
HAL Id: hal-00863286
https://inria.hal.science/hal-00863286

Submitted on 7 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Discrete Controller Synthesis into a Reactive
Programming Language Compiler
Gwenaël Delaval, Eric Rutten, Hervé Marchand

To cite this version:
Gwenaël Delaval, Eric Rutten, Hervé Marchand. Integrating Discrete Controller Synthesis into a
Reactive Programming Language Compiler. Discrete Event Dynamic Systems, 2013, 23 (4), pp.385-
418. �10.1007/s10626-013-0163-5�. �hal-00863286�

https://inria.hal.science/hal-00863286
https://hal.archives-ouvertes.fr

Discrete Event Dynamic Systems 2013
DOI 10.1007/s10626-013-0163-5

Integrating Discrete Controller Synthesis into a Reactive

Programming Language Compiler

Gwenaël Delaval · Eric Rutten · Hervé Marchand

Received: 6 April 2012 / Accepted: 20 March 2013

Abstract We define a mixed imperative/declarative programming language: declar-
ative contracts are enforced upon imperatively described behaviors. This paper de-
scribes the semantics of the language, making use of the notion of Discrete Controller
Synthesis (DCS). We target the application domain of adaptive and reconfigurable
systems: our language can serve programming closed-loop adaptation controllers, en-
abling flexible execution of functionalities w.r.t. changing resource and environment
conditions. DCS is integrated into a1 programming language compiler, which facili-
tates its use by users and programmers, performing executable code generation. The
tool is concretely built upon the basis of a reactive programming language compiler,
where the nodes describe behaviors that can be modeled in terms of transition sys-
tems. Our compiler integrates this with a DCS tool, making it a new environment for
formal methods. We define the trace semantics of our contracts language, describe its
compilation and establish its correctness, and discuss implementation and examples.

Keywords Reactive systems · Synchronous programming · Discrete control
synthesis · Compilation · Behavioral contracts · Adaptive / reconfigurable systems

This work was partly supported by the Minalogic project MIND and the ANR project Ctrl-Green.

Gwenaël Delaval
Univ. Grenoble, LIG, France
gwenael.delaval@inria.fr

Eric Rutten
INRIA/ LIG, Grenoble, France
eric.rutten@inria.fr

Hervé Marchand
INRIA Rennes, France
herve.marchand@inria.fr

2 G. Delaval, É. Rutten, H. Marchand

1 Introduction

1.1 Motivation w.r.t. programming languages

We define a mixed imperative/declarative programming language, in which declar-
ative contracts, stating dynamical temporal properties, are enforced at compilation-
time upon imperatively described behaviors. We propose in this way a programming
language design and compilation involving the concrete exploitation of the formal
model of the dynamical behavior of the program, as represented by the state space of
its control flow. Classically compilation takes into account statical properties holding
for all states (type consistency checking, optimizations and code generation). In con-
trast, we want to consider properties on the dynamical control flow of the program
under compilation. We consider here safety properties on sequences, for which we
use synchronous observers in order to reduce them to state-based properties (we do
not consider properties that evolve at run-time).

One example could be to use model-checking operations and test for the reach-
ability of states in order to determine whether code associated to such states is dead
code or not. In our approach we want to go further than this, by considering the
formal technique of Discrete Controller Synthesis (DCS). We integrate it in the com-
pilation to produce (part of) the control logic implementing the program. We consider
the family of reactive languages like StateCharts [19] or synchronous languages [5],
which lend themselves naturally to our approach. They rely on finite state machine
models, for specification at front-end, and at back-end as a target representation for
code generation, model checking or DCS.

1.2 Motivation w.r.t. DCS

DCS is stemming from control theory: it ensures by construction some required dy-
namical and qualitative properties on a transition system, by coupling it in a closed-
loop to a controller that determines the set of actions which may be taken without
compromising the properties [8,37]. Application of Discrete Control Theory to com-
puting systems is relatively recent, e.g., DCS on Petri nets can be used to automati-
cally derive controllers avoiding dead-lock configurations in a multi-thread program
[40]. We model the transition system by Symbolic Transition Systems [33], an im-
plicit Boolean representation of the dynamic behavior (implemented by means of
BDD to avoid the enumeration of the state space), and focus on the synthesis of
controllers for safety properties. We integrate DCS into a compiler, and thereby im-
prove its usability by programmers, and provides them with support for executable
code generation. From a description in a high-level programming language of both
the system and the expected properties to be fulfilled, the controlled system is auto-
matically produced, in the same high-level language, from which executable code is
generated.

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 3

representation
system

system
managed

decision

policy / strategy

monitor execute

(a) Adaptive system.

model
automaton

system
managed

DCS ctrl

BZR program

executemonitor

(b) BZR programming.

Fig. 1 BZR programming of adaptation control.

1.3 Motivation w.r.t. adaptive and reconfigurable systems

We target the application domain of reconfigurable computing systems, which are
also called adaptive systems, in the sense that they adapt, by reconfiguring them-
selves, to changes in their environment or execution platform concerning, e.g., power
supply, communication bandwidth, quality of service, surface used in a FPGA, com-
putation load, or dependability and fault tolerance for a safe execution. The adaptive
systems that we consider can switch between known modes, and we want to control
these switches (but we do not consider adaptive control). The run-time management
of this adaptivity is the object of research on the design of adaptation strategies. A
global approach is referred to as autonomic computing, where functionalities are de-
fined for sensing the state of a system, deciding upon reconfiguration actions, and
performing and executing them. These functionalities are assembled into a closed-
loop as illustrated in Figure 1(a). When safe design is an important issue, there is a
contradiction with dynamical operating system features. Obtaining static predictabil-

ity is the goal of model-based methods for specification, validation and verification
techniques of embedded systems. In a context of increasing complexity of systems,
coupled with more and more integration (independent functional tasks sharing com-
mon resources), handwriting correct controllers remains difficult and error-prone. We
want to combine these two different requirements for adaptive systems, i.e., to be
adaptive and predictable. We consider the controller of such an adaptive system as a
reactive system, and the design of a correct controller as a Discrete Control problem.
Such a system has running configurations, represented by states, and it can perform
reconfigurations, represented by labelled transitions.

We want a well-defined language that separates concerns, that is to say that sup-
ports separate specification of, on the one hand, the possible behaviors of the com-
ponents, their different execution modes, the way they can switch between them, and
their controllability, in the form of an automaton model; and on the other hand, in a
contract, the adaptation policy to be followed, the control objectives for the compo-
nents assembly, from which DCS can generate a control decision component.

4 G. Delaval, É. Rutten, H. Marchand

1.4 Typical examples

We consider a computing system featuring a set of tasks, considered at the level
of their activity behavior, with states characterized by their consuming resources:
processing or memory, power, or other. We want to coordinate such tasks while en-
forcing the constraints around resources. These tasks are represented by their be-

havior in terms of activation state, initially idle. They can be started into an active
state. Some tasks can be controlled into an intermediary state, before being activated,
where they may be waiting until a required resource is free; there, they do not con-
sume any resource. Others can be controlled, from the active state, into a suspended
state, where they will consume no computing resource, but will hold their memory
resource. Functionalities can also have different modes, characterized by the use of
different resources, and by different levels of quality of service for the offered func-
tionality.

Managing this multi-task system involves enforcing some coordination proper-

ties on the interactions between the tasks, around the resources, e.g., simple mu-
tual exclusion between active states of two tasks, or bounded number of tasks in the
active mode at the same time, in order to limit access to some bounded resource.
Another, more dynamical management property concerns enforcing that between ac-
tivations of two given tasks, another third task must always have been activated (e.g.,
re-initializing or cleaning up some accessed resources).

For example an adaptive communication system may have a behavior with modes
accessing the cellular phone network, and other modes accessing the WiFi: they may
involve different protocols, different prices (which constitutes another resource). An
adaptation policy must define what mode to choose, in terms of properties, separately
from the possible behaviors. As soon as the programmed system comprises several
such concurrent tasks, with several policies to be enforced, the controller enforcing
these policies can be very intricate to program manually. Therefore, automated con-
troller generation can here be helpful.

Such simple examples illustrate the separation of concerns enabled by our lan-
guage: it is the compilation, involving DCS, that computes automatically the correct
relation between, on the one hand, the controllability of the components, and on the
other hand, the adaptation policy. As in Figure 1(b), the reactive component, written
in our reactive programming language, will be receiving input flows of task activation
requests and of task termination signals; it will produce flows of task starting signals
to be executed by the system platform. It decides what signals to send out, w.r.t. the
automaton model of the set of tasks, while enforcing the management policy, imple-
mented into a controller automatically generated by DCS.

1.5 Contribution and overview

Our contribution in this paper is particularly in the programming language level in-
tegration of discrete control objectives, concretized by the use of DCS within the
compilation, for which we do not know, to the best of our knowledge, other closely
related work. From the point of view of programming languages, it is uncommon

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 5

that a model of the dynamics of the program is taken into account by the compila-
tion, and even rarer that it is exploited for synthesizing the resulting behavior : our
approach is therefore novel. From the point of view of Discrete Control, it allows to
consider novel application areas, and shows the relevance of theoretical approaches
to modularity and abstraction.

A companion paper describes how compilation works with modular DCS com-
putations [12], whereas this paper defines the programming language semantics in
a denotational way. Previous work, preceding these papers, involved some separate
and partial aspects of the problem, testing the idea in the framework of a more modest
specialized language and elaborating on the articulation between reactive programs
and DCS [33,2].

We proceed by defining the BZR programming language and its compilation as an
extension of the Heptagon reactive language presented in Section 2.1. In the semantic
framework of transitions systems, the operation of DCS can be applied, as we recall
in Section 2.2. On these bases, our contribution is the definition of a construct for
nodes with contracts: they have an assumption part, given which they will satisfy the
enforce part, relying upon local control variables. This is presented first informally
in Section 3, with a simple example. The trace semantics of the language defines the
behavior of the programs, as presented in Section 4.

