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This paper describes a technique that can reliably align arbitrary 2D de-
pictions of an architectural site, including drawings, paintings and historical
photographs, with a 3D model of the site. This is a tremendously difficult
task as the appearance and scene structure in the 2D depictions can be very
different from the appearance and geometry of the 3D model, e.g., due to the
specific rendering style, drawing error, age, lighting or change of seasons.
In addition, we face a hard search problem: the number of possible align-
ments of the painting to a large 3D model, such as a partial reconstruction
of a city, is huge. To address these issues, we develop a new compact repre-
sentation of complex 3D scenes. The 3D model of the scene is represented
by a small set of discriminative visual elements that are automatically learnt
from rendered views. Similar to object detection, the set of visual elements,
as well as the weights of individual features for each element, are learnt in a
discriminative fashion. We show that the learnt visual elements are reliably
matched in 2D depictions of the scene despite large variations in rendering
style (e.g. watercolor, sketch, historical photograph) and structural changes
(e.g. missing scene parts, large occluders) of the scene. We demonstrate an
application of the proposed approach to automatic re-photography to find
an approximate viewpoint of historical paintings and photographs with re-
spect to a 3D model of the site. The proposed alignment procedure is vali-
dated via a human user study on a new database of paintings and sketches
spanning several sites. The results demonstrate that our algorithm produces
significantly better alignments than several baseline methods.

Categories and Subject Descriptors: 1.3.10 [Artificial Intelligence]: Vision
and Scene Understanding—3D/stereo scene analysis; 1.4.10 [Image Pro-
cessing and Computer Vision]: Image Representation—Statistical

Additional Key Words and Phrases: 3D alignment, re-photography, paint-
ings, sketches, historical photographs, 3D models, CAD models

1. INTRODUCTION

In this work we seek to automatically align historical photographs
and non-photographic renderings, such as paintings and line draw-
ings, to a 3D model of an architectural site. Specifically, we wish to
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establish a set of point correspondences between local structures on
the 3D model and their respective 2D depictions. The established
correspondences will in turn allow us to find an approximate view-
point of the 2D depiction with respect to the 3D model. We focus on
depictions that are, at least approximately, perspective renderings
of the 3D scene. We consider complex textured 3D models obtained
by recent multi-view stereo reconstruction systems [Furukawa and
Ponce 2010] as well as simplified models obtained from 3D mod-
eling tools such as Google Sketchup. Example results are shown in
figure 1.

Why is this task important? First, non-photographic depictions
are plentiful and comprise a large portion of our visual record.
We wish to reason about them, and aligning such depictions to
reference imagery (via a 3D model in this case) is an impor-
tant step towards this goal. Second, such technology would open
up a number of exciting computer graphics applications that cur-
rently require expensive manual alignment of 3D models to vari-
ous forms of 2D imagery. Examples include interactive visualiza-
tion of a 3D site across time and different rendering styles [De-
bevec et al. 1996; Levin and Debevec 1999], model-based im-
age enhancement [Kopf et al. 2008], annotation transfer for aug-
mented reality [Snavely et al. 2006], inverse procedural 3D mod-
eling [Aliaga et al. 2007; Musialski et al. 2012] or computational
re-photography [Rapp 2008; Bae et al. 2010]. Finally, reliable auto-
matic image to 3D model matching is important in domains where
reference 3D models are often available, but may contain errors
or unexpected changes (e.g. something built/destroyed) [Bosché
2010], such as urban planning, civil engineering or archaeology.

The task of aligning 3D models to 2D non-photographic depic-
tions is extremely challenging. As discussed in prior work [Russell
et al. 2011; Shrivastava et al. 2011], local feature matching based
on interest points (e.g. SIFT [Lowe 2004]) often fails to find corre-
spondences across paintings and photographs. First, the rendering
styles across the two domains can vary considerably. The scene ap-
pearance (colors, lighting, texture) and geometry depicted by the
artist can be very different from the rendering of the 3D model,
e.g. due to the depiction style, drawing error, or changes in the ge-
ometry of the scene. Second, we face a hard search problem. The
number of possible alignments of the painting to a large 3D model,
such as a partial reconstruction of a city, is huge. Which parts of the
painting should be aligned to which parts of the 3D model? How to
search over the possible alignments?

To address these issues we introduce the idea of automatically
discovering discriminative visual elements for a 3D scene. We de-
fine a discriminative visual element to be a mid-level patch that is
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(b) Painting viewpoints.

(a) Internet paintings and drawings.

Fig. 1.

rendered with respect to a given viewpoint from a 3D model with
the following properties: (i) it is visually discriminative with re-
spect to the rest of the “visual world” represented here by a generic
set of randomly sampled patches, (ii) it is distinctive with respect to
other patches in nearby views, and (iii) it can be reliably matched
across nearby viewpoints. We employ modern representations and
recent methods for discriminative learning of visual appearance,
which have been successfully used in recent object recognition sys-
tems. Our method can be viewed as “multi-view geometry [Hartley
and Zisserman 2004] meets part-based object recognition [Felzen-
szwalb et al. 2010]” — here we wish to automatically discover the
distinctive object parts for a large 3D site.

We discover discriminative visual elements by first sampling
candidate mid-level patches across different rendered views of the
3D model. We cast the image matching problem as a classifica-
tion task over appearance features with the candidate mid-level
patch as a single positive example and a negative set consisting
of large set of “background” patches. Note that a similar idea has
been used in learning per-exemplar distances [Frome et al. 2007]
or per-exemplar support vector machine (SVM) classifiers [Mal-
isiewicz et al. 2011] for object recognition and cross-domain im-
age retrieval [Shrivastava et al. 2011]. Here we apply per-exemplar
learning for matching mid-level structures between images.

For a candidate mid-level patch to be considered a discriminative
visual element, we require that (i) it has a low training error when
learning the matching classifier, and (ii) it is reliably detectable in
nearby views via cross-validation. Critical to the success of oper-
ationalizing the above procedure is the ability to efficiently train
linear classifiers over Histogram of Oriented Gradients (HOG) fea-
tures [Dalal and Triggs 2005] for each candidate mid-level patch,
which has potentially millions of negative training examples. In
contrast to training a separate SVM classifier for each mid-level
patch, we change the loss to a square loss, similar to [Bach and
Harchaoui 2008; Gharbi et al. 2012], and show that the solution
can be computed in closed-form, which is computationally more ef-
ficient as it does not require expensive iterative training. In turn, we
show that efficient training opens-up the possibility to evaluate the
discriminability of millions of candidate visual elements densely
sampled over all the rendered views. We further show how our for-
mulation is related to recent work that performs linear discriminant
analysis (LDA) by analyzing a large set of negative training exam-
ples and recovering the sample mean and covariance matrix that
decorrelates the HOG features [Hariharan et al. 2012; Gharbi et al.
2012].

The output for each discriminative visual element is a trained
classifier. At run-time, for an input painting, we run the set of
trained classifiers in a sliding-window fashion across different

(c) Aligned painting to 3D model.

