hold(m′) = 0,

• ΓE(m) = dump if hold(m) = 0 ∧ ∃m′ ∈ ∆D({m},Σ∗
o) :

hold(m′) 6= 0,

• ΓE(m) = stored if ∃d ∈ [1, T] : hold(m) = d,

• ΓE(m) = halt if ∃d > T : hold(m) = d.

enforces the K-step opacity of S under PΣo
on G.

An R-Enforcer built following this construction processes

an observation trace of the underlying system and enforces

the opacity of the secret. As for the R-Verifier, the R-Enforcer

has the same structure as the K-delay state estimator. To build

the R-Enforcer, for each state m of the K-delay state estima-

tor, one needs to determine hold(m) which can be obtained

using the opacity leakage provided by the R-Verifier (see

Section V-B). An R-Enforcer switches off when the current

read observation trace and all its possible continuations on

the system do not leak the opacity of the secret. It dumps

the event of the last observed trace when this trace does not

leak the opacity but there is a possibility that the secret may

leak in the future. It stores the last event of the observed

trace in memory for d unit(s) of time, with d ≤ T , when

the current sequence leads the K-step opacity to be revealed

K+1−d step(s) ago (hold(m) = d). Consequently, when the

attacker will observe this event, this will reveal the opacity

of the secret at strictly more than K steps. When the current

sequence leaks the K opacity of the secret d steps ago with

d > T , the R-Enforcer halts the underlying system since the

last event of this sequence cannot be memorized with the

allocated memory of size T .

Example 3: Fig. 3 represents the R-Enforcers of G1 and

G2 for 1-step and 2-step opacity, respectively. We assume a

sufficient memory, i.e., T ≥ 2 for G1 and T ≥ 1 for G2.

Remark 3 (R-Enforcer optimization): In R-Enforcers, we

can reduce the states in which the off operation is produced,

into a unique state. This is a straightforward adaptation of

the transformation that is not modifying their correctness.

m0

dump

m1

dump

m2

dump

m3

store–2

m4

store–1

m5

store–1

m6

off

m7

off

m8

off

m9

off

m10

off

m11

off

a

b
b

a

b

a

b

a, b

a, b

a, b

a, b

bba

a, b

a
ba

(a) 1-step of G1

m0

dump

m1

dump

m2

dump

m3

store–1

m4

off

m5

off

m6

off

a

b

a

b

b
b

a

a

(b) 2-step of G2

Fig. 3. R-Enforcer for K-step opacity

VI. RELATED WORK

A. Model-checking of K-step opacity

In [19] and its companion paper [20], the authors ad-

dressed the model-checking of K-step opacity, using K-

delay state estimators. A secret S is (G, PΣo
,K) opaque iff

there does not exist a state m reachable in D, the K-delay

state estimator of G, such that ∃k ∈ [0,K] : m(k) ∈ 2S .

B. Using runtime techniques

1) Validating simple opacity via testing: In [21], the

authors are interested in testing the simple opacity of a

system. In the context of ensuring opacity via access control

mechanisms, the authors extend the classical theory of con-

formance testing in order to derive tests that detect violation

of conformance by an access control implementation to

its specification. Testing is another runtime-based validation

technique to validate opacity. The authors only address the

current opacity of the secret. Validation of the K-step based

opacity through testing remains to be studied.

2) Runtime verification and enforcement for linear-time

properties: Numerous runtime verification and enforcement

frameworks exist for linear-time properties (cf. [17] for a

short survey). Most of them focus on monitoring safety

properties. Runtime enforcement was initiated by the work

of [15] on what has been called security automata; i.e.,

monitors watching the execution and halting the program

whenever it deviates from the desired property. Later, [22]

proposed a more powerful enforcement mechanism called

edit-automata. This mechanism featured the idea of “sup-

pressing” (i.e., freezing) and “inserting” (frozen) actions in

the current execution of a system.

To the best of our knowledge, only one runtime validation

approach was proposed for (current) opacity [23]. Thus, this

article first addresses runtime verification for K-step opacity

and introduces runtime enforcement as a validation technique

for opacity. Note that the notion of runtime enforcer proposed

in this paper is inspired from and extends the variant used

in [24] to enforce linear-time properties.

C. Comparison with supervisory control

Because of the halt operation, runtime enforcement is

similar to supervisory control. Indeed, blocking the system

or letting its execution going through are the only primitives

endowed to controllers. The difference between supervisory

control and runtime enforcement is as follows. In supervisory

control, the underlying system is put in parallel with a

controller. When a controlled system tries to perform an

illegal action, this action is disabled by the controller. In

runtime enforcement, actions of the systems are directly fed

to the enforcer, that delays or suppresses illegal actions.

Illegal actions are thus actually executed on the system but

not produced in output. (the effect of illegal actions is not

visible from the outside). Hence, enforcement monitoring

is appropriate to ensure a desired behavior on the system

outputs, while supervisory control is appropriate to ensure

a desired behavior on the internal behavior of a system.

Finally, note that, the system to be considered in a runtime

enforcement approach is the initial system along with its

runtime enforcer, while in supervisory control, it is the

product between the initial system and the controller.

VII. CONCLUSION AND FUTURE WORK

1) Conclusion: We are interested in the use of runtime

techniques to ensure K-step opacity. Proposed runtime tech-

niques are complementary to supervisory control, which is

usually used to validate opacity on systems. With runtime

verification, we are able to detect leakages for the various

levels of opacity. With runtime enforcement, opacity leakages

are prevented, and this technique guarantees opacity preser-

vation for the system of interest. The techniques proposed

in this paper have several advantages compared to existing

validation approaches for opacity. With the aim of ensur-

ing the opacity of system, runtime enforcement is a non

intrusive technique that is not damaging the internal nor the

observable behavior of the underlying system. All results

are implemented in a toolbox, named TAKOS: http://

toolboxopacity.gforge.inria.fr.