As detailed in Section 5, the compilation of these programs involves:

– the extraction of the control part from the body and contract, and its compilation
into an uncontrolled transition system;

– the extraction of the control objectives from the contracts;
– the application of DCS upon the previous two elements;
– the transformation of the obtained maximally permissive constraint into a deter-

ministic controller function, by triangularization;
– the composition of the obtained controller with the uncontrolled program, pro-

ducing the correct controlled automaton.
– the resulting composition is compiled towards target code, e.g., C or Java, and

consists of a step function, to be called at each reaction of the reactive system, and
a reset function for (re)initialization purposes. They then have to be embedded as
a control component in the adaptive system under design [13].

In this compilation process, we re-use existing tools, for synchronous compilation
and for DCS, and build our contribution on top of them.

Section 6 describes an example, illustrating how the programming language works.
Section 7 gives an overview of related work, and Section 8 concludes.

2 Reactive systems and their supervisory control

This section introduces the classical bases, upon which we will build our contribution
in the next sections. We first rely on the corpus of reactive languages, and more par-
ticularly synchronous languages and Mode Automata, with notations inspired from
LUCID SYNCHRONE [11]. We further present the notion of discrete event systems,
their supervisory control, and more particularly the automated technique of DCS.

6 G. Delaval, É. Rutten, H. Marchand

2.1 Reactive programming and synchronous languages

2.1.1 Nodes

For scalability and abstraction purpose, we consider synchronous programs struc-
tured in nodes, consisting in a name, input and output variables representing flows of
values, and equations defining outputs as functions of inputs. The basic behavior is
that at each reaction step, values in the input flows are used in order to compute the
values in the output flows for that step. Inside a node, this is expressed as a set of
declarations D, which takes the form of equations defining, for each output and local,
the values that the flow takes, in terms of an expression on other flows, possibly us-
ing local flows and values computed in preceding steps (also known as state values).
The complete syntax of our language is given in Section 3.2. A simple equation node
is illustrated in Figure 2, where for input flows a,b,c and d, all Boolean, a Boolean
output flow m is true when more than two out of the four inputs are true.

node morethantwo(a,b,c,d:bool) = (m:bool)

let

m = (a and b and (c or d)) or ((a or b) and c and d)

tel

Fig. 2 Simple equation node.

A particular type of node which we consider in this paper is used to encode Mode
Automata, which give the possibility of mixing equational programming with more
imperative automata-based programming. We consider programs expressed as syn-
chronous automata, with parallel and hierarchical composition. With each state of an
automaton, a node can be associated, with equations, or a Mode Automaton. At each
step, according to inputs and current state values, equations associated to the current
state produce outputs, and conditions on transitions are evaluated in order to deter-
mine the state for the next step (i.e., transitions are considered weak). It can be noted
that such higher-level constructs can be compiled towards the minimal kernel [11],
hence they will not be represented explicitly in the semantics.

An example of Mode Automaton is a very basic task controller, distinguishing
between its idle and active states. This example is shown in Figure 3 in graphical
syntax, with an example of input/output trace. The node is named task. A “go” input
g causes the transition from the initial idle state to the active state (step 2 on the ex-
ample), where computations take place, with corresponding resources consumption.
An output s is emitted on this transition1, which will fire the concrete task starting in
the controlled operating system. Another input e signals the termination of the task,
and causes transition back to idle (step 5). Equations associated with the states define
the value of an output a. This basic pattern will be used in different ways.

An interesting variant is the delayable task, for which Figure 4 gives the graphical
and texual syntax. An additional input flow c enables the control of the request r, by

1 Such emissions on transitions, used here for simplicity, are easily translated to equations associated
with states, as in Figure 4.

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 7

task(g,e) = a,s

Idle
e

g/s

Active

a = truea = false

Step 1 2 3 4 5 6 . . .
Current state Idle Idle Active Active Active Idle . . .

g false true false false false false . . .
e false false false false true false . . .
a false false true true true false . . .
s false true false false false false . . .

Fig. 3 Basic task control.

either accepting it right away and going to the active state, or going to a wait state,
from where c can later fire the starting. The output flow a appropriately defines the
activity.

Idle Wait

e r and c / s

a = false a = false

delayable(r,c,e) = a,s

Activea = true
c / s

r and not c

(a) Graphical syntax.

node delayable(r,c,e:bool) = (a,s:bool)

let

automaton

state Idle

do a = false ; s = r and c

until r and c then Active

| r and not c then Wait

state Wait

do a = false ; s = c

until c then Active

state Active

do a = true ; s = false

until e then Idle

end

tel

(b) Textual syntax.

Step 1 2 3 4 5 6 . . .
Current state Idle Idle Wait Wait Active Active . . .

r false true false false false false . . .
c false false false true false false . . .
e false false false false false false . . .
a false false false false true true . . .
s false false false true false false . . .

(c) Example: input/output trace

Fig. 4 Delayable task.

8 G. Delaval, É. Rutten, H. Marchand

2.1.2 Node composition

The composition of equations constructs a system of equations, with a synchronous
semantics. Nodes can be composed synchronously, e.g., automata, behaving as a syn-
chronous product. Figure 5 shows the composite node twotasks, constructed by the
synchronous composition of instances of the nodes task and delayable described
above.

twotasks(r,cr,er,g,eg) = ar,sr,ag,sg

ag,sg = task(g,eg)

ar,sr = delayable(r,cr,er)

Fig. 5 Composite node with delayable task.

The corresponding composition performs a global transition at each step. The
implementation takes the form of a reset function, to initialize state variables, and
a step function, encoding the transition function. In such implementations, the syn-
chrony hypothesis consists of considering that the function is guaranteed to return in
bounded time.

2.1.3 Basic semantic framework for nodes

We represent the logical behavior of a Mode Automaton by a symbolic transition
system (STS), as illustrated in Figure 6, in its equational form. Synchronous com-
pilers essentially compute this transition system from source programs, particularly
handling the synchronous parallel composition of nodes. For a node f , a transition
function T takes the inputs X and the current state value, and produces the next state
value, memorized by S for the next step. The output function O takes the same inputs
as T , and produces the outputs Y .

YX
OT S

Fig. 6 Transition system for a program.

STS definition. Formally, from a node f , we can automatically derive an STS given
by S f (X ,S,Y)2, defining a synchronous program of state variables S ∈ B

m, input
variables X ∈ B

n, output variables Y ∈ B
p. S f (X ,S,Y) is a four-tuple (T,O,Q,Q0)

with two functions T and O, and two relations Q and Q0 as in (1), where the vectors
S and S′ respectively encode the current and next state of the system and are called

2 Note that there exists a one to one mapping from a node f (only handling Boolean variables) to S f .

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 9

state variables. T ∈ B[S,X] represents the transition function.

S f (X ,S,Y) =















S′ = T (S,X)
Y = O(S,X)
Q(S,X)
Q0(S)

(1)

It is a vector-valued function [T1, . . . ,Tn] from B
m+n to B

m. Each predicate compo-
nent Ti represents the evolution of the state variable Si. O ∈ B[S,X] represents the
output function. Q0 ∈ B[S] is a relation for which the solutions define the set of
initial states. The relation Q ∈ B[S,X] is the constraint between current states and
events that defines which transitions are admissible, i.e., the (S,X) for which the
transition function T is actually defined. This constraint can be used, e.g., to encode
assumptions on the inputs, i.e., assumptions on the environment. The semantics of
an STS S f is defined as set of sequences (s,x,y) = (si,xi,yi)i such that Q0(s0) and
∀i, Q(si,xi)∧ (si+1 = T (si,xi))∧ (yi = O(si,xi)). This set of sequences is denoted by
Traces(S f) .

Operations on STS. Given two STS S f1 and S f2 , we note by S f1‖S f2 , the syn-
chronous parallel composition of S f1 and S f2 which consists in performing the con-
junction of the constraint predicates of S f1 and S f2 , and is defined whenever state
and output variables are exclusive. Communications between the two systems are ex-
pressed via common inputs and outputs variables, which are considered as outputs of
the composition. Formally, S f1‖S f2 is the STS S f1‖S f2((X1 ∪X2) \ (Y1 ∪Y2),S1 ∪
S2,Y1 ∪Y2):

S f1‖S f2 =















S′1,S
′
2 = (T1(S1,X1),T2(S2,X2))

Y1,Y2 = (O1(S1,X1),O2(S2,X2))
Q1(S1,X1)∧Q2(S2,X2)
Q01(S1)∧Q02(S2)

Given an STS S f (X ,S,Y), we denote by S f ⊲A the extension of constraints of S f

with the predicate A ∈ B[S,X], namely S f ⊲A = (T,O,Q∧A,Qo).

2.2 Discrete Controller Synthesis

DCS, emerged in the 80’s [37,8], defines constructive methods, that ensure required
properties on a system behavior. Starting from a behavioral model of the system and
the set of properties that have to be satisfied, the synthesis produces the constrained
system, so that only behaviors satisfying required properties are kept.

In our framework, DCS is an operation that applies on a transition system (origi-
nally uncontrolled), where inputs X are partitioned into uncontrollable (Xu) and con-
trollable variables (Xc). It is applied with a given control objective: a property that
has to be enforced by control. In this work, we consider invariance of a subset of the
state space (typically, forcing a predicate over the state variables of the system to be

10 G. Delaval, É. Rutten, H. Marchand

always true). But we can also use observer automata composed in parallel with the
original system, to enable general safety properties3.

The purpose of DCS is to obtain a controller, which is a constraint on values
of controllable variables Xc, as a function of the current state and the values of un-
controllable inputs Xu, such that all remaining behaviors satisfy the property given as
objective. The synthesized controller is maximally permissive, it is a priori a relation;
it can be transformed into a control function. This is illustrated in Figure 7, where the
transition system of Figure 6, as yet uncontrolled, is composed with the synthesized
controller C, which is fed with uncontrollable inputs Xu and the current state value
from S, in order to produce the values of controllables Xc which are enforcing the
control objective. The transition system then takes X = Xu ∪Xc as input and makes a
step by computing the new state and producing the new outputs.

O
YX

Xc

Xu T SC

Fig. 7 Controlled transition system.