Our system automatically aligns and recovers the viewpoint of paintings, drawings, and historical photographs to a 3D model of an architectural site.

scales. Detections with high responses are considered as putative
correspondences with the 3D model, from which camera resection-
ing is performed. We show that our approach is able to scale to a
number of different 3D sites and handles different input rendering
styles. Moreover, we are able to handle different types of 3D mod-
els, such as 3D CAD models and models constructed using multi-
view stereo [Furukawa and Ponce 2010]. To evaluate our align-
ment procedure, we introduce a database of paintings and sketches
spanning several sites and perform a user study where human sub-
jects are asked to judge the goodness of the output alignments.
We compare with several baseline methods, such as SIFT on ren-
dered views, the coarse viewpoint retrieval step of [Russell et al.
2011], and Exemplar SVM [Shrivastava et al. 2011], and show that
our algorithm produces more good alignments than the baselines.
Moreover, we evaluate our matching step on the benchmark dataset
of [Hauagge and Snavely 2012] and show improvement over lo-
cal symmetry features [Hauagge and Snavely 2012] and alternate
matching criteria for our system.

2. PRIOR WORK

This section reviews prior work on aligning 3D models to 2D
imagery.

Alignment using local features. Local invariant features and
descriptors such as SIFT [Lowe 2004] represent a powerful tool for
matching photographs of the same at least lightly textured scene
despite changes in viewpoint, scale, illumination, and partial oc-
clusion. Example applications include 3D reconstruction [Snavely
et al. 2006], image mosaicing [Szeliski 2006], visual search [Sivic
and Zisserman 2003], visual localization [Schindler et al. 2007],
and camera tracking [Ballan et al. 2010] to list but a few. Large 3D
scenes, such as a portion of a city [Li et al. 2012], can be repre-
sented as a 3D point cloud with associated local feature descriptors
extracted from the corresponding photographs [Sattler et al. 2011].
Camera pose of a given query photograph can be recovered from
2D to 3D correspondences obtained by matching appearance
of local features verified using geometric constraints [Hartley
and Zisserman 2004]. However, appearance changes beyond the
modeled invariance, such as significant perspective distortions,
non-rigid deformations, non-linear illumination changes (e.g.
shadows), weathering, change of seasons, structural variations or
a different depiction style (photograph, painting, sketch, drawing)
cause local feature-based methods to fail [Hauagge and Snavely
2012; Shrivastava et al. 2011; Russell et al. 2011]. Greater insen-
sitivity to appearance variation can be achieved by matching the
geometric or symmetry pattern of local image features [Chum and
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Matas 2006; Hauagge and Snavely 2012; Shechtman and Irani
2007], rather than the local features themselves. However, such
patterns have to be detectable and consistent between the matched
views.

Alignment using contours. Contour-based 3D to 2D alignment
methods [Lowe 1987; Huttenlocher and Ullman 1987] rely on
detecting edges in the image and aligning them with projected
3D model contours. Such approaches are successful if object
contours can be reliably extracted both from the 2D image and
the 3D model. A recent example is the work on photograph
localization using semi-automatically extracted skylines matched
to clean contours obtained from rendered views of digital ele-
vation models [Baboud et al. 2011; Baatz et al. 2012]. Contour
matching was also used for aligning paintings to 3D meshes
reconstructed from photographs [Russell et al. 2011]. However,
contours extracted from paintings and real-world 3D meshes
obtained from photographs are noisy. As a result, the method
requires a good initialization with a close-by viewpoint. In gen-
eral, reliable contour extraction is a hard and yet unsolved problem.

Alignment by discriminative learning. Modern image repre-
sentations developed for visual recognition, such as HOG descrip-
tors [Dalal and Triggs 2005], represent 2D views of objects or ob-
ject parts [Felzenszwalb et al. 2010] by a weighted spatial distribu-
tion of image gradient orientations. The weights are learnt in a dis-
criminative fashion to emphasize object contours and de-emphasize
non-object, background contours and clutter. Such a representation
can capture complex object boundaries in a soft manner, avoid-
ing hard decisions about the presence and connectivity of imaged
object edges. Learnt weights have also been shown to emphasize
visually salient image structures matchable across different im-
age domains, such as sketches and photographs [Shrivastava et al.
2011]. Similar representation has been used to learn architectural
elements that summarize a certain geo-spatial area by analyzing
(approximately rectified) 2D street-view photographs from multi-
ple cities [Doersch et al. 2012]. Also related is contemporary work
that utilizes similar representation for scene [Juneja et al. 2013] and
action [Jain et al. 2013] classification.

Building on discriminatively trained models for object detec-
tion, we develop a compact representation of 3D scenes suitable
for alignment to 2D depictions. In contrast to [Doersch et al. 2012;
Shrivastava et al. 2011] who analyze 2D images, our method takes
advantage of the knowledge and control over the 3D model to learn
a set of mid-level 3D scene elements robust to a certain amount of
viewpoint variation and capable of recovery of the (approximate)
camera viewpoint. We show that the learnt mid-level scene ele-
ments are reliably detectable in 2D depictions of the scene despite
large changes in appearance and rendering style.

3. APPROACH OVERVIEW

The proposed method has two stages: first, in an offline stage we
learn a set of discriminative visual elements representing the ar-
chitectural site; second, in an online stage a given unseen query
painting is aligned with the 3D model by matching with the learnt
visual elements. The proposed algorithm is summarized in figure 2.

In detail, the input to the offline stage is a 3D model of an archi-
tectural site. The output is a set of view-dependent visual element
detectors able to identify specific structures of the 3D model in var-
ious types of 2D imagery. The approach begins by rendering a set
of representative views of the 3D model. Next, a set of visual ele-
ment detectors is computed from the rendered views by identifying

OFFLINE ONLINE
3D mode - . depiction
Rendering representative ‘ : J,
views (4.1) Calibrated discriminative
J, ) | matching (4.2.5)
Finding discriminative ‘ l
visual elements (4.2)
l ) Recovering viewpoint (5)

Filtering elements unstable
across viewpoint(4.3) \

Viewpoint of the depiction
in the 3D model

Fig. 2. Approach overview. In the offline stage (left) we summarize a
given 3D model as a collection of discriminative visual elements learnt from
rendered views of the site. In the online stage (right) we match the learnt
visual elements to the input painting and use the obtained correspondences
to recover the camera viewpoint with respect to the 3D model.

scene parts that are discriminative and can be reliably detected over
a range of viewpoints. During the online stage, given an input 2D
depiction, we match with the learnt visual element detectors and
use the top scoring detections to recover a coarse camera viewpoint,
which can be further refined using dense pixel-wise matching.

