A parsimonious multivariate copula for tail dependence modeling

Gildas Mazo 1 Stephane Girard 1 Florence Forbes 1
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Copulas are increasingly studied both in theory and practice as they are a convenient tool to construct multivariate distribution functions. However the material essentially covers the bi-variate case while in applications the number of variables is much higher. Furthermore, when one wants to take into account tail dependence, a desirable property is to have enough flexibility in the tails while avoiding the exponential growth of the number of parameters. We propose in this communication a one-factor model which exhibits this feature.
Type de document :
Communication dans un congrès
EVT 2013 - Extremes in Vimeiro Today, Sep 2013, Vimeiro, Portugal. 2013
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00863540
Contributeur : <>
Soumis le : jeudi 19 septembre 2013 - 10:36:54
Dernière modification le : samedi 18 novembre 2017 - 01:09:52
Document(s) archivé(s) le : vendredi 20 décembre 2013 - 15:06:34

Fichier

EVT2013presentername.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00863540, version 1
  • Mot de passe :

Collections

Citation

Gildas Mazo, Stephane Girard, Florence Forbes. A parsimonious multivariate copula for tail dependence modeling. EVT 2013 - Extremes in Vimeiro Today, Sep 2013, Vimeiro, Portugal. 2013. 〈hal-00863540〉

Partager

Métriques

Consultations de la notice

490

Téléchargements de fichiers

186