Formally, given an STS S f as in (1) and a goal predicate G(S) ∈ B[S], to be made

invariant (i.e., always maintained true by control), a controller is a predicate K ∈
B[S,Xc,Xu] that constrains the set of admissible events so that the state traces of the
controller system always satisfy the predicate G. The behavior of the system super-
vised by the controller is then modeled by S f ⊲K. The controller describes how
to choose the static controls; when the controlled system is in state s, and when an
event xu occurs, any value xc such that Q(s, xc,xu) and K(s,xc,xu) can be chosen.
One has to note that K is non-deterministic w.r.t. the controllable variables, in the
sense that for each state of the system and for each valuation of the uncontrollable
variables, there might exists several valuations for the controllable ones that respects
K. Obviously, this non-determinism has to be solved in some ways. One possibility
is to encapsulate in the system, a predicate solver, that either asks an external user to
make a choice amongst the possible solutions or that itself performs a random choices
amongst them. Following a method similar to the one described in [21,32], another
possibility is to derive from the controller a set of functions Fc

i that depends on S, Xc,
Xu and some fresh phantom variables φi, one for each controllable variables, namely:

K(S,Xc,Xu)⇔∃(φi)i≤ℓ























Xc
1 = Fc

1 (S,X
u,φ1)

· · ·
Xc

i = Fc
i (S,X

u,Xc
1 , · · · ,X

c
i−1,φi)

· · ·
Xc
ℓ = Fc

n (S,X
u,Xc

1 , · · · ,X
c
ℓ−1,φℓ)

3 An observer is simply an STS allowing to capture a safety property over the sequences of the systems
(e.g. the event a does not occur twice in a row in the system). As usual, we assume that an observer
is complete so that when performing the composition with the STS of the system, the behavior of the
resulting STS is not changed.

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 11

In other words, whatever the valuation of a tuple (s,xu,xc) is, there exists a valuation
(vφi

)i≤ℓ of (φi)i≤ℓ such that xc
i = Fc

i (s,x
u,xc

1, · · · ,x
c
i−1,vφi

).
At this point, either the variables (φi) can be seen as new inputs of the system

or can be eliminated by choosing for each of them a value. Note that in this case,
we loose the equivalence (only ⇒ implication is kept). For clarity reasons, this is the
second choice we have made in this paper. Hence, from the controller K, we derive a
deterministic controller C which is a function from B

S∪Xu
→ B

Xc
.

S f /C =















S′ = T (S,C(S,Xu),Xu)
Y = O(S,C(S,Xu),Xu)
Q(S,C(S,Xu),Xu)
Q0(S)

(2)

The result is a controlled STS as in (2) such that ∀(s,xu,y) ∈ Traces(S f /C), G(s).
Note that the controllable variables of Xc are now encapsulated inside the STS and
become internal variables. This definition is used in Section 5.3 to assess the correct-
ness of the compilation of our language. Given an STS S f with Xc as controllable
variables and G the predicate to be made invariant, we denote C = DCS(S f ,X

c,G)
the operation which consists in computing a controller C so that in S f /C, the predi-
cate G is always true.

Remark 1 It might happen that given a node S f and a control objective G, there is
no admissible controller to ensure this goal (this is basically due to the uncontrollable
aspects of input variables). In such a case, the node is said to be uncontrollable w.r.t.
G (but might be controllable for another goal).

All the DCS procedure is actually automatic, and implemented in the tool SIGALI [33],
which manipulates STS using Binary Decision Diagram (BDD), in order to avoid the
state space enumeration when computing the controller. From a computational point
of view, the translation of a node and its associated control objective to an STS is
automatic as well as the computation of the controller C. This controller is then auto-
matically translated in the original framework by adding a new node fC derived from
C in the original program following the scheme of Figure 7, which is essential in our
approach, where we want to build a compiler using DCS.

Remark 2 In this section, we only focused on ensuring safety properties. However,
it is worthwhile noticing that non-blocking properties can also be considered within
this framework. It would basically consists in ensuring the reachability of a given
set of states F by computing a controller C so that from every state reachable from
the initial state under the control of C, F remains reachable. This procedure is also
implemented in SIGALI and can be used as a possible contract within our framework
(note however, that to be correct, we need to keep the maximal permissive controller;
otherwise the reachability is not ensured).

3 Behavioral contracts language

We introduce a new language construct, supporting separation of concerns between
description of components to be managed, and control policy to be enforced. The

12 G. Delaval, É. Rutten, H. Marchand

f (x1, . . . ,xn) = y1, . . . ,yp

assume eA

enforce eG

with c1, . . . ,cq

y1 = f1(x1, . . . ,xn,c1, . . . ,cq)
· · ·
yp = fp(x1, . . . ,xn,c1, . . . ,cq)

(a) BZR node graphical syntax.

with g,cr

exor(r,er,eg) = ar,sr,ag,sg

assume true

enforce (ag xor ar)

ar,sr,ag,sg = twotasks(r,cr,er,g,eg)

(b) Mutual exclusion contract node.

Fig. 8 BZR nodes.

advantage is that the programmer does not write the solution, but poses the control
problem. Hence, when the policy changes for the same system, or when aspects of the
system are changed but are managed with the same policy, modifications are limited,
re-use is facilitated, and clarity is favored.

3.1 Contract construct

3.1.1 Simple contract node.

As shown in Figure 8(a), we associate to a node a contract, which is a program with
two outputs: an output eA representing the environment model of the node and an
invariance predicate eG that should be satisfied by the node. At the node level, the
programmer declares controllable variables c1, . . . ,cq, that will be used for ensuring
this objective. This contract means that the node will be controlled, i.e., that values
will be given to c1, . . . ,cq such that, given any input trace yielding eA, the output trace
will yield eG. This will be done by computing a controller using DCS.

Figure 8(b) shows a simple problem of complementarity between activities of two
tasks: one “background” and one delayable task. The contract node exor instantiates
the node twotasks of Figure 5. We assume for this example and the following one
that this instantiation gives access to the body of the sub-node (this option being
available in the actual compiler); such assumption will not be true in further sections.
A contract is given by stating that the assumption is empty (or true), and that the
property to be enforced is that only one and at least one of the two tasks should be
active at any time: (ag xor ar). In order to enforce this contract, g and cr are defined
locally to the contract node. Concretely, the control flows g and cr are used to delay
the starting of the delayable task when the background task is already active, until the
latter stops; and conversely if the delayable task stops, the other is started.

Several nodes can have the same body, behaviorally specialized with different as-
sumptions and enforcements. The other way around, it is possible to apply the same
contract, to a different body (changing a sub-component in its refined description),
and to re-obtain the updated controller simply by compilation. The contract can itself
feature a program, typically automata observing traces and defining states, as men-

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 13

observer(s1,s3,e1,e2) = err

e2 ∧¬s3 ∧¬s1

s3

s1 ∧¬s3

err = false

err = true

s3 ∧¬e1

e1

e2 ∧¬s3 ∧ s1

err = falseerr = false

e2 ∧ s3

(a) Observer: always 1 between 2 and 3.

ar,sr,ag,sg = twotasks(r,cr,er,g,eg)

enforce not err

with cr

insert(r,er,g,eg) = ar,sr,ag,sg

err = observer(sg,sr,eg,er)

assume true

(b) Contract node for task insertion.

Fig. 9 Observer and contract node.

tioned in Section 2.2, to express a variety of safety properties. For example, an error
state can be defined where the intended property is false, with the intention to keep
it outside an invariant subspace. Such an observer is illustrated in Figure 9(a): given
input flows for the starting and stopping events of three tasks, it outputs value true
on flow err when a sequence is observed such that task 3 is started (upon s3) after
task 2 (upon its end event e2), without a complete execution of task 1, from s1 to
e1, having taken place in between : this sequence violates the property that we have
always 1 between 2 and 3.

The contract in Figure 9(b) uses this observer for having always an execution of
the simple task between two executions of the delayable task; this amounts to make
invariant the state space where err is false. To enforce this, cr is used to delay the
starting of the delayable task until a full execution of the other one stops.

f (x1, . . . ,xn) = y1, . . . ,yp

assume eA

enforce eG

with c1, . . . ,cq

f1(x11, . . . ,x1n,c1, . . . ,cq) = y11, . . . ,y1p

assume eA1
enforce eG1

· · ·
fp(xp1, . . . ,xpn,c1, . . . ,cq) = yp1, . . . ,ypp

assume eAp

enforce eGp

Fig. 10 BZR composite node.

3.1.2 Composite contract node.

A composite BZR node has a contract of itself, and sub-BZR-nodes with their own
contracts, as in Figure 10. Sub-nodes may communicate, e.g., some of the inputs xpi

of sub-nodes can come from the outputs of other sub-nodes y1i or from the values xi

produced by the node. This is where modularity gets involved, and the information

14 G. Delaval, É. Rutten, H. Marchand

about contracts of the sub-nodes, which is visible at the level of the composite, will
be re-used for the compilation of the composite node. The objective is still to control
the body, by using the controllable variables c1, . . . ,cq, so that eG is true, assuming
that eA is true. But here, we have information on sub-nodes: we do not keep their
body as it would lead to a state space explosion, but these nodes are abstracted to
their contracts, which can then be used in the DCS at that level. So, we can assume
not only eA, but also, in the case of two sub-nodes, (eA1 ⇒ eG1) and (eA2 ⇒ eG2).
Accordingly, the control problem becomes that: assuming eA and (eA1 ⇒ eG1) and
(eA2 ⇒ eG2), we want to enforce eG, and also eA1 and eA2 so that the contracts of the
sub-nodes will be effectively satisfied. In particular, part of the control at the level of
the composite can take care of making true the assumptions of the sub-nodes. More
formal explanations are given in section 5.1.

3.2 Complete syntax of the minimal contract language

We focus on kernel of Figure 11, into which other constructs, e.g., automata, can be
compiled [11]. A program P is a sequence of nodes d1 . . .dn.