4. FINDING DISCRIMINATIVE VISUAL ELEMENTS
FOR 3D TO 2D MATCHING

We seek to identify elements of the 3D model that are reliably de-
tectable in arbitrary 2D depictions. To achieve this we build on dis-
criminative learning techniques [Dalal and Triggs 2005] to identify
visually distinctive mid-level scene structures in rendered views
of the 3D model. Each rendered view is represented by densely
sampled patches at multiple scales, with each patch represented
by a Histogram of Oriented Gradient (HOG) descriptor [Dalal and
Triggs 2005]. We use the publicly available implementation of
HOG from [Felzenszwalb et al. 2010]. We only use the contrast
insensitive portion of the HOG descriptor on a 10 x 10 grid of
cells with 8 orientations within each cell, which results in an 800
dimensional descriptor. The HOG descriptor is forgiving to small
drawing errors thanks to its spatial and orientation binning. In ad-
dition, we use a contrast insensitive HOG to enhance the capability
of matching across different depiction styles. A visual element de-
tector is defined as a linear classifier trained from a single patch as
a positive example and a large number of “background” patches as
negative examples, similar to an exemplar support vector machine
(SVM) [Malisiewicz et al. 2011; Shrivastava et al. 2011]. Every
rendered view has thousands of potential visual elements and the
task is to identify those that are distinct and hence likely to be de-
tectable in different depictions. For example, a specific tower on the
building may be distinctive for the site, whereas a patch in the mid-
dle of a gray wall may not. We define a discriminability criteria di-
rectly related to the quality of the trained linear classifier and show
it can be evaluated efficiently in a per-pixel manner to rank millions
of candidate visual elements from all rendered views. Furthermore,
to enhance robustness of the trained detectors we discard detectors
unstable across changes in viewpoint. In summary, the algorithm
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Fig. 3. Example sampled viewpoints. Camera positions are sampled on
the ground plane on a regular 100 100 grid. 24 camera orientations are
used for each viewpoint. Cameras not viewing any portion of the 3D model
are discarded. This procedure results in about 45,000 valid views for the
depicted 3D model.

proceeds in the following three steps: (i) render a set of represen-
tative viewpoints of the 3D site; (ii) efficiently find discriminative
candidate elements in all rendered views and learn a detector for
each element; (iii) filter element detectors that are unstable across
small changes in viewpoint. The three steps are detailed next.

4.1 Rendering representative views

The aim is to extract from the 3D model a set of view-dependent
2D descriptors suitable for alignment to 2D depictions. This is
achieved by sampling representative views of the 3D model and
learning visual element detectors from the rendered appearance in
the sampled views. We sample possible views of the 3D model in
a similar manner to [Baatz et al. 2012; Irschara et al. 2009; Russell
et al. 2011]. First, we identify the ground plane and corresponding
vertical direction. The camera positions are then sampled on the
ground plane on a regular grid. For each camera position we sam-
ple 12 possible horizontal camera rotations assuming no in-plane
rotation of the camera. For each horizontal rotation we sample 2
vertical rotations (pitch angles). Views where less than 5% of the
pixels are occupied by the 3D model are discarded. This procedure
results in 7,000-45,000 views depending on the size of the 3D site.
Example sampled camera positions are shown in figure 3. Note that
the rendered views form only an intermediate representation and
can be discarded after visual element detectors are extracted. We
render views from the 3D model by adapting the publicly available
OpenGL code from [Russell et al. 2011] to work with our mod-
els. The renderer simply ray casts and samples colors from the tex-
tured models against a white background, and does not explicitly
reason about illumination effects, such as shadows or specularities
(although the textured models may implicitly include this informa-
tion).

4.2 Finding discriminative visual elements

We wish to find a set of mid-level visual elements for the given 3D
site that are discriminative. In the following, we formulate image
matching as a discriminative classification task and show that for
a specific choice of loss function the classifier can be computed in
closed-form without computationally expensive iterative training.
In turn, this enables efficient training of candidate visual element
detectors corresponding to image patches that are densely sampled
in each rendered view. The quality of the trained detector (measured
by the training error) is then used to select only the few candidate
visual elements that are the most discriminative in each view (have
the lowest training error). Finally, we show how the learnt visual
elements are matched to the input painting, and relate the proposed

approach to other recent work on closed-form training of HOG-
based linear classifiers [Gharbi et al. 2012; Hariharan et al. 2012].

4.2.1 Matching as classification. The aim is to match a given
rectangular image patch ¢ (represented by a HOG descriptor [Dalal
and Triggs 2005]) in a rendered view to its corresponding image
patch in the painting, as illustrated in figure 4. Instead of finding
the best match measured by the Euclidean distance between the
descriptors, we train a linear classifier with g as a single positive
example (with label y, = +1) and a large number of negative ex-
amples z; for ¢+ =1 to N (with labels y; = —1). The matching
is then performed by finding the patch x* in the painting with the
highest classification score

s(z) =w'z +b, M

where w and b are the parameters of the linear classifier. Note that
w denotes the normal vector to the decision hyper-plane and b is a
scalar offset. Compared to the Euclidean distance, the classification
score (1) measures a form or similarity, i.e. a higher classification
score indicates higher similarity between x and g. In addition, the
learnt w weights the components of  differently. This is in contrast
to the standard Euclidean distance where all components of = have
the same weight. Note that a similar idea was used in learning per-
exemplar distances [Frome et al. 2007] or per-exemplar SVM clas-
sifiers [Malisiewicz et al. 2011] for object recognition and cross-
domain image retrieval [Shrivastava et al. 2011]. Here, we build on
this work and apply it to image matching using mid-level image
structures.

Parameters w and b are obtained by minimizing a cost function
of the following form

1 N
E(w,b) = L (1,w"q +b) +NZL(71,wai+b), %))

i=1

where the first term measures the loss L on the positive example ¢
(also called “exemplar”) and the second term measures the loss on
the negative data. Note that for simplicity we ignore in (2) the reg-
ularization term ||w||?, but the regularizer can be easily added in a
similar manner to [Bach and Harchaoui 2008; Gharbi et al. 2012].
We found, however, that adding the regularizer did not result in a
significant change in matching performance. A particular case of
the exemplar based classifier is the exemplar-SVM [Malisiewicz
et al. 2011; Shrivastava et al. 2011], where the loss L(y, s(x))
between the label y and predicted score s(x) is the hinge-loss
L(y,s(z)) = max{0,1 — ys(z)} [Bishop 2006]. For exemplar-
SVM cost (2) is convex and can be minimized using iterative algo-
rithms [Fan et al. 2008; Shalev-Shwartz et al. 2011].

