P. Van-beek, Backtracking Search Algorithms, pp.85-134, 2006.
DOI : 10.1016/S1574-6526(06)80008-8

J. Rice, The Algorithm Selection Problem, Advances in Computers, pp.65-118, 1976.
DOI : 10.1016/S0065-2458(08)60520-3

L. Xu, F. Hutter, H. Hoos, and K. Leyton-brown, Satzilla: Portfolio-based algorithm selection for SAT, JAIR, vol.32, pp.565-606, 2008.

O. 'mahony, E. Hebrard, E. Holland, A. Nugent, C. O-'sullivan et al., Using casebased reasoning in an algorithm portfolio for constraint solving, AICS, 2008.

H. Samulowitz and R. Memisevic, Learning to solve QBF, In: AAAI, pp.255-260, 2007.

M. Streeter, D. Golovin, and S. Smith, Combining multiple heuristics online, In: AAAI, pp.1197-1203, 2007.

F. Hutter, H. Hoos, and T. Stützle, Automatic algorithm configuration based on local search, In: AAAI, pp.1152-1157, 2007.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

M. Loth, M. Sebag, Y. Hamadi, M. Schoenauer, and C. Schulte, Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop Problem, Learning and Intelligent OptimizatioN Conference (Lion 7), 2013.
DOI : 10.1007/978-3-642-44973-4_35

URL : https://hal.archives-ouvertes.fr/hal-00863453

L. Kocsis and C. Szepesvári, Bandit Based Monte-Carlo Planning, In: ECML, pp.282-293, 2006.
DOI : 10.1007/11871842_29

T. Lai and H. Robbins, Asymptotically efficient adaptive allocation rules, Advances in Applied Mathematics, vol.6, issue.1, pp.4-22, 1985.
DOI : 10.1016/0196-8858(85)90002-8

URL : http://doi.org/10.1016/0196-8858(85)90002-8

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

P. Ciancarini and G. Favini, Monte-Carlo Tree Search techniques in the game of Kriegspiel, In: IJCAI, pp.474-479, 2009.

H. Nakhost and M. Müller, Monte-Carlo exploration for deterministic planning, pp.1766-1771, 2009.

M. Luby, A. Sinclair, and D. Zuckerman, Optimal speedup of Las Vegas algorithms, Information Processing Letters, vol.47, issue.4, pp.173-180, 1993.
DOI : 10.1016/0020-0190(93)90029-9

J. C. Beck, Solution-guided multi-point constructive search for job shop scheduling, JAIR, vol.29, pp.49-77, 2007.

R. Mathon and A. Rosa, Tables of parameters for BIBD's with r ? 41 including existence, enumeration, and resolvability results, Ann. Discrete Math, vol.26, pp.275-308, 1985.

F. Hutter, Y. Hamadi, H. Hoos, and K. Leyton-brown, Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms, In: CP, pp.213-228, 2006.
DOI : 10.1007/11889205_17

S. Haim and T. Walsh, Restart Strategy Selection Using Machine Learning Techniques, In: SAT, vol.32, pp.312-325, 2009.
DOI : 10.1007/978-3-540-74970-7_49

S. Epstein, E. Freuder, R. Wallace, A. Morozov, and B. Samuels, The Adaptive Constraint Engine, In: CP, pp.525-542, 2002.
DOI : 10.1007/3-540-46135-3_35

H. Wu and P. Van-beek, PORTFOLIOS WITH DEADLINES FOR BACKTRACKING SEARCH, International Journal on Artificial Intelligence Tools, vol.17, issue.05, pp.835-856, 2008.
DOI : 10.1142/S0218213008004187

M. Schneider and H. Hoos, Quantifying homogeneity of instance sets for algorithm configuration Learning and Intelligent Optimization, Lecture Notes in Computer Science, pp.190-204, 2012.

A. Sabharwal, H. Samulowitz, and C. Reddy, Guiding Combinatorial Optimization with UCT, In: CPAIOR, pp.356-361, 2012.
DOI : 10.1007/978-3-642-29828-8_23

T. P. Runarsson, M. Schoenauer, and M. Sebag, Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling, In: LION, pp.160-174, 2012.
DOI : 10.1007/978-3-642-34413-8_12

URL : https://hal.archives-ouvertes.fr/hal-00736968

A. Previti, R. Ramanujan, M. Schaerf, and B. Selman, Monte-Carlo Style UCT Search for Boolean Satisfiability, Artificial Intelligence Around Man and Beyond. Lecture Notes in Computer Science, vol.32, issue.1, pp.177-188, 2011.
DOI : 10.1007/978-3-642-21581-0_35

P. Refalo, Impact-Based Search Strategies for Constraint Programming, In: CP, pp.557-571, 2004.
DOI : 10.1007/978-3-540-30201-8_41

Y. Wang, J. Audibert, and R. Munos, Algorithms for infinitely many-armed bandits, In: NIPS, pp.1-8, 2008.

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

W. Harvey and M. Ginsberg, Limited discrepancy search, In: IJCAI, pp.607-615, 1995.

E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Research, vol.64, issue.2, pp.278-285, 1993.
DOI : 10.1016/0377-2217(93)90182-M

I. Gent and T. Walsh, CSP LIB : A benchmark library for constraints, In: CP, pp.480-481, 1999.

F. Werner and A. Winkler, Insertion techniques for the heuristic solution of the job shop problem, Discrete Applied Mathematics, vol.58, issue.2, pp.191-211, 1995.
DOI : 10.1016/0166-218X(93)E0127-K

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, Boosting systematic search by weighting constraints, In: ECAI, pp.146-150, 2004.

J. Beck, T. Feng, and J. P. Watson, Combining Constraint Programming and Local Search for Job-Shop Scheduling, INFORMS Journal on Computing, vol.23, issue.1, pp.1-14, 2011.
DOI : 10.1287/ijoc.1100.0388

L. Michel and P. Van-hentenryck, Activity-Based Search for Black-Box Constraint Programming Solvers, In: CPAIOR, pp.228-243, 2012.
DOI : 10.1007/978-3-642-29828-8_15

L. Perron and P. Shaw, Combining Forces to Solve the Car Sequencing Problem, In: CPAIOR, pp.225-239, 2004.
DOI : 10.1007/978-3-540-24664-0_16

R. Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, In: Computers and Games, pp.72-83, 2006.
DOI : 10.1007/978-3-540-75538-8_7

URL : https://hal.archives-ouvertes.fr/inria-00116992

G. Chaslot, M. H. Winands, and H. J. Van-den-herik, Parallel Monte-Carlo Tree Search, In: Computers and Games, pp.60-71, 2008.
DOI : 10.1007/978-3-540-87608-3_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Chu, C. Schulte, and P. Stuckey, Confidence-Based Work Stealing in Parallel Constraint Programming, In: CP, vol.39, pp.226-241, 2009.
DOI : 10.1007/978-3-540-30201-8_41