P ::= d . . .d
d ::= node f (x)=(x)

[contract (D,e,e) with x]
let D tel

D ::= x = e | D;D

e ::= i | x | op(e) | (e,e) | f (e)
op ::= fby | fst | snd | not | or | and
i ::= true | false

Fig. 11 Syntax of the language with contracts.

A node is denoted:

d = node f (x)=(y)
contract (D1,eA,eG) with c

let D2 tel

where f is the name of the node, x are its inputs, y its outputs. (D1,eA,eG) with c is
its contract, and D2 the definitions of outputs and local variables. The contract part is
optional. Within a contract, D1 represents the exported definitions, eA an expression
for the “assume” part of the contract, eG the “guarantee” part, and c the controllable
variables. D1 contains no sub-node application.

Definitions D2 are a set of equations, separated by ;, each defining a variable x

by an expression e.
An expression can be Boolean constants (i), or refer to variables (x), operations

op on sub-expressions, pairs of expressions, and applications of a function f on an
expression.

Operations are:

– e1 fby e2 which defines a new flow with the first element of flow e1 followed by

the whole flow e2: this puts a delay on a flow e2, with an initial value given by e1;
– fst and snd are the pair selectors (resp. first and second value);

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 15

– not, or and and are Boolean operators, applied point-to-point.

Binary operators (like fby, or and and) are considered as unary operators applied on
pairs. We denote by e1ope2 the expression op(e1,e2).

4 Trace semantics

We give a trace semantics of our language, inspired from the denotational semantics
of the LUCID SYNCHRONE language [16]. It is defined by a function denoted JeK,
which associates to an expression e the set of infinite traces corresponding to e’s
evaluation. We define some basic functions in Figure 12, upon the notion of infinite
sequence of values V ∞. For Booleans, True(s)⇔ s = true.true

N from V ∞ to sets of triples of V ∞ is the set of functions defining nodes. The set of
resulting values is a set of possible triples (s,sA,sG), where s is the result of the
node, and sA and sG the value of respectively the “assume” and “guarantee” parts
of the node’s contract.

N defines node environments by, for a variable, its corresponding node function.
ρ defines trace environments by, for a variable, the set of its infinite traces of instan-

taneous values. ρ1 ⊕ρ2 denotes union of environments, only on distinct domains.
J·KN

ρ is the function giving the trace semantics of the language. From a node environ-
ment N and a trace environment ρ , this function gives:

– from an expression, the set of infinite traces of its resulting values;
– from an equation (or set of equations), the trace environment for the vari-

able(s) it defines.
JdKN is the function which, from a node environment N, associates to a node d the

function from traces to set of traces representing this node.

Based upon this, Figure 13 gives the semantic rules as follows.
The rule (OpSeq) states that Boolean operators are applied point to point on infi-

nite traces.
The semantics of the fby operator (rule (Fby)) is that the front element of the

first trace is appended with the second trace. The resulting trace has the values of the
second with a one-step delay; the first value of the first trace gives the initial value for
the resulting delayed flow. This is the only kernel operator involving memory, from
one step to the other.

Boolean constant flows i are flows of the Boolean constant (rule (Imm)). A vari-
able x is evaluated in the trace environment ρ by extracting its value (rule (Var)). The
rule (Op) describes the semantics of operators, which are applied on traces of their
operands. The rule (Pair) matches pairs of traces to pairs of expressions.

N : V ∞ → P(V ∞ ×V ∞ ×V ∞)
N : NodeEnv =Var → N

ρ : TraceEnv =Var → P(V ∞)
⊕ : TraceEnv×TraceEnv → TraceEnv

J·K : Exp×NodeEnv×TraceEnv → P(V ∞)
J·K : Eq×NodeEnv×TraceEnv → TraceEnv

J·K : Node×NodeEnv → N

J·K : Nodes → NodeEnv

Fig. 12 Functions for the trace semantics.

16 G. Delaval, É. Rutten, H. Marchand

op∞(v.s) = op(v).op∞(s) for op ∈ { and , or ,not } (OpSeq)

fby ∞(v1.s1,v2.s2) = v1.v2.s2 (Fby)

JiKN
ρ = {i.i. . . .} (Imm)

JxKN
ρ = ρ(x) (Var)

Jop(e)KN
ρ = {op∞(s)|s ∈ JeKN

ρ } (Op)

J(e1,e2)KN
ρ = Je1KN

ρ × Je2KN
ρ (Pair)

J f (e)KN
ρ =

{

s s.t. (s,sA,sG) ∈ N(f)(JeKN
ρ)

∧∀sA,sG,sA = sG = JtrueKN
ρ

}

(App)

Jx = eKN
ρ = {x 7→ JeKN

ρ } (Eq)

JD1;D2KN
ρ = JD1KN

ρ ⊕ JD2KN
ρ (Par)

s
node f (x)=(y)
let D tel

{N

= λ s.











(sy,JtrueKN
ρ ,JtrueKN

ρ) s.t.

ρ = f ix(λρ.(JDKN
ρ)({x 7→ s})

sy ∈ ρ(y)











(Node)

u
wwv

node f (x)=(y)
contract (D1,eA,eG)
with c

let D2 tel

}
��~

N

= λ s.







































(sy,sA,sG) s.t. ∃sc,

ρ = f ix(λρ.(JD1;D2KN
ρ)

({x 7→ s,c 7→ sc})
sy ∈ ρ(y)

sA = JeAKN
ρ

sG = JeGKN
ρ

True(sA)⇒ True(sG)







































(NodeC)

Jd1 . . .dnKN = Jd2 . . .dnKN⊕{d1 7→Jd1KN} (Nodes)

JPK = JPK /0 (Prog)

Fig. 13 Trace semantics of the BZR language.

The rule (App) states that a function can be applied as the special case of a node
where "assume" and "guarantee" parts are constantly true. This application has no
valid semantics if either part of the contract is not constantly true, in particular the
"assume" part (sA).

The semantics of equations (rule (Eq)) is that infinite traces of the left-hand side
of the equation are given by the semantics of the right-hand side of the equation.

The rule (Par) gives the semantics of parallel definitions, which is given by the
union of the environments obtained from the composed definitions.

The rule (Node) defines the semantics of nodes without contracts. A node f de-
fines a function which, given an input trace value s, gives a set of trace triplets (for
consistency with nodes with contracts) which first value is the output value of f .
This value is defined through a trace environment ρ , defined as a fix-point apply-
ing equations of D, initialized with the trace value of the input. This fix-point allows
the incremental computation of values for the synchronous composition of parallel
equations.

The rule (NodeC) gathers the specificity of our contribution: it gives us the se-
mantics of the application of a node with a body D2, with a contract having a body

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 17

D1 and controllable variables c. It is defined iff for each input s, there exists a trace sc

associated to the controllable variable c (within the fix-point initialization), such that
the implication between the evaluations of the "assume" (eA) and "guarantee" (eG)
parts holds.

The rule (Nodes) builds the node environment from definitions in the sequence of
nodes. Finally, the rule (Prog) builds the environment from a program P and an initial
empty environment.

5 Compilation

We show in this section how our language is compiled towards STS, on which DCS
can be applied.

5.1 Principle and corresponding DCS problem

The purpose of the compilation principle presented here is to show how to use a DCS
tool, within the compilation process of our language. We want to obtain, from each
node, an STS as defined in Section 2.2, in order to apply DCS on it. The obtained
controller is itself a node of equations, recomposed in the target language. Given the
definition of the semantics of a node in Section 4, and given the definition of DCS
in Section 2.2, the result obtained when recomposing the synthesized controller in a
node as in our compilation, behaves like the semantics of a contract node given in
Section 4.

5.1.1 Single contract enforcement

To compile a single contract node, we encode it as a DCS problem where, assuming
eA (produced by the contract program, which will be part of the transition system),
we will obtain a controller for the objective of enforcing eG (i.e., making invariant

the subset of states where eA ⇒ eG is true), with controllable variables Xc. This is
illustrated in Figure 14(a), re-using instances of the transition system of Figure 6:
one for the contract and one for the body of the node, and showing the controller
as in Figure 7. The contract program has access to the inputs X and outputs Y of
the body; its outputs eA and eG, and its state, which is part of the global state, are
accessible to the controller, as well as the state of the body and its (uncontrollable)
inputs X .

More formally, given a node f with its associated STS S f (X
c ∪Xuc,S,Y), a con-

tract will be given by a tuple Cont = (Sc,A,G) where Sc((X ∪Y),Sc, /0) is an STS
encoding the body of the contract, A∈B[Sc] and G∈B[Sc] are predicates, respectively
encoding the signals eA and eG. Now, in order to enforce the contract we consider the
STS SCont = (S ‖S c)⊲A on which we enforce by control the invariance of G. The
result is a controller C = DCS(SCont ,X

c,G)

18 G. Delaval, É. Rutten, H. Marchand

eA,eG

X

contract

O
Y

Xc

body

Tc Sc Oc

TC S

(a) BZR node as DCS problem.

X O
Y

eA1,eG1

eA2,eG2

contract2

Tc1 Oc1

Tc2 Sc2 Oc2

Sc1

C
Xc

body

eA,eG

contract

Tc Sc Oc

T S

contract1

(b) BZR composite as DCS problem.

Fig. 14 BZR and DCS problem

5.1.2 Compiling a composite contract node.

When compiling a composite contract node f , with sub-nodes, e.g. f1 and f2 as
described in Figure 10, one can associate to each sub-node its corresponding STS
S fi(Xi,Si,Yi). This is illustrated in Figure 14(b), re-using the same graphical nota-
tions. The STS S f can then be represented by the STS

S f (X ,S,Y) = (S ′‖S f1‖S f2)

where S ′ corresponds to the STS derived from additional local code used to de-
scribed f . Note that Xuc

i ⊆ S∪Xuc ∪Xc ∪Y , namely the uncontrollable variables of
the lower level can be defined either by state, uncontrollable or controllable inputs, or
outputs variables of the upper system. Thus to proceed to the encapsulation we need
to rename the variables Y uc

i according to their new name in the new system.
We assume that each sub-node comes with a contract Conti = (Sci

,Ai,Gi), with
Sci

(Xi ∪Yi,Sci
, /0), Ai ∈ B[Sci

], Gi ∈ B[Sci
], and that a controller Ci to ensure the in-

variance of Gi.
We want now to obtain a controller C for the system S f to fulfill a contract

Cont = (Sc,A,G), with Sc(Y ∪Z,Sc, /0), A ∈ B[Sc] and G ∈ B[Sc]. One way to do this
is to compute the whole dynamic of S and to control it using the previous method, but
this would lead to a state space explosion. Instead, we will use the contracts of the
sub-components as an abstraction of them. Thus, we use an abstracted STS S f , de-
fined as the composition of S ′ with the system part of the subcontracts, constrained
with the properties enforced by Ci on each of the sub-components. In other words,
we take the assume and enforced parts of the subcontracts as environment model of
the abstracted system.