422 Selection of discriminative visual elements via least
squares regression. So far we have assumed that the position and
scale of the visual element ¢ in the rendered view is given. As stor-
ing and matching all possible visual elements from all rendered
views would be computationally prohibitive, the aim here is to au-
tomatically select a subset of the visual elements that are the most
discriminative. First, we note that the optimal value of the cost (2)
characterizes the separability of a particular candidate visual el-
ement g from the (fixed) negative examples {x;} and hence can
be used for measuring the degree of discriminability of q. How-
ever, when using a hinge-loss as in exemplar SVM, optimizing (2)
would be expensive to perform for thousands of candidate elements
in each rendered view. Instead, similarly to [Bach and Harchaoui
2008; Gharbi et al. 2012], we take advantage of the fact that in the
case of square loss L(y, s(z)) = (y — s(x))? the wrg and b5
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Sliding window
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Fig. 4. Matching as classification. Given a region and its HOG descriptor
q in a rendered view (top left) the aim is to find the corresponding region
in a painting (top right). This is achieved by training a linear HOG-based
sliding window classifier using g as a single positive example and a large
number of negative data. The classifier weight vector w is visualized by
separately showing the positive (+) and negative (-) weights at different
orientations and spatial locations. The best match x in the painting is found
as the maximum of the classification score.

minimizing (2) and the optimal cost £} 4 can be obtained in closed
form as

_ 2 “1,
wLs = 5 ”@(q)HQE (q — ), 3)
1
brs = —5(11 + )l wrs, 4)

B2 @)l

where p = % Zf;l x; denotes the mean of the negative examples,
Y=LV (2; — p)(z; — p) " their covariance and

12(@)1* = (¢ — 1) = (g — p), ©6)
the squared norm of g after the “whitening” transformation
®(q) =22 (g — p)- @)

We can use the value of the optimal cost (5) as a measure of
the discriminability of a specific g. If the training cost (error) for a
specific candidate visual element ¢ is small the element is discrim-
inative. If the training cost is large the candidate visual element ¢
is not discriminative. This observation can be translated into a sim-
ple and efficient algorithm for ranking candidate element detectors
based on their discriminability. In practice, we evaluate the squared
“whitened” norm ||®(q)||? of each candidate element g, which is
inversely proportional to the training cost. If the whitened norm is
high the candidate element is discriminative, if the whitened norm
is low the candidate element is not discriminative. Given a ren-
dered view, we consider as candidates visual element detectors of
all patches that are local maxima (in scale and space) of the norm
of their whitened HOG descriptor, ||®(q)||?. Non-maximum sup-
pression is performed using a threshold of 0.1 on the standard ratio

Fig. 5. Selection of discriminative visual elements. First row: discrim-
inability scores shown as a heat-map for three different scales. Red indi-
cates high discriminability. Blue indicates low discriminability. The dis-
criminability is inversely proportional to the training cost of a classifier
learnt from a patch at the particular image location. Second row: exam-
ple visual elements at the local maxima of the discriminability scores. The
corresponding local maxima are also indicated using “x” in the heat-maps
above.

of area intersection over union between two neighboring patches.
After this non-maximum suppression, all remaining patches across
all views are ranked according to the same whitened norm criteria.
Ilustration of multi-scale discriminative visual element selection
for an example rendered view is shown in figure 5.

4.2.3 Relation to linear discriminant analysis (LDA). Recent
works [Gharbi et al. 2012; Hariharan et al. 2012] have shown that
linear HOG-based object detectors computed analytically using lin-
ear discriminant analysis (LDA) can reach similar object detection
accuracy as detectors learnt by expensive iterative SVM training.
The distribution of positive and negative data points is assumed to
be Gaussian, with mean vectors u,, and ji,,, respectively. The co-
variance matrix ¥, = X, = X is assumed to be the same for
both positive and negative data. Under these Gaussian assumptions,
the decision hyperplane can be obtained via a ratio test in closed
form. Applying this approach to our image matching set-up, we es-
timate u,, and X from a large set of HOG descriptors extracted from
patches that are sampled from a set of (“negative”) photographs in-
dependent from all sites considered in this work. p,, is set to be a
specific single HOG descriptor q of the particular positive example
patch in the given rendered view. Parameters wypa and by pa of
the linear classifier defining the matching score (1)

sepa(®) =wlpaz+brpa, (8

can be obtained in closed form as

wrpa =Yg — pn), ©)
and
1
brpa = 3 (/,LTzill,L — quflq) . (10)

Note that the matching score (8) can also be expressed using the
whitening transformation defined in (7) as

sepale) = ® §70() ~ Je@I7,  AD

where the first term is a dot-product between whitened ¢ and x,
and the second term is an additive normalization factor reduc-
ing the matching score for g vectors with large whitened norm.
It is interesting to note that under the Gaussian assumptions of
LDA, the squared whitened norm ||®(q)||? can be interpreted as the
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o]
i (q7) ®(q2)

% d(u)

Fig. 6. Selection of discriminative visual elements - interpretation us-
ing linear discriminant analysis. Left: The negative data distribution (cen-
tered at 1) and two example positive data distributions (g1 and g2) are mod-
eled as Gaussians with different means but the same covariance. Right:
After “whitening”, the negative data is centered at the origin with unit co-
variance. For fixed negative data, the classifier defined by ¢z is clearly more
discriminative than the classifier defined by ¢1, as measured by the overlap
of the positive and negative data distribution. In the whitened space, this
overlap can be measured by the Euclidean distance of the (whitened) mean
of the positive data points from the origin. Note that in the original non-
whitened space (left) the means of g1 and g are at the same distance from
the mean of the negative data p.

Bhattacharyya distance [Kailath 1967] measuring the “overlap” be-
tween the Gaussian representing the negative data and the Gaussian
representing the positive example q. Discriminative visual elements
g with large ||®(q)|| (as described in section 4.2.2) correspond to
“unusual” examples far from the distribution of the negative data.
This intuition is illustrated in figure 6.

4.2.4 Discussion. Classifiers obtained by minimizing the least
squares cost function (2) or satisfying the LDA ratio test can be
used for matching a candidate visual element ¢ to a painting as
described in equation (1). Note that the decision hyperplanes ob-
tained from the least squares regression, wy s, and linear discrim-
inant analysis, wrp 4, are parallel. As a consequence, for a par-
ticular visual element ¢ the ranking of matches according to the
matching score (1) would be identical for the two methods. In other
words, in an object detection set-up [Dalal and Triggs 2005; Hari-
haran et al. 2012; Gharbi et al. 2012] the two methods would pro-
duce identical precision-recall curves. In our matching set-up, for
a given q the best match in a particular painting would be identical
for both methods. The actual value of the score, however, becomes
important when comparing matching scores across different visual
element detectors g. In object detection, the score of the learnt clas-
sifiers is typically calibrated on a held-out set of labeled validation
examples [Malisiewicz et al. 2011].

4.2.5 Calibrated discriminative matching. We have found that
calibration of matching scores across different visual elements is
important for the quality of the final matching results. Below we de-
scribe a procedure to calibrate matching scores without the need of
any labelled data. First, we found (section 6.4.3) that the matching
score obtained from LDA produces significantly better matching
results than matching via least squares regression. Nevertheless, we
found that the raw uncalibrated LDA score favors low-contrast im-
age regions, which have an almost zero HOG descriptor. To avoid
this problem, we further calibrate the LDA score (8) by subtracting
a term that measures the score of the visual element ¢ matched to a
low-contrast region, represented by zero (empty) HOG vector

= srpa(x) —sLpa(0) (12)
(g — )2 e (13)

Scalib (ZE)

This calibrated score gives much better results on the dataset
of [Hauagge and Snavely 2012] as shown in section 6.4.3 and sig-
nificantly improves matching results on our dataset of historical
photographs and non-photographic depictions.

