
HAL Id: hal-00864293
https://inria.hal.science/hal-00864293v1

Preprint submitted on 20 Sep 2013 (v1), last revised 21 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Division-Free Binary-to-Decimal Conversion
Cyril Bouvier, Paul Zimmermann

To cite this version:
Cyril Bouvier, Paul Zimmermann. Division-Free Binary-to-Decimal Conversion. 2013. �hal-
00864293v1�

https://inria.hal.science/hal-00864293v1
https://hal.archives-ouvertes.fr


FASTER BINARY-TO-DECIMAL CONVERSION 1

Division-Free Binary-to-Decimal Conversion
Cyril Bouvier and Paul Zimmermann

Abstract—This article presents algorithms that convert multiple precision integer or floating-point numbers from radix 2 to radix 10 (or

to any radix b > 2). Those algorithms, based on the “scaled remainder tree” technique, use multiplications instead of divisions in their

critical part. Both quadratic and subquadratic algorithms are detailed, with proofs of correctness. Experimental results show that our

implementation of those algorithms outperforms the GMP library by up to 50%.

Index Terms—binary-to-decimal conversion, scaled remainder tree, GMP

F

1 INTRODUCTION

Since computers usually work in binary and humans
prefer decimal numbers, the conversion of multiple pre-
cision integers from radix 2 to radix 10 — or more gener-
ally to any radix b > 2 — is a fundamental operation. The
binary-to-decimal conversion is implemented in most
multiple precision libraries (GMP, PARI/GP, CLN, NTL
to cite a few) or computer algebra systems (Maple,
Mathematica, Sage). The classical way to perform this
conversion is to repeatedly divide the given integer
by the output radix b: the remainder gives the least
significant digit of the output string, and one continues
with the quotient until is becomes zero (see Section
4.4, Method 1a in [1]). A subquadratic version of that
algorithm based on long division is well understood too
(see Section 1.7.2 of [2]).

An alternate algorithm, which is less known, replaces
divisions by multiplications in the critical loop. The idea
can be found in [1, Section 4.4], where Knuth presents
an algorithm (Method 2a) to convert fractional numbers
using multiplication, and says “it is certainly possible to
convert between integers and fractions by multiplying or
dividing by an appropriate power of b or B”; however no
further details are given. A similar idea is used by Bern-
stein in [3] to compute U mod p1, U mod p2, ... where
U, p1, p2, ... are integers; Bernstein calls the underlying
structure a “scaled remainder tree”.

In this article we present detailed algorithms based on
the “scaled remainder tree” idea, both in the quadratic
range (for small numbers) and in the subquadratic range
(for large numbers). When given a nonnegative integer
a of (at most) k digits in radix b, those algorithms first
approximate the radix-b fraction a/bk by a binary fraction
y/2n, then this binary fraction is converted to radix b
using a division-free algorithm. In the whole article we
assume b fits in a machine word, and is not a power of
two, in which case trivial algorithms exist.

The article is organized as follows. After a descrip-
tion in Section 2 of classical algorithms — both in the

E-mail: Cyril.Bouvier@inria.fr, Paul.Zimmermann@inria.fr

quadratic and subquadratic case —, Section 3 presents
the division-free algorithms and their proof of correct-
ness; Section 4 briefly discusses how those algorithms
can be used to convert floating-point numbers; finally
Section 5 compares our implementation of the algo-
rithms of Sections 3 and 4 to the reference implemen-
tation of classical algorithms in GMP [4].

2 CLASSICAL DIVISION-FULL CONVERSION

The literature contains only a few references on multi-
ple precision binary-to-decimal conversion. Apart from
[1] and [2], we found an article of Roman Maeder in
The Mathematica Programmer (volume 6, issue 3, 1996).
Most references only describe algorithms with division
(except [1], but which does not consider multiple preci-
sion division-free conversion). We briefly outline those
classical algorithms in this section.

2.1 Quadratic Algorithm

The straightforward quadratic conversion of a multiple
precision integer a to radix b just consists of computing
a mod b, which will give the least significant digit in
radix b, and repeat with a′ = ⌊a/b⌋, and so on, until we
get zero. If the input a has n words, this algorithm clearly
takes O(n2) time, and the critical loop mainly divides
a multi-word integer by one word, since we assumed
the radix b fits into one machine word. In GMP, this
corresponds to the mpn_divrem_1 function.

An easy way to speed up this algorithm is to first
compute the largest power bj that fits into a word, divide
by bj in each loop, which will produce a remainder r less
than bj , and convert r into j digits in radix b using an
auxiliary routine. This will divide the number of calls
to mpn_divrem_1 by a factor of j, where j = 9 on a
32-bit computer, and j = 19 on a 64-bit computer for
b = 10. This method is described in the documentation
of GMP. Note that GMP uses the “scaled remainder
tree” technique to convert r into j digits: instead of
performing j divisions by b, GMP first approximates the
fraction r/bj , then digits are extracted by multiplications.



FASTER BINARY-TO-DECIMAL CONVERSION 2

2.2 Subquadratic Algorithm

The subquadratic classical conversion is described in
detail in [2], and is the algorithm used in GMP 5.1.2.
Assuming the input number has at most k digits in
radix b, with k a power of two, precompute bk/2, bk/4,
bk/8, ... Then compute q and r such that a = qbk/2 + r
with 0 ≤ r < bk/2, and divide recursively q and r
(with remainder) by bk/4, and so on until the number
of digits to be printed is below a threshold kt, then we
use the naive algorithm described in §2.1. This technique
is called “remainder tree” in the literature.

The GMP documentation (in version 5.1.2) says: The
r/bn scheme described above for using multiplications to bring
out digits might be useful for more than a single limb. Some
brief experiments with it on the base case when recursing
didn’t give a noticeable improvement, but perhaps that was
only due to the implementation. Something similar would
work for the subquadratic divisions too, though there would be
the cost of calculating a bigger radix power. This is exactly
the idea used in the algorithms we describe below.

3 DIVISION-FREE CONVERSION

3.1 Naive Algorithm

The naive conversion first computes a floating-point
approximation x = y/2n of a/bk. Since we assumed that
a is nonnegative and has at most k digits in radix b,
we have 0 ≤ a/bk < 1, thus the integer part of bx will
reveal the most significant digit (in radix b) of a, more
precisely the digit of weight bk−1. Then we continue with
the fractional part of bx, and so on until we get exactly
k digits in radix b. Note: since the output radix b is fixed
for a given computation, we do not explicit it in the
parameters of our functions.

Algorithm 1 Naive conversion

Input: integers a, b, k such that a < bk

Output: a string s of k digits in radix b (with potential
leading zeros)

1: choose an integer n such that 2bk < 2n

2: y0 ← ⌊
(a+1)2n

bk
⌋ − 1

3: return CONVERT NAIVE(y0, k, n)
4:

5: function CONVERT NAIVE(y0, k, n)
6: for i = 1 to k do
7: ti ← byi−1

8: sk−i ← ⌊
ti
2n ⌋

9: yi ← ti mod 2n

10: return (sk−1, . . . , s0)

The main cost in Algorithm 1 is the multiplication of b
by yi−1 in Step 7; a variant with truncation to reduce this
cost is given in Algorithm 2. We prove the correctness
of this variant in Theorem 2.

Algorithm 2 Naive conversion with