Remark 3 The Yi variables were outputs of the lower level. As we abstract away the
body of this system, these variables have now to be considered as uncontrollable
variables of the upper system (indeed, there is no way to know their value). Besides,

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 19

the value of these variables is normally computed according to the value of Xuc
i and

internal variables. Hence, it exists causality problems between these variables and the
variables of the upper level. See [12] for more details.

We define the new system to be controlled as follows:

S f (Y
uc∪Z1∪ . . .∪Zn∪Xc,S,Y)=

(

S′‖
(

Sc1 ⊲(A1 ⇒G1)
)

‖
(

Sc2 ⊲(A2 ⇒G2)
)

)

We should notice that, in order to the STSs Si, controlled by their controller, to be
evaluated in a correct environment, the predicates Ai must be satisfied. Therefore, we
define a new contract Cont ′, which will be used to compute a controller on S f :

Cont ′ = (Sc, Â, Ĝ) where

{

Â = A

Ĝ = G∧A1 ∧A2

We then compute controller C, enforcing contract Cont ′ on STS S f . We can further
show that whenever S fi/Ci satisfies the invariance of Gi for i = 1,2 then

(S ′‖S f1/C1‖S f2/C2)/C

satisfies the invariance of G.

Remark 4 As mentioned in Section 2.2, one can also consider non-blocking con-
tract within our framework. However, even-though the controlled sub-nodes are non-
blocking it might happen that the composition of these nodes gives access to a block-
ing node. In order to ensure the non-blocking aspect, we have to consider the whole
system (with no abstraction) and ensure this property on this system (thus loosing the
modular aspect of the controller synthesis).

5.2 Formal compilation rules

We describe the compilation towards STS through a function Tr, from BZR equations
and expressions towards tuples (S ,Xu,G) where

– S (X ,S,Y) = (T,O,Q,Q0) denotes the obtained STS: for expressions, it only
defines one output value. For equations, the outputs are the variables they define.

– Xu denotes the additional uncontrollable inputs of the obtained STS, correspond-
ing to the outputs of the applied sub-nodes.

– G corresponds to the synthesis objectives from contracts of sub-nodes.

This compilation function Tr, applied on nodes, produces nodes without contracts.
We consider the compilation on normalized programs, following the restricted syntax
given below, defined such that the expressions e correspond to those allowed in STS.

D ::= x = e | D;D | x = f (x) | x = v fby x

e ::= i | x | op(e) | (e,e)
op ::=fst | snd | not | or | and
i ::=true | false

20 G. Delaval, É. Rutten, H. Marchand

Tr(e) = (S , /0, /0) where S (/0, /0,{y}) =
{

y = e (C-Exp)

Tr(y = v fby x) = (S , /0, /0) where S ({x},{s},{y}) =







s′ = x

y = s

s0 = v

(C-Fby)

Tr(y = f (x)) = (S ‖S c
f ,{y},A f) where S ({y}, /0,{z}) =

{

z = y

A f ⇒ G f
(C-App)

Tr(D1) = (S1,Y1,G1) Tr(D2) = (S2,Y2,G2)

Tr(D1;D2) = (S1‖S2,Y1 ∪Y2,G1 ∧G2)
(C-Par)

Tr











node f (X)=(Y)
contract

(D1,A f ,G f)
with (c1, . . . ,cn)
let D2 tel











=















node f (X)=(Y)
let

(c1, . . . ,cn)
=C(S,X ∪Xu);

D1;D2
tel















where















Tr(D1) = (S c
f , /0, /0)

Tr(D2) = (S2,X
u,G2)

S = (S c
f ‖S2)(X ∪Xu,S,Y \Xu)

C = DCS(S ⊲A f ,{c1, . . . ,cn},G2 ∧G f)

(C-Node)

Tr(d1 . . .dn) = Tr(d1)Tr(d2 . . .dn) (C-Prog)

Fig. 15 Compilation rules.

Particularly, equations with subnodes applications in the expression are decom-
posed into equations defining intermediate variables, with either an expression or a
subnode application. Compilation rules are given in Figure 15.

C-Exp : expressions are directly translated to an STS (T,O,Q,Q0) where only Q 6= /0,
in the form of an output function for y.

C-Fby introduces a fresh state variable s, with appropriate transition and initializa-
tion.

C-App translates applications by composing: S c
f , the STS of the contract of f ;

S , where the output y of the applied sub-node is considered as an additional
uncontrollable variable: as the body of f is abstracted, the value of y cannot
be known. This composition represents the abstraction of the application. The
assume/guarantee part of the contract of the applied sub-node, as in C-Node,
(A f ⇒ G f) is added as a constraint Q of the STS. It can be noted that the point
of this is to favor DCS, by giving some information of behaviors of sub-nodes:
this can enable to find control solutions, which a black box abstraction would not
allow. Hence it is an optimization of the modular control generation, not a neces-
sity w.r.t. the language semantics, which it should of course not jeopardize (see
Section 5.3).

C-Par : STSs from parallel equations are composed; additional variables from sub-
nodes are gathered; the synthesis objective is the conjunction of sub-objectives.

C-Node translates nodes with contracts to controlled nodes. It features the applica-
tion of the DCS function of Section 2.2 to the composition of the STSs from
the contract and the body. This composition is constrained with the operation

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 21

⊲ by the assumption part A f of the contract. The additional variables induced
by the abstractions of the applications are added as uncontrollable inputs to the
STS on which the DCS is performed. This rule defines S c

f , A f and G f used
for applications of f (rule C-App). The translation of nodes without contract is
the identity, defining S c

f as empty STS (neutral for parallel composition), and
A f = G f = true.

C-Prog translates the sequence of nodes of the program.

5.3 Conformance to trace semantics

The above compilation rules show how to obtain, from nodes with contracts, nodes
where the contracts have been replaced by a controller function obtained by DCS. The
semantics of nodes with contracts defines the set of possible output traces from input
traces, given the different possible controllable values. Using a computed controller
function gives us, for one input trace, only one controllable variable trace and thus
only one output trace. We expect that this specific output trace belongs to the set
of traces defining the semantics of the node with its contract. Therefore, we define a
relation ⊑ on program and node semantics, based on the set inclusions of expressions
semantics:

ρ1 ⊑ ρ2 ⇔ dom(ρ1) = dom(ρ2)∧∀x ∈ dom(ρ1),ρ1(x)⊆ ρ2(x) (3)

N1 ⊑ N2 ⇔ dom(N1) = dom(N2)∧∀ f ∈ dom(N1),

∀s ∈ V
∞,N1(f)(s)⊆ N2(f)(s)

(4)

The theorem on semantics conformance is expressed as:

Theorem 1 For all programs P, JTr(P)K ⊑ JPK

Proof The proof relies on induction on sequences of node definitions. The base case
is a single node program, without sub-nodes applications. We first prove that then,
the definition of DCS is sufficient to ensure conformance of the compiled node with
the semantics.

– Base step: case where P = d:

d = node f (X)=(Y)
contract (D1,A,G)
with c

let D2 tel

D2 has no sub-nodes applications, hence Tr(D2) = (S2, /0, /0) as (C-App) is the
only rule adding uncontrollable variables and synthesis objectives. Let Tr(D1) =
(S c

f , /0, /0) and S =S2‖S
c
f and C = DCS(S ⊲A,{c},G). By definition of DCS,

we have:

Traces((S ⊲A)/C)⊆ {s ∈ Traces(S ⊲A) s.t. G(s)} (5)

22 G. Delaval, É. Rutten, H. Marchand

From the definition of S ⊲A, we have

{s ∈ Traces(S ⊲ A) s.t. G(s)} ⊆ {s ∈ Traces(S ⊲ A) s.t. A(s) ⇒ G(s)} (6)

Let s and ρ = {x 7→ s}, such that s verifies A and let sc and ρ ′ = ρ ⊕{c 7→ sc}

such that JD1;D2K
/0
ρ ′ is defined and satisfies A ⇒ G.

As D2 contains no applications, the translation towards STS preserves the seman-
tics: JD2K

/0
ρ ′ = Traces(S2 ⊲A). In a similar way: JD1K

/0
ρ ′ = Traces(S c

f ⊲A). Thus,

JD1;D2K
/0
ρ ′ =Traces(S ⊲A). Hence JD1;D2;c =CK /0

ρ =Traces((S ⊲A)/C) which

is the left-hand side of (5). Also, JD1;D2K
/0
ρ ′ = Traces(S ⊲A), as featured in the

right-hand side of (6).
As a consequence, we have:

JD1;D2;c =CK /0
ρ ⊆ {JD1;D2K

/0
ρ⊕{c7→sc}

s.t. A ⇒ G}

As D1;D2;c =C is the body of Tr(d), and right-hand side is the semantics of d,
we conclude that:

JTr(d)K /0 ⊑ JdK /0

– Inductive step: case where P = d1 . . .dn.
Let N = Jd1 . . .dn−1K and N′ = JT (d1 . . .dn−1)K. By induction hypothesis, we have
N′ ⊑ N. Let

dn = node f (X)=(Y)
contract (D1,A,G)
with c

let D2 tel

We focus on node applications and definitions, as other semantic rules are defined
with operations preserving set inclusions. Particularly, parallel sub-node applica-
tions will be handled by rule (C-App). We assume that D2 = y = f (x).
Let s and ρ = {x 7→ s}, such that s satisfies A. From rule (C-App) we have Tr(y =

f (x)) = (S2,{y},A f) where S2 = S ‖S c
f and S ({y}, /0,{z}) =

{

z = y

A f ⇒ G f

Let (S1, /0, /0) = Tr(D1), C = DCS(S1‖S2 ⊲A,{c},G∧A f).