Finally, since we wish to obtain matches that are both (i) non-
ambiguous and (ii) have a high matching score we perform the
following two step procedure to select candidates visual element
matches for a given depiction. First, we apply all visual ele-
ment detectors on the depiction and take the top 200 detections
sorted according to the first to second nearest neighbor ratio [Lowe
2004], using the similarity score (12). This selects the most non-
ambiguous matches. Second, we sort the 200 matches directly by
score (12) and consider the top 25 matches to compute the camera
viewpoint as described in section 5.

4.2.6 Summary. Candidate visual elements {g;} are obtained
by finding local maxima of (6), which is inversely proportional to
the least squares regression training error given by (5) as described
in section 4.2.2. Visual elements are then matched to a painting
using the two step matching procedure described in section 4.2.5
that uses the calibrated LDA score (12).

4.3 Filtering elements unstable across viewpoint

Here we wish to discard elements that cannot be reliably detected
in close-by rendered views. This filtering criteria removes many
unstable elements that are, for example, ambiguous because of
repeated structures in the rendered view or cover large depth
discontinuities and hence significantly change with viewpoint.

We define close-by views based on the visual overlap of imaged
3D structures rather than, for example, the distance between camera
centers. In detail, to measure visual overlap between views V1, V2
we define the following score

1 (zi-=H?2 | (d=h)-d(=2))?
- 2 T 55,2 1 1 2
S(V17V2) _ |V‘ 2 : e 202 205 f(d(.ti)ﬁ»d(zi))z’
{z%,z?}eV
(14)

where {z}, 22} € V is the set of corresponding points (pixels) in
view V1 and V2, respectively, x7 is the location of pixel 4 in view
J, d(z]) is the depth (distance to the 3D model) at pixel ¢ in view 7,
and o, and o4 are parameters. The first term in the exponent mea-
sures the squared image distance between the corresponding pixels.
The second term in the exponent measures the difference between
the depths at the corresponding pixel locations normalized by their
average depth. The per-pixel scores are then averaged over all cor-
responding pixels in the two views. The score is one if the two
views are identical and zero if the two views have no visual over-
lap. In our case, two views are deemed ‘“close-by” if their visual
overlap score is greater than 0.4. Note that the score depends on
camera positions as well as the 3D structure as it measures differ-
ences between projected 3D points in the image plane. As a result,
the score is, for example, less sensitive to small camera translations
if the camera is looking at a far away scene. We found that good
values for the parameters are o4 = 0.3 and 0, = (W + H)/10,
where W and H are, respectively, the width and height of the ren-
dered views.

Here we evaluate if each candidate discriminative visual element
obtained as described in section 4.2 is stable. Equipped with the
above definition of nearby views, we test if each candidate visual
element can be correctly detected in the set of nearby views us-
ing the ground truth locations of the candidate element obtained
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(a) Top 4 stable patches (b) Top 4 unstable patches

Fig. 7. Filtering elements unstable across viewpoint. Examples of top
stable (left) and unstable (right) visual elements detected in one of the ren-
dered views. Unstable elements are typically detected on repeated structures
or occlusion boundaries and are removed.

\
i

Fig. 8. Examples of selected visual elements for a 3D site. Top: Se-
lection of top ranked 50 visual elements visible from this specific view of
the site. Each element is depicted as a planar patch with an orientation of
the plane parallel to the camera plane of its corresponding source view. Bot-
tom: Subset of 18 elements shown from their original viewpoints. Note that
the proposed algorithm prefers visually salient scene structures such as the
two towers in the top-right or the building in the left part of the view. In con-
trast, some repetitive and non-salient scene structures in the right portion of
the picture are ignored.

from the knowledge of the 3D model. In detail, we first select the
near-by views in which the visual element is fully visible. Then, we
attempt to localize the visual element in each view by applying the
corresponding linear detector given by eq. (12) in a sliding window
fashion.

To suppress potential repeated structures, we require that the ra-
tio between the score of the first and second highest scoring detec-
tion in the image is larger than a threshold of 1.04, similar to [Lowe
2004]. We keep visual elements that are successfully detected in
more than 80% of the nearby views. Examples of stable and unsta-
ble visual elements are shown in figure 7.

This procedure typically results in several thousand selected el-
ements for each architectural site. Examples of the final visual ele-
ments obtained by the proposed approach are shown in figure 8.

5. RECOVERING VIEWPOINT

In this section we describe how, given the set of discriminative vi-
sual elements gleaned from the 3D model, to recover the viewpoint
and intrinsic parameters of an input painting or historical photo-
graph with respect to the 3D model. We assume that the paintings
are perspective scene renderings and seek to recover the following

Fig. 9. Illustration of coarse alignment. We use the recovered discrimi-
native visual elements to find correspondences between the input scene de-
piction and 3D model. Shown is the recovered viewpoint and inlier visual
elements found via RANSAC. Notice that the visual elements yield inliers
across the entire visible part of the site.

(a) Historical photo. (b) Coarse alignment. (c) Fine alignment.

Fig. 10. ICP-like fine alignment for perspectively correct scene depic-
tions. Given the coarse alignment, at each iteration we find a dense set of
inlier correspondences with RANSAC for HOG features computed over a
grid. We then update the viewpoint and iterate. Notice that the fine align-
ment step produces a tighter, more accurate fit.

set of parameters via camera resectioning [Hartley and Zisserman
2004]: camera center, camera rotation, focal length, and principal
point. Our alignment procedure consists of a coarse alignment step
using the recovered discriminative visual elements, followed by an
optional fine alignment procedure for the case of perspectively cor-
rect scene depictions (e.g. photographs, paintings with little/no per-
spective drawing errors).

For detection, each discriminative visual element takes as input
a 2D patch from the painting and returns as output a 3D location X
on the 3D model, a plane representing the patch extent on the 3D
model centered at X, and a detector response score indicating the
quality of the appearance match. Following the matching procedure
described in section 4.2.5, we form a set of 25 putative discrimi-
native visual element matches. From each putative visual element
match we obtain 5 putative point correspondences by taking the
2D/3D locations of the patch center and its four corners. The patch
corners provide information about the patch scale and the planar
location on the 3D model, and has been shown to work well for
structure-from-motion with planar constraints [Szeliski and Torr
1998]. We use RANSAC [Fischler and Bolles 1981] to find the set
of inlier correspondences to a restricted camera model where the
camera intrinsics are fixed to initial values, with the focal length
set to the image diagonal length and the principal point set to the
center of the image. We use a RANSAC inlier threshold set to 1.5%
of the image diagonal length to recover the camera center and ro-
tation. The recovered viewpoint forms a coarse alignment of the
input depiction to the 3D model, which is depicted in figure 9.