2) Future work: Other opacity conditions could be han-

dled in this framework such as initial opacity (cf. [25]) or

infinite-step opacity (cf. [26]). New kinds of state estimators

are needed, as shown in [25], [26] for verification purposes.

As the proposed runtime techniques are complementary to

supervisory control, we plan to study how we can combine

those techniques to obtain the best of both worlds. For

instance, when runtime enforcement with a given memory

size is not possible, one may be interested in synthesizing

controllers to restrict the system so as to ensure the existence

of enforcers. Two practical implementation issues should be

addressed. The first one is the retrieval of a suitable model of

the analyzed system from its source or binaries for the pro-

posed techniques to be applicable. The second one concerns

integrating/translating the synthesized (high-level) verifiers

and enforcers to general-purpose programming languages.

REFERENCES

[1] Y. Falcone and H. Marchand, “Various notions of opacity verified and
enforced at runtime,” INRIA, Tech. Rep. 7349, 2010.

[2] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dynamic Systems,
vol. 17, no. 4, pp. 425–446, 2007.

[3] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” Int. J. of Information Security,
vol. 7, no. 6, pp. 421–435, 2008.

[4] R. Alur and S. Zdancewic, “Preserving secrecy under refinement,” in
33rd Internat. Colloq. on Automata, Languages and Programming, ser.
LNCS, vol. 4052, 2006, pp. 107–118.

[5] A. Saboori and C. N. Hadjicostis, “Verification of k-step opacity
and analysis of its complexity,” IEEE Trans. Automation Science and

Engineering, vol. 8, no. 3, pp. 549–559, 2011.
[6] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for

opacity,” IEEE Trans. on Automat. Contr., vol. 55, no. 5, pp. 1089–
1100, 2010.

[7] S. Takai and Y. Oka, “A formula for the supremal controllable and
opaque sublanguage arising in supervisory control,” SICE J. of Contr.,

Measurement, and System Integration, vol. 1, no. 4, pp. 307–312,
March 2008.

[8] S. Takai and R. Kumar, “Verification and synthesis for secrecy in
discrete-event systems,” in American Contr. Conf., 2009, pp. 4741–
4746.

[9] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory
strategies via state estimator constructions,” IEEE Trans. Automat.

Contr., vol. 57, no. 5, pp. 1155–1165, 2012.
[10] F. Cassez, J. Dubreil, and H. Marchand, “Dynamic observers for the

synthesis of opaque systems,” in 7th Int. Symposium on Automated

Technology for Verification and Analysis, 2009, pp. 352–367.
[11] Y. Wu and S. Lafortune, “Enforcement of opacity properties using

insertion functions,” in 51st IEEE Conf. on Decision and Contr., 2012,
pp. 6722–6728.

[12] A. Pnueli and A. Zaks, “PSL model checking and run-time verification
via testers,” in Int. Symp. on Formal Methods, 2006, pp. 573–586.

[13] K. Havelund and A. Goldberg, “Verify your runs,” in Verified Software:

Theories, Tools, Experiments: 1st IFIP TC 2/WG 2.3 Conf., Revised

Selected Papers and Discussions, 2008, pp. 374–383.
[14] Y. Falcone, J.-C. Fernandez, and L. Mounier, “Runtime verification

of safety-progress properties,” in 9th Work. on Runtime Verification,
2009, pp. 40–59.

[15] F. B. Schneider, “Enforceable security policies,” ACM Trans. of

Information System Security, vol. 3, no. 1, pp. 30–50, 2000.
[16] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability

classes for enforcement mechanisms,” ACM Trans. Programming

Lang. and Syst., vol. 28, no. 1, pp. 175–205, 2006.
[17] Y. Falcone, “You should better enforce than verify,” in 1st Int. Conf.

on Runtime Verification, ser. LNCS, vol. 6418, 2010, pp. 89–105.
[18] J. Ligatti, L. Bauer, and D. Walker, “Enforcing Non-safety Security

Policies with Program Monitors,” in European Symposium on Research

in Computer Security, 2005, pp. 355–373.
[19] A. Saboori and C. N. Hadjicostis, “Verification of k-step opacity and

analysis of its complexity,” in 48th IEEE Conf. Decision and Contr.,
2009, pp. 5056–5061.

[20] ——, “Delayed state estimation in discrete event systems and appli-
cations to security problems,” UIUC Coordinated Science Laboratory,
Tech. Rep., February 2008.

[21] H. Marchand, J. Dubreil, and T. Jéron, “Automatic testing of access
control for security properties,” in 21th IFIP Int. Conf. on Testing of

Communicating Systems, ser. LNCS, vol. 5826, 2009, pp. 113–128.
[22] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of non-

safety policies,” ACM Trans. on Information and System Security,
vol. 12, no. 3, pp. 1–41, 2009.

[23] J. Dubreil, T. Jéron, and H. Marchand, “Monitoring confidentiality by
diagnosis techniques,” in European Contr. Conf., 2009, pp. 2584–2590.

[24] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, “Runtime
enforcement monitors: composition, synthesis, and enforcement abili-
ties,” Formal Meth. in Syst. Design, vol. 38, no. 3, pp. 223–262, 2011.

[25] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,” Inf. Sci., vol. 246,
pp. 115–132, 2013.

[26] ——, “Verification of infinite-step opacity and complexity considera-
tions,” IEEE Trans. Automat. Contr., vol. 57, no. 5, pp. 1265–1269,
2012.