Jy = f (x)KN′

ρ is defined, since A f is a synthesis objective (hence, A f is enforced
by C). From the induction hypothesis:

Jy = f (x)KN′

ρ ⊆ {Jy = f (x)KN
ρ⊕{c 7→sc}

s.t. A f ⇒ G f }

Then, traces from Jy = f (x)KN′

ρ satisfy A f ⇒ G f , and:

Jy = f (x)KN′

ρ ⊆ Traces(S ‖S c
f).

Then, JD1;D2K
N′

ρ ⊆ Traces(S1‖S2).
As by definition of DCS,

Traces(S1‖S2/C)⊆{Traces(S1‖S2) s.t. A ⇒ G∧A f }

⊆{Traces(S1‖S2) s.t. A ⇒ G}

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 23

then:

JD1;D2;c =CKN′

ρ ⊆ {JD1;D2K
/0
ρ⊕{c7→sc}

s.t. A ⇒ G}

and JTr(dn)K
N′

⊑ JdnK
N .

5.4 Implementation

5.4.1 Compilation process

The compilation process is organized as shown in Figure 16.
A BZR program is compiled into two parts. The first part is the classical sequen-

tial code resulting from the compilation of the synchronous imperative part (automata
and equations). The second part is the translation of automata and contracts into tran-
sition systems (STSs) and synthesis objectives. This part is used by the DCS tool
(SIGALI) to produce a controller (constraint on inputs, states and controllable vari-
ables), which is then determinized and translated towards synchronous equations.
Thus, the controller itself is produced as a BZR program (without contract) and can
then in turn be compiled towards sequential code, in C or in Java; it is possible to
develop simple back-ends for other target languages. The two sequential parts (from
automata and the controller) can then be composed by simple link edition, defining
their synchronous composition.

controller
(function)

synchronous
compiler

contracts automata
BZR program

synchronous compiler
hec

transition
system+ objectives

DCS tool
Sigali

sequential code (C, Java, ...)

triangularize
translate to equations

controller
(constraint)

Fig. 16 BZR compilation process.

24 G. Delaval, É. Rutten, H. Marchand

This compilation process is modular, meaning that this process is applied on each
node, independently on (i) the body of its non-inlined subnodes and (ii) its calling
context in upper-level nodes.

5.4.2 Costs issues

At its kernel, our compiler calls the DCS tool SIGALI. The complexity of the involved
algorithms is exponential in the number of variables, just like other comparable op-
erations like model checking. On a more practical level, our techniques benefit from
the level of abstraction and granularity of control which is handled: we manage just
the reactive control kernel, not the whole system, thereby modelling key things, ab-
stracting the rest. Therefore the size of the controller on an adaptive system is much
smaller than the more data-related parts.

The table 1 shows the synthesis time and controller size on some examples4. The
four first columns give the number of variables (state variables, input and controllable
variables, and total number), thus giving an indication about the size of the example.
Although the synthesis cost is theoretically exponential, we can see that for examples
of reasonable sizes (30 state variables correspond to, e.g., the parallel composition of
10 automata of 5 to 8 states each), the synthesis time is of the order of seconds. In the
example of Section 6, the full compilation (synthesis included) takes hardly a second.

The size of the controller generated is theoretically exponential in the number of
variables ; but its online execution is linear. On the examples given on table 1, all
execution times for one step of the controlled system (thus including execution of the
controller itself) are of the order of few µseconds.

Example name # state vars # inputs # cont. total # vars synthesis
time (s)

contr. size
(# C loc)

bzradmin 20 7 3 30 0.11 494
bzrlang (Sec. 6) 47 6 5 58 0.52 2502
cellphone 29 17 6 52 0.61 2346
radiotrans 14 13 2 29 0.10 428
migration [7] 220 7 8 235 1188.06 49660
httpserver [13] 36 2 3 41 0.11 659
robot arm [1] 31 23 3 57 0.13 422
provadm 11 5 2 18 0.01 197
prog2 [12] 8 4 2 14 0.01 217
prog4 [12] 16 8 4 28 0.06 506
prog6 [12] 24 12 6 42 0.40 986
prog8 [12] 32 16 8 56 74.07 1535
prog10 [12] 40 20 10 70 0.97 2134
prog12 [12] 48 24 12 84 2.75 3051
prog14 [12] 56 28 14 98 5.73 3976
prog16 [12] 64 32 16 112 2990.58 6341

Table 1 Synthesis time and controller size of different examples

4 Experiments carried out on a 64 bits dual-core PC, 2.93 GHz, with 3.8 Gb of RAM

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 25

Moreover, we have some more thorough experiments regarding performance and
size of systems that can be managed [12], which show that scalability is greatly en-
hanced by modular synthesis.

5.4.3 Back end: executable code

At the back end, code generators from the synchronous compiler can be used, pro-
ducing typically, in C or Java, a function for the reactive step, and a function for the
initialization of state variables. The generated executable controller is integrated into
the adaptive system, linked with the particular host operating system and computation
model, and with functional (non-control) code. We can recall that for a synchronous
program, there are two ways of interacting with an execution platform:

– one of them is the calling of external functions in the host language from the
synchronous program: this enables interfacing easily with the non-synchronous
world, typically for features not available in the synchronous languages, e.g., ar-
bitrary functions and types (e.g., involving pointers and dynamical data struc-
tures), libraries, numerical computations, side-effects. In this scheme, care has to
be taken that the synchrony hypothesis is respected, i.e., the functions have to be
guaranteed to return in bounded time.

– the other is being called from the global executive, initialization or resetting, and
then each step of the reactive controller is launched by calling the generated con-
troller code; this has to be done at appropriate control points in the system. This
involvesthe following phases:
– the input event has to constructed e.g., by reading queues or buffers, or testing

flags set by callbacks since the last step.
– then the step is called e.g., from the body of a loop (which can be infinite), or

attached to an exception handling mechanism, or through an interrupt.
– finally, there is an interpretation of the output event, e.g., by the emission of

signals, call of functions, raising of flags.
It is possible to have several controllers obtained separately that way in the same
system, but their interactions can be taken into account by synchronous compila-
tion or DCS only if they are assembled in the same global program. No conflicts
are generated as long as only safety properties are considered.

We have experiences in such integrations in various contexts. In an experiment with
the design environment Orccad for control systems, on top of a Posix real-time op-
erating system [1], the step function is called each time an event is placed in the
automaton input FIFO. With the component-based framework Fractal, in its C im-
plementation developed in the MIND project [13], we instrumented the controlled
system with monitors related to the occupation of FIFOs, and these events are fed
to the step function. We are currently exploring the autonomic administration of de-
ployment of a virtual machine.

26 G. Delaval, É. Rutten, H. Marchand

6 Example

Our language introduces a different, unusual programming methodology. Whereas
classically computer programming consists of writing a control solution, in BZR we
specify the problem. This is related to the control theory way of approaching things:

– first write nodes that describe the process to be controlled (the “plant”), with all
its possible, uncontrolled behaviors; thereby identify its possible control points,
independently of their use;

– then write contracts that specify control objectives or desired behaviors; it can
be noted that different objectives can make sense for the same “plant”, and that
controllability of the plant for the given objective is not always given;

– compile the program to derive the controller, using DCS; like type synthesis does
for types, control synthesis can be described as a form of completion of the control
automaton, that was uncompletely specified.

This section illustrates these points, in the specific domain of embedded systems,
with the example of a robot manipulator arm.

6.1 The robot arm case study

Our example is a simplified form of a case study [1] concerning a robot arm, the ar-
ticulations of which define a mechanically reachable workspace. Such a robot must
always be under the control of a control law, otherwise the movements would be-
come erratic, depending on gravity, wind or any mechanical forces around. There is
also an exclusion constraint between these control laws, the actuator being an exclu-
sive resource for them. They are implemented in real-time tasks, that can be started,
and which can emit a termination event when their goal is reached, or predefined
exception events.

We consider six such control tasks. The robot arm can move its end, carrying a
tool, inside the workspace, using control based on Cartesian coordinates (C). How-
ever, some movements can lead its articulations to their limits, called singularities,
which causes an exception event to be raised. This requires to make an intermediary
move in order to turn around a singularity, using a different control, based on joint
coordinates (angles of the articulations) (J). These two control laws are grouped in
task CJ. Another possible control consists of trajectory tracking, used typically for
pointing towards a target outside the workspace (F). A second task of the same kind
takes care of positions on the borderline of the workspace (B). Another task is defined
for the change of tools (CT): it includes moving to the tool rack, and actually 1 taking
the tool. There are two tools available: one is a gripper, and can be used to grip the
target when it is inside the workspace; the other is a camera, which can be pointed
towards the target when it is outside. Finally, a background task can be activated in
the absence of other control laws, to maintain the current position (M) (as a robot
must never be out of control).