For perspectively correct scene depictions, we can further im-
prove the alignment by recovering all of the camera parameters.
This is achieved by densely aligning the input depiction to the 3D
model with an ICP-like fine alignment procedure. At each iteration
we compute a set of dense correspondences using HOG features
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Table I. Statistics of our collected dataset of historical photographs
and non-photographic depictions for the evaluated architectural
landmarks. Note that the depictions of San Marco Basilica are also
included in the set for San Marco Square, with the total (bottom
row) counting the number of unique depictions in our dataset.

S.Marco | S.Marco Trevi Notre Total
Square Basilica | Fountain | Dame
Hist. photos 44 (30) 0 41 85
Paintings 61 41) 34 52 147
Drawings 21 (19) 5 34 60
Engravings 15 (C)) 10 20 45
Total 141 99) 49 147 337

computed in a grid over the entire image. Namely, for all HOG
descriptors in a given scale in the HOG pyramid, we search for
the best match in a local 5x5 window using L2 distance. We op-
timize over all camera parameters and find inlier correspondences
via RANSAC over the dense set of correspondences. An updated
view is rendered from the 3D model and the entire procedure is re-
peated at a finer scale in the HOG pyramid. In this way, large mis-
alignments are corrected at the beginning of the procedure, with
minor adjustments made at the end. In addition to the putative cor-
respondences obtained via dense HOG matching at each iteration,
we also include inlier correspondences from previous ICP itera-
tions during RANSAC and fitting, This avoids the camera parame-
ters from overfitting to a particular region in the input depiction. We
illustrate the output of the fine alignment procedure in figure 10.

6. RESULTS AND VALIDATION

In this section we describe the collected dataset of non-
photographic depictions and historical photographs, show outputs
of our alignment system, and give its quantitative evaluation.

6.1 Dataset for 2D to 3D alignment

We have collected a set of human-generated 3D models from
Google Sketchup for the following architectural landmarks: Notre
Dame of Paris, Trevi Fountain, and San Marco’s Basilica. The
Sketchup models for these sites consist of basic primitive shapes
and have a composite texture from a set of images. In addition
to the Sketchup models, we also consider one of the Rome-in-a-
day [Agarwal et al. 2010] 3D models of San Marco’s Square that
was reconstructed from a set of photographs using dense multi-
view stereo. Note that while the latter 3D model has more accurate
geometry than the Sketchup models, it is also much noisier along
the model boundaries.

We have also collected from the Internet 85 historical pho-
tographs and 252 non-photographic depictions of the sites. We
separated the non-photographic depictions into the following cat-
egories: ‘drawings’ (60 images), ‘engravings’ (45 images) and
‘paintings’ (147 images). The drawings category includes color
renderings and the paintings category includes different rendering
styles, such as watercolors, oil paintings, and pastels. Table I shows
the number of images belonging to each category across the differ-
ent sites.

6.2 Qualitative results

Figures 11 and 12 show example alignments of historical pho-
tographs and non-photographic depictions, respectively. Notice that
the depictions are reasonably well-aligned, with regions on the 3D
model rendered onto the corresponding location for a given depic-

Table II. Viewpoint similarity user study of our
algorithm across different sites.
Good | Coarse No
match | match | match
S. Marco Square 51% 21% 28%
S. Marco Basilica 45% 39% 15%
Trevi Fountain 55% 20% 24%
Notre Dame 65% 27% 9%
Average 55% 27% 18%

tion. We are able to cope with a variety of viewpoints with respect
to the 3D model as well as different depiction styles. Our approach
succeeds in recovering the approximate viewpoint in spite of these
challenging appearance changes and the varying quality of the 3D
models. In figure 13 we show alignments to a set of challenging ex-
amples where the assumption of a perspective rendering is signifi-
cantly violated, but the proposed approach was still able to recover
a reasonable alignment. Notice the severe non-perspective scene
distortions, drawing errors, and major architectural differences (e.g.
a part of the landmark may take a completely different shape).

Figure 14 shows the camera frusta for the recovered approximate
painting viewpoints. Notice that our system is able to recover view-
points that are to the rear of the main facade of the Notre Dame
cathedral, which has not been possible in prior work [Snavely
et al. 2006] due to the lack of reconstructed structure in these ar-
eas. Recovering approximate camera viewpoints for paintings and
historical photographs opens up the possibility of large-scale au-
tomatic computational re-photography for such depictions [Bae
et al. 2010]. The supplementary video shows an example of a vir-
tual tour of an architectural site transitioning between viewpoints
of different images in 3D in a similar manner to [Snavely et al.
2006], but here done for the challenging case of historical pho-
tographs, non-photographic depictions, and only an approximate
3D model from Google Sketchup. Many architectural sites now
have 3D models geo-located on a map, which, combined with
the proposed approach, would enable geo-locating historical pho-
tographs and non-photographic depictions [Shrivastava et al. 2011]
for, e.g., navigation and exploration of non-photorealistic depic-
tions (as shown in the supplementary video or, coarsely aligned
manually, at http://www.whatwasthere.com) or in situ guided tours
of historical imagery using mobile or wearable display devices.

6.3 Quantitative evaluation

In the following we give details of the performed user-study, report
quantitative results across the 3D sites and depiction styles, and
compare performance with several baseline methods.

To quantitatively evaluate the goodness of our alignments, we
have conducted a user study via Amazon Mechanical Turk. The
workers were asked to judge the viewpoint similarity of the re-
sulting alignments to their corresponding input depictions by cat-
egorizing the viewpoint similarity as either a (a) Good match, (b)
Coarse match, or (c) No match, illustrated in figure 15. We asked
five different workers to rate the viewpoint similarity for each de-
piction and we report the majority opinion.

Table II shows the performance of our algorithm for the differ-
ent 3D sites considered in this work. As expected, the performance
varies to some extent across the different models depending on thier
size, quality and the difficulty of the matching task. However, the
failure (no match) rate remains consistently below 30%.

Table III shows the performance of our algorithm for different
depiction styles averaged across the 3D sites. Interestingly, the re-
sults are fairly consistent across different depiction styles.
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Fig. 11. Alignment of historical photographs of San Marco’s Square (top) and Notre Dame of Paris (bottom) to their respective 3D models.

Table III. Viewpoint similarity user study of our
algorithm across different depiction styles.
Good | Coarse No
match | match | match
Historical photographs 59% 20% 21%

Paintings 53% 30% 18%
Drawings 52% 29% 19%
Engravings 57% 26% 17%
Average 55% 27 % 18%

Table IV. Viewpoint similarity user study — comparison with
baselines on the “San Marco Square” 3D site.