The application for this robot system consists in, when a target is indicated: if it
inside the workspace, go and grip it with the gripper; if borderline, go to a central

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 27

rob (endCT, endJ, singularity, take, inWork, outWork, border) = startC, startF, startB, startM, startJ, startCT, cam

Grip Cam

take

take

= cam

assume_camassume_cam

= not cam

righttool = (aCJ implies (not cam))

and ((aF or aB) implies cam);

ex = aF xor aCJ xor aB xor aCT xor aM;

morethanone = (inWork and outWork)

or (outWork and border)

or (inWork and border)

assume (assume_cam and take implies aCT and not morethanone)

enforce (righttool and ex)

with cF, cB, cCJ, cCT, cM

Obs

ActC ActJ

singularity / startJ

endJ / startC

aCJ = true

Idle ActM

cM / startM

not cM
aM = false

aM = true

Idle Wait

Active

cB / startB

aB = false

aB = true

/ startB

border and cB

border and not cB

aB = false

stopB

stopB

Wait
Cam

stopF = inWork or border ;

stopB = inWork or outWork ;

stopCJ = outWork or border ;

Idle Wait
aCJ = false aCJ = false

inWork and not cCJ

inWork and cCJ

stopCJ

cCJ / startC
/ startC

stopCJ

Idle Wait

Active

cF / startF

aF = false aF = false

aF = true

outWork and not cF

/ startF

outWork and cF

stopF

stopF

Idle

endCT and

aCT = false
cCT / startCT

Go
aCT = true

aCT = true

take and take
endCT

not take

Grip Cam

cam = false cam = true

take

take

B CJF

M CT

Obs

Fig. 17 Example of the robot controller: BZR node, with contract.

position with the camera aimed at it; or else if outside, extend to the border and point
at it with the camera.

6.2 Behaviors

Figure 17 shows the BZR node for the case study. The body describes the behaviors
of the different underlying real-time control tasks, at the level of abstraction of their
activation, which is appropriate for managing their interactions. From left to right we
have first, for task F , a simple variation of the delayable task of Figure 4: from an
initial inactive state, upon reception of the input outWork signaling a target outside
of the workspace, a transition is taken according to the choice variable (to be con-
trolled) cF: if true then the output startF is sent out to the real-time tasks handler,
the trajectory following control law is started, and the next state is Active; otherwise
it is false, and then control goes to the Wait state, from where, when cF is true,
the task can be started. From both Active and Wait, the reception of stopF causes
a transition back to Idle. For B, when the target is at the border, we have a sec-
ond instance of the same behavior. The next one describes CJ, the movements inside
the workspace: it also follows the delayable pattern, with the choice variable cCJ,
and a more elaborate active state: it is hierarchically refined into a sub-automaton,
where initially the Cartesian control task is active, and upon reception of the ex-
ception singularity, a switch is made to the joint control task; upon termination,
control reverts to the Cartesian mode.

On the lower side of the node, we have the automaton for the M task, where start
and end are controllable through cM. Underneath we have some equations defining
the stopping of tasks. Next to it is the automaton for the tool change task CT : it can
be triggered by the controller using variable cCT. Once active, when arriving at the

28 G. Delaval, É. Rutten, H. Marchand

tool rack upon endCT, it either takes the tool if it is available (when take is true), or
waits there until it is. We also have an observer automaton Obs for the current tool,
switching states each time a new tool is taken.

This parallel automaton describes all possible sequencings of the tasks: it does
not explicitly care for their exclusion, or for managing the appropriateness of the
tool. This is shown next in the declarative contract, and compiled with DCS.

6.3 Contract

The application must launch robot tasks corresponding to the current state of the
target (inside, outside or at the border of the workspace) and change the tool to get
the right one for each task. So the control objective is first to ensure that we have the
right tool, and second, to allow at most one task to be active at a time, and also at
least one, as mentioned in Section 6.1.

The set {cF,cB,cCJ,cCT,cM} of local controllable variables, defined in the with
part, is used for ensuring this objective. The contract specifies that the node will
be controlled, such that, given any uncontrollable input trace, the output trace will
satisfy the two objectives. It can be seen in the upper part of Figure 17: it is itself
a program, with equations defining variables. For the right tool for the right task, a
Boolean variable righttool is defined as the conjunction of two implications: they
state that when a task is active (aCJ, respectively aF or aB), it implies that the arm
carries the right tool (not cam, respectively cam). For mutual exclusion and default
control, an equation defines ex, which is the exclusive disjunction of active states for
the tasks. The contract also has an automaton, which will be visible when the node
is re-used, and makes the relation between cam and take. Given that only the body
of the node can produce outputs, we keep the observer there to produce cam, so these
two automata have different roles.

The assumption is that: assume_cam is true, which makes the relation between
the two automata mentioned above; the input take is only present when CT has been
activated (i.e., correspond to actual tool changes); only one of the inputs inside, out-
side and borderline is true at the same time. The contract is to enforce both Boolean
expressions.

6.4 Simulation and typical scenario

Here is a typical scenario showing the intervention of the controller on the system, so
that control objectives are enforced. At some point task CJ is active, the target inside
the workspace, and the tool carried by the arm corresponds to not cam. Then, the
user clicks outside of the workspace, so the application receives the outWork input.
This causes the flow stopCJ to be true, and the automaton for CJ to move by the
transition conditioned by stopCJ to its Idle state.

It also causes the automaton for task F to quit its initial state; here, we have a
choice point conditioned by cF. Due to the first contract property, righttool must
be kept true, so given that the current tool is not cam, the controller can not allow

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 29

the transition to Active of F , and must give the value false to cF. Hence task F

goes to its Wait state.
Due to the other contract property, ex must be kept true, which forces the con-

troller to maintain at least one active state. Therefore it launches the task CT using
the controllable variable cCT, which will change the tool.

In a later reaction, at the end of the task CT , with the endCT event, if take is
true, the automaton observing the current tool goes to a state where cam is true.
Thus we have the right tool for task F , and the controller can release F from Wait to
Active, by giving value true to controllable variable cF.

This shows how mutual exclusion and, more interestingly because it is dynamical,
insertion of a reconfiguration task between two other tasks, can be obtained.

6.5 Example of modular contracts

We illustrate modular contracts by considering two robot systems, sharing the camera
tool, while each has its own gripper. The model for such a robot workshop is illus-
trated in Figure 18, where two instances of the rob node are in parallel. The contract
simply says that the exclusivity of cam1 and cam2 should be enforced, with no further
assumption, with the controllables take1 and take2.

tworobs (endCT1, ... border1, endCT2, ... border2)
= startC1, ... startCT1, startC2, ... startCT2
enforce (not (cam1 and cam2))
with take1, take2

startC1, ... startCT1, cam1 = rob (endCT1, ... , take1, ... border1);
startC2, ... startCT2, cam2 = rob (endCT2, ..., take2, ... border2);

Fig. 18 Two robots sharing an exclusive camera.

Another modular contract example has been developed, with simplified behav-
iors involving only delayable tasks, but showing the use of modularity, and also the
methodology: we first constructed a contract node for n such tasks, and then built
a 2n tasks node, with a first contract that revealed itself being not controllable, and
then refinements of the problem leading to a solution. On this example performance
evaluation showed a drastically improved scalability of the approach [12].

7 Related work

As was noted by other authors, while classical control theory has been readily ap-
plied to computing systems [20], applying Discrete Control Theory to computing sys-
tems is more recent: some focus on controlling multi-thread code [3,15] or workflow
scheduling [39], or on the use of Petri nets [23,22,30] or finite state automata [36].
The work closest to ours [40] is a programming language-level approach, that focuses
on deadlock avoidance in shared-memory multi-threaded programs, and relies upon
Petri net formal models, where control logic is synthesized, in the form of additional

30 G. Delaval, É. Rutten, H. Marchand

control places in the Petri nets, in order to inhibit behaviors leading to interlocking. A
difference in motivation is that they apply Discrete Control internally to the compila-
tion, only for deadlock avoidance, in a way independent of the application, whereas
we treat expression of objectives as a first class programming language feature: we
know of no other programming language doing this.

Some related work can be found in computer science, in the notions of program
synthesis. It consists in translating a property on inputs and outputs of a system,
expressed in temporal logics, into a lower-level model, typically in terms of tran-
sition systems. For example, it is proposed as form of liberated programming [17]
in a UML-related framework, with the synthesis of StateChart from Live Sequence
Charts [18,27]. Other approaches concern angelic non-determinism [6], where a non-
deterministic operator is at the basis of refinement-based programming. These pro-
gram synthesis approaches do not seem to have been aware of Discrete Control The-
ory, or reciprocally: there seems to be a relationship between them, as well as with
game theory, but it is out of the scope of this paper. One difference is that we syn-
thesize a constraint (on the controllable variables) from a state machine (given as
a model of the object to be controlled) and a control objective (safety), as usual in
the control approach [37,40]. In this sense, our language is mixed imperative (writ-
ing the automata for not yet controlled components) and declarative (specifying the
properties to be enforced by control). Also, a meaningful difference is that we dis-
tinguish between controllables and uncontrollables, which is more general. On the
other hand, we consider only safety properties; we are aware that it is possible to
consider liveness properties in synthesis, but we feel that it is more difficult to han-
dle it in a compositional and modular way. These declarative approaches encounter
methodological problems of incomplete specification, complexifying the obtention
of the state machine, whereas we obtain a maximal permissive controller (meaning
a minimal constraints on behaviors, which is a relation). However, when the control
objectives are not tight, we also have to find ways for completion of the constraint
to make it a function (deterministic) of uncontrollable inputs. The readability of state
machines synthesized in this work can be a motivation [18], whereas we do not expect
our automatically generated constraint to be read.

The notion of design by contracts has been introduced first in the Eiffel langu-
age [35]; contracts are require/ensure pairs on Eiffel functions which are then used
at compilation time to add defensive code to these functions. The same design prin-
ciple have been extended for reactive systems in [31], where reactive programs are
given logical-time contracts, validated automatically by model-checking. We use here
the same principle of logical-time contract, the difference with this latter work is
essentially that our contracts are enforced by controller synthesis, instead of being
validated. A more generic model of contracts has been proposed in [4], defining an
algebra of contracts, which allows to consider the relation between sets of contracts
defining one system, whereas our language only allows one contract to be associ-
ated to one node. Interface synthesis [10] is also related to our approach, consisting
in generating interfacing wrappers for components, in order to adapt them for the
composition into given component assemblies, w.r.t. the communication protocols
between them. The difference is that this work is about identifying constraints on
the environment of a component so that it is used correctly, whereas we constrain

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 31

the component so that it works correctly whatever the environment does (within the
assumptions).