Good | Coarse No

match | match | match

SIFT on rendered views 40% 26% 33%
Viewpoint retrieval [Russell et al. 2011] 1% 39% 60%
Exemplar SVM [Shrivastava et al. 2011] 34% 18% 48%

mid-level painting visual elements 33% 29% 38%

3D discrim. visual elements (ours) 51% 21% 28%

Finally, table IV compares the performance of our algorithm
to several baseline methods for the 141 depictions of San Marco
Square — the largest 3D model in our dataset with 45K sampled
viewpoints. We compare our algorithm against the following four
baselines: (i) SIFT on rendered views, (ii) viewpoint retrieval (cor-
responding to the coarse alignment step of [Russell et al. 2011]),
(iii) exemplar SVM [Shrivastava et al. 2011], and (iv) mid-level
painting visual elements that, similar to [Singh et al. 2012], learns
mid-level visual elements directly from paintings, rather than the
3D model. The implementation details of each baseline are given
next.

For the SIFT on rendered views baseline we extract and match
SIFT descriptors computed at interest points across scale [Lowe
2004] over each input depiction and all rendered views. We use
orientation sensitive descriptors as we found them to be more reli-
able than orientation invariant descriptors in practice. We perform
geometric verification by finding inliers to an affine homography
between the input depiction and each rendered viewpoint. Then, we
take the rendered viewpoint with the most inliers and perform cam-
era resectioning with RANSAC using the SIFT putative matches
for that view. We return as output a rendering of the final resec-
tioned viewpoint. Note that the matching procedure is not standard
since it is extracting descriptors from rendered views, which nor-

malize for viewpoint changes. In other words, the SIFT matching
step does not need to be viewpoint invariant as we are matching to
a similar viewpoint from the rendered set. This baseline is similar
in spirit to matching with Viewpoint Invariant Patches (VIP) [Wu
et al. 2008], except no depth or rectification is needed for the paint-
ings. This baseline performs reasonably well, having 40% good
alignments compared with 51% for our algorithm. The good perfor-
mance is largely due to alignments of historical photographs (70%
vs. 50% for our method). However, if historical photographs are re-
moved from the dataset, the SIFT on rendered views baseline drops
to 27% good alignments, while our algorithm still achieves 52%
good alignments.

The viewpoint retrieval baseline consists of matching a global
Gist descriptor [Oliva and Torralba 2001] extracted for each input
depiction and all rendered views. The Gist descriptors are com-
pared using L2 distance and the view corresponding to the mini-
mum distance is returned. The Gist descriptor is sensitive to view-
point, with the matching procedure corresponding to the coarse
alignment step of [Russell et al. 2011]. Our method clearly out-
performs the viewpoint retrieval baseline mainly because the sam-
pled rendered views fail to cover the enormous space of all possible
viewpoints. Matching the global image-level Gist descriptor would
require much denser and wider sampling of views.

To reduce the viewpoint coverage issue, we explore as a base-
line the exemplar-SVM approach of [Shrivastava et al. 2011]. For
this a single exemplar SVM detector is trained for each input depic-
tion and is subsequently matched across all scales and 2D locations
in sliding window fashion in the rendered views. While the perfor-
mance improves over Gist matching, nonetheless the results remain
limited since the approach cannot handle partial occlusions and sig-
nificant deformations that are common in non-photorealistic depic-
tions. Moreover, the procedure is computationally expensive since
an SVM detector is trained with hard negative mining for each input
painting, with the resulting detector run in a sliding window fashion
over all rendered views. In contrast, our approach learns offline a
few thousand visual element detectors that compactly summarises
an entire architectural site. At run time, only the learnt visual ele-
ments are applied to the input depiction.

To overcome the issues with partial occlusion and significant de-
formations, but keeping the idea of matching the input painting to
the rendered views, we extract mid-level visual elements directly
from the input paintings without any explicit knowledge of the 3D
model. In detail, we extract 25 mid-level discriminative visual el-
ements from each input painting using the approach presented in
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Fig. 12. Example alignments of non-photographic depictions to 3D models. Notice that we are able to align depictions rendered in different styles and having
a variety of viewpoints with respect to the 3D models.
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(a) Scene distortion.

(b) Drawing and 3D errors.

P

(c) Major structural differences.

Fig. 13. Challenging examples successfully aligned by our method where the assumption of a perspective scene rendering is violated. Note that the drawing

in (c) is a completely different cathedral.

(a) Notre Dame of Paris.

(b) Trevi Fountain.

Fig. 14. Google Sketchup models and camera frusta depicting the recovered viewpoints of the paintings.

Table V. Evaluation of different 3D model
rendering styles.
Good | Coarse No
match | match | match
Drawing style 61% 12% 27%
Painting style 54% 18% 28%
Original rendering | 65% 27% 9 %

section 4.2.2. The painting visual elements are then matched in a
sliding window fashion to all rendered views. For each rendered
view inlier point correspondences are recovered via camera resec-
tioning with RANSAC over the maximal detector responses. The
resectioned view that yields the largest number of inliers is ren-
dered and returned. Note that this baseline is similar in spirit to
learning mid-level patches [Doersch et al. 2012; Singh et al. 2012]
from the input paintings without the explicit knowledge of the 3D
model. While this baseline further improves over exemplar-SVM
(38% vs. 48% failures), it does not outperform our method mainly
because it cannot combine visual element detections from multi-
ple views available to our method via the 3D model. Similar to the
exemplar-SVM, an additional drawback of this baseline is the high
computational cost as visual elements from each painting must be
run densely across all rendered views.

6.4 Algorithm analysis

In this section we evaluate variants of the three steps of our al-
gorithm: viewpoint rendering style, visual element selection, and
visual element matching. Finally, we show and analyze the main
failure modes.

6.4.1 Viewpoint rendering style. Since our goal is to align a
3D model to non-photorealistic depictions, we explored the possi-
bility of applying different rendering styles during the viewpoint

(a) Original rendering

(b) Drawing style

(c) Painting style

Fig. 16. Viewpoint rendering styles. We explored the possibility of ren-
dering viewpoints from the 3D model in different styles by applying style
filters within Photoshop CS4 to the rendered views.

rendering step of our algorithm. We applied the ‘watercolor’ and
‘accentuated edges’ style filters from Photoshop CS4 to our ren-
dered views to generate, respectively, a ‘painting like’ and a ‘draw-
ing like’ style. Example filter outputs are shown in figure 16. We
quantitatively evaluate the output of our full system (using the style
filters during rendering) on 147 depictions of the Notre Dame site
via a user study on Amazon Mechanical Turk. Results are sum-
marized in table V. Both styles result in a decrease of the overall
matching performance compared to the original rendering. How-
ever, when results are split by depiction (not reported in table V) the
drawing style results in a small increase of matching performance
on drawings (68% good matches vs. 62% good matches with the
original rendering). While this difference amounts to only 3 addi-
tional matched depictions, it opens-up the possibility of learning a
vocabulary of visual elements specific for each rendering style.