Performing control using modularity/hierarchy and abstraction has also been sub-
ject to various studies [25,26,38,14,24,34,29]. For the modularity and hierarchical
aspect, the difference lies in the model that is used (asynchronous versus synchronous
automata) as well as in the abstraction techniques. In our case, abstraction consists in
abstracting the sub-systems by their contract, the abstraction techniques used in con-
trol theory consists projecting the behavior of the sub-system to some sub-alphabet
and computing controllers on the resulting abstracted systems. If both theory share
hierarchical, modularity and abstraction features, the underlying techniques are thus
completely different.

8 Conclusion and perspectives

We propose an original contribution on the role of formal methods in software and
systems engineering: we encapsulate the formal DCS method into a language com-
pilation process. This way, it is integrated into a development process, where the
user/programmer is provided with tool support of the formal technique of DCS, and
the generation of executable code. The tool is concretely built upon the basis of a re-
active programming language compiler, where the nodes describe behaviors that can
be modeled in terms of transition systems. Our compiler integrates this with a DCS
tools, making it a new environment for formal methods. For this, we define a construct
for behavioral contracts in reactive programs, enabling mixed imperative/declarative
programming. We thereby exploit the dynamical behavior of programs in the compi-
lation, by using state and trace-based models of their control.

Future and ongoing work in this new research direction is addressing the limita-
tions of our current results. We are addressing language-level expressiveness, notably
w.r.t. quantitative aspects: we already have features of cost functions for bounding or
one-step optimal control, but timed aspects would be an improvement (see e.g. [9]).
We could exploit more powerful DCS techniques, e.g., dynamical controller synthesis
(i.e., relying on more states than in the automaton to be controlled), and combination
with static analysis and abstract interpretation techniques as in [28]. We are exploring
distributed execution schemes for controllers programmed in BZR. Assistance and
diagnosis in this uncommon programming style is a very interesting issue: several
situations can lead to compilation failure (e.g., DCS failure), or unsatisfying result
(e.g., too restrictive controller). Currently, it can happen that a program in BZR can
not be compiled because the control problem has no solution : then the compiler re-
turns an error message and no code is generated. The user has to debug the program,
by relaxing the contract, or changing the behaviors. Tools and precise methodologies
should be developed so as to handle such situations.

We have ongoing work exploring the application of our language for adaptive sys-
tems at different levels: control of FPGA(Field Programmable Gate Array)-based re-
configurable architectures, design and coordination of administration loops in virtual
machines, component-based adaptive middleware [7] and control and robot systems
design [1].

32 G. Delaval, É. Rutten, H. Marchand

References

1. S. Aboubekr, G. Delaval, R. Pissard-Gibollet, E. Rutten, and D. Simon. Automatic generation of dis-
crete handlers of real-time continuous control tasks. In Proc. 18th World Congress of the International

Federation of Automatic Control (IFAC), Milano, Italy, pages 786–793, August 2011.
2. K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller synthesis to build property-

enforcing layers. In European Symposium on Programming, volume 2618 of LNCS, pages 126–141,
Warsaw, Poland, April 2003.

3. A. Auer, J. Dingel, and K. Rudie. Concurrency control generation for dynamic threads using discrete-
event systems. In Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Aller-

ton Conference on, pages 927 –934, 30 2009-oct. 2 2009.
4. A. Benveniste, B. Caillaud, and R. Passerone. A generic model of contracts for embedded systems.

Res. Rep. RR-6214, INRIA, 2007.
5. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The syn-

chronous languages twelve years later. Proc. of the IEEE, 91(1):64 – 83, January 2003.
6. R. Bodik, S. Chandra, J. Galenson, D. Kimelman, N. Tung, S. Barman, and C. Rodarmor. Program-

ming with angelic nondeterminism. In Principles of Programming Languages, POPL, pages 339–352,
January 2010.

7. T. Bouhadiba, Q. Sabah, G. Delaval, and E. Rutten. Synchronous control of reconfiguration in fractal
component-based systems – a case study. In Int. Conf. on Embedded Software. EMSOFT 2011, pages
309–318, Taipei, Taiwan, October 2011.

8. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2007.
9. F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly algorithms for the analysis

of timed games. In Conf. on Concurrency Theory (CONCUR), volume 3653 of LNCS, pages 66–80,
August 2005.

10. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Synchronous and bidirectional com-
ponent interfaces. In Computer Aided Verification, volume 2404 of LNCS, pages 414–427, Copen-
hagen, Denmark, July 2002.

11. J.-L. Colaço, B. Pagano, and M. Pouzet. A Conservative Extension of Synchronous Data-flow with
State Machines. In Embedded Software (EMSOFT), pages 173 – 182, New Jersey, USA, September
2005.

12. G. Delaval, H. Marchand, and E. Rutten. Contracts for modular discrete controller synthesis. In
Languages, Compilers and Tools for Embedded Systems, pages 57–66, Stockholm, Sweden, April
2010.

13. G. Delaval and E. Rutten. Reactive model-based control of reconfiguration in the Fractal component-
based model. In Component Based Software Engineering, Prague, June, volume 6092 of LNCS, pages
93–112, Prague, Czech R., June 2010.

14. M.H. deQueiroz and J.E.R. Cury. Synthesis and implementation of local modular supervisory control
for a manufacturing cell. In Proceedings of the 6th International Workshop on Discrete Event Systems,
pages 377–382, October 2002.

15. C. Dragert, J. Dingel, and K. Rudie. Generation of concurrency control code using discrete-event
systems theory. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations

of software engineering, SIGSOFT ’08/FSE-16, pages 146–157, New York, NY, USA, 2008. ACM.
16. G. Hamon. Calcul d’horloge et structures de contrôle dans Lucid Synchrone, un langage de flots

synchrones à la ML. PhD thesis, Univ. P. et M. Curie, Paris, France, November 2002.
17. D. Harel. Can programming be liberated, period? Computer, 41(1):28–37, 2008.
18. D. Harel, H. Kugler, and A. Pnueli. Synthesis revisited: Generating statechart models from scenario-

based requirements. In Formal Methods in Software and Systems Modeling, volume 3393 of LNCS,
pages 309–324, 2005.

19. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions on Software

Engineering and Methodology, 5(4):293–333, 1996.
20. J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of Computing Systems. Wiley-

IEEE, 2004.
21. Y. Hietter, J.-M. Roussel, and J.-J. Lesage. Algebraic Synthesis of Transition Conditions of a State

Model. In Proc. of 9th Int. Workshop On Discrete Event Systems (WODES’08), pages 187–192,
Göteborg, June 2008.

22. M. Iordache and P. Antsaklis. Concurrent program synthesis based on supervisory control. In 2010

American Control Conference, 2010.

Integrating Discrete Controller Synthesis in a Reactive Language Compiler 33

23. M. V. Iordache and P. J. Antsaklis. Petri nets and programming: A survey. In Proceedings of the 2009

American Control Conference, pages 4994–4999, 2009.
24. S. Jiang and R. Kumar. Decentralized control of discrete event systems with specializations to lo-

cal control and concurrent systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
30(5):653–660, October 2000.

25. J. Komenda, T. Masopust, and J.H. van Schuppen. Synthesis of safe sublanguages satisfying global
specification using coordination scheme for discrete-event systems. Discrete Event Dynamical Sys-

tems, 10:426–431, 2010.
26. J. Komenda and J.H. van Schuppen. Supremal sublanguages of general specification languages arising

in modular control of discrete-event systems. In 44th IEEE Conference on Decision and Control,
pages 2775–2780, 2005.

27. H. Kugler, C. Plock, and A. Pnueli. Controller synthesis from LSC requirements. In Fundamental

Approaches to Software Engineering, FASE’09, York, UK, March 22-29, 2009.
28. T. Le Gall, B. Jeannet, and H. Marchand. Supervisory control of infinite symbolic systems using

abstract interpretation. In 44nd IEEE Conference on Decision and Control (CDC’05) and Control

and European Control Conference ECC 2005, pages 31–35, Seville, Spain, December 2005.
29. S.-H. Lee and Wong K.C. Structural decentralized control of concurrent discrete-event systems. Eu-

ropean Journal of Control, 8(5), 2002.
30. Cong Liu, A. Kondratyev, Y. Watanabe, J. Desel, and A. Sangiovanni-Vincentelli. Schedulability

analysis of petri nets based on structural properties. In Application of Concurrency to System Design,

2006. ACSD 2006. Sixth International Conference on, pages 69 –78, june 2006.
31. F. Maraninchi and L. Morel. Logical-time contracts for the development of reactive embedded soft-

ware. In 30th Euromicro Conference, Component-Based Software Engineering Track (ECBSE), pages
48–55, Rennes, France, September 2004.

32. H. Marchand. Méthodes de synthèse d’automatismes décrits par des systèmes à événements discrets

finis. PhD thesis, Université de Rennes 1, IFSIC, October 1997.
33. H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event con-

trollers based on the signal environment. Discrete Event Dynamic Systems: Theory and Applications,
10(4):325–346, October 2000.

34. H. Marchand and B. Gaudin. Supervisory control problems of hierarchical finite state machines. In
41th IEEE Conference on Decision and Control, pages 1199–1204, Las Vegas, USA, December 2002.

35. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, October 1992.
36. V.V. Phoha, A.U. Nadgar, A. Ray, and S. Phoha. Supervisory control of software systems. Computers,

IEEE Transactions on, 53(9):1187 – 1199, sept. 2004.
37. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes. SIAM

J. Control Optim., 25(1):206–230, 1987.
38. K. Schmidt and C. Breindl. On maximal permissiveness of hierarchical and modular supervisory

control approaches for discrete event systems. In Discrete Event Systems, 2008. WODES 2008. 9th

International Workshop on, pages 462–467. IEEE, 2008.
39. C. Wallace, P. Jensen, and N. Soparkar. Supervisory control of workflow scheduling. In Advanced

Transaction Models and Architectures Workshop (ATMA), Goa, India, 1996.
40. Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The theory of deadlock avoidance via

discrete control. In Principles of Programming Languages, POPL, pages 252–263, Savannah, USA,
2009.

	Introduction
	Reactive systems and their supervisory control
	Behavioral contracts language
	Trace semantics
	Compilation
	Example
	Related work
	Conclusion and perspectives