6.4.2 Visual element selection. Here we evaluate benefits of
the proposed discriminative visual element selection combined and
cross-validation. To measure the improvement in the quality of
the selected visual elements we compute the percentage of cor-
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(a) Good match

(b) Coarse match

(c) No match

Fig. 15. Alignment evaluation criteria. We asked workers on Amazon Mechanical Turk to judge the viewpoint similarity of the resulting alignment to the
input depiction. The workers were asked to categorize the viewpoint similarity into one of three categories: (a) Good match — the two images show a roughly
similar view of the building; (b) Coarse match — the view may not be similar, but the building is roughly at the same location in both images, not upside down,
and corresponding building parts can be clearly identified; (c¢) No match — the views are completely different, e.g. upside down, little or no visual overlap.
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Fig. 17. Evaluation of visual element selection. The average percent-
age (left) and number (right) of correct matches as a function of the top n
matches. See text for details.

rect matches (inliers). We consider only the San Marco square 3D
model and the ground truth is obtained by visual inspection of the
resulting alignments — only correct matches from the good and ok
alignments are considered as ground truth inliers. The percentage
of inliers gives a finer indication of the quality of visual elements
than the overall percentage of correct alignments measured in the
previous section as RANSAC will often find the correct alignment
even from very few correct candidate correspondences. Results are
summarised in figure 17. Here 10K discriminative visual elements
were learnt from 45K sampled views. We compare three methods
for selecting visual elements from the set of rendered views: The
“3D overlap” (red) method selects visual elements that significantly
overlap the 3D model in rendered views, i.e. where at least 50% of
the HOG support is occupied by the 3D model. 10K visual elements
are then chosen randomly out of all visual elements that satisfy the
3D model overlap criteria. The “discriminative” (blue) method uses
the discriminative selection (section 4.2.2), but no cross-validation.
The “discr. + X-val” (green) uses the proposed discriminative vi-
sual element selection (section 4.2.2) with cross-validation (sec-
tion 4.2.5). For example, inspecting figure 17(a) reveals that within
the top 10 matches there are 27.9% of correct matches for the 3D
overlap method, 31.9% for the discriminative selection, and 35.4%
for the discriminative selection with cross-validation. This demon-
strates that visual elements selected by the proposed method are
more likely to be correctly recovered in the painting.

6.4.3  Visual element matching. We evaluate the proposed
matching procedure on the ‘desceval’ task from the benchmark
dataset collected in [Hauagge and Snavely 2012]. The benchmark
consists of challenging imagery, such as historical photographs and
non-photographic depictions of architectural landmarks. Pairs of
images in the dataset depicting a similar viewpoint of the same
landmark have been registered by fitting a homography to manual
point correspondences. The task is to find corresponding patches

Table VI. Evaluation of visual element matching. We report
the mean average precision on the “desceval” task from the
benchmark dataset of [Hauagge and Snavely 2012].

Matching method mAP (“desceval”)
Local symmetry [Hauagge and Snavely 2012] 0.58
Least squares regression (Sec. 4.2.2) 0.52
LDA (Sec. 4.2.3) 0.60
Ours (Sec. 4.2.5) 0.77

in each image pair. Since the ground truth correspondence between
points is assumed known via the homography, a precision-recall
curve can be computed for each image pair. We report the mean av-
erage precision (mAP) measured over all image pairs in the dataset.

Following [Hauagge and Snavely 2012] we perform matching
over a grid of points in the two views, with the grid having 25 pixel
spacing. In table VI we report the mAP for different visual element
matching methods for our system, along with the local symmetry
feature baseline of [Hauagge and Snavely 2012]. Our full system
using the calibrated matching score (section 4.2.5) achieves a mAP
of 0.77, which significantly outperforms both the alternative visual
element matching scores obtained by least squares regression (sec-
tion 4.2.2) and linear discriminant analysis (LDA, section 4.2.3), as
well as the local symmetry feature baseline.

6.4.4 Failure modes. We have identified three main failure
modes of our algorithm, examples of which are shown in figure 18.
The first is due to large-scale symmetries, for example when the
front and side facade of a building are very similar. This problem
is difficult to resolve with only local reasoning. For example, the
proposed cross-validation step removes repetitive structures Vvisi-
ble in the same view but not at different locations of the site. The
second failure mode is due to locally confusing image structures,
for example, the vertical support structures on the cathedral in fig-
ure 18 (middle) are locally similar (by their HOG descriptor) to the
vertical pencil strokes on the drawing. The learnt mid-level visual
elements have a larger support than typical local invariant features
(such as SIFT) and hence are typically more distinctive. Neverthe-
less, such mismatches can occur and in some cases are geomet-
rically consistent with a certain view of the 3D model. The third
failure mode is when the viewpoint depicted in the painting is not
covered in the set of sampled views. This can happen for unusual
viewpoints including extreme angles, large close-ups, or cropped
views.

6.4.5 Computational cost. The most computationally de-
manding part of our algorithm is the selection of discriminative
visual elements, which can be done offline. Our basic rendering
engine outputs between 10 to 80 views per minute depending on
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Fig. 18. Example failure cases. Top: large scale symmetry. Here arches
are incorrectly matched on a building with similar front and side facades.
Middle: locally confusing image structures. Here the vertical support struc-
tures on the cathedral (right) are locally similar by their HOG descriptor to
the vertical pencil strokes on the drawing (left). Bottom: Two examples of
paintings with unusual viewpoints.

the 3D model, but modern GPU implementations are capable of
much faster rendering speeds. Additionally, it is possible to render
the views on-demand only, without ever storing them, which could
significantly reduce the storage requirements, specially for large
sites. In our Matlab implementation, the visual element selection
learning time is dominated by cross-validation. Overall, the algo-
rithm is able to learn about 2,000 elements per hour using 20 cores
on a cluster. Note that after the offline learning only the learnt vi-
sual elements need to be stored. Each element is represented by an
800-dimensional weight vector, together with the 3D location, scale
and orientation of the corresponding planar patch. During the on-
line detection stage, matching 10,000 visual elements to a 450x360
image takes about 22 minutes. The final camera resectioning takes
about 25 seconds. Both timings are on a single 4-cores machine
with our Matlab implementation.

7. CONCLUSION

‘We have demonstrated that automatic image to 3D model alignment
is possible for a range of non-photographic depictions and histor-
ical photographs, which represent extremely challenging cases for
current local feature matching methods. To achieve this we have
developed an approach to compactly represent a 3D model of an ar-
chitectural site by a set of visually distinct mid-level scene elements
extracted from rendered views, and have shown that they can be re-
liably matched in a variety of photographic and non-photographic
depictions. We have also shown an application of the proposed
approach to computational re-photography to automatically find
an approximate viewpoint of historical photographs and paintings.
This work is just a step towards computational reasoning about the
content of non-photographic depictions. The developed approach

for extracting visual elements opens-up the possibility of efficient
indexing for visual search of paintings and historical photographs
(e.g. via hashing of the HOG features as in [Dean et al. 2013]), or
automatic fitting of complex non-perspective models used in his-
torical imagery [Rapp 2008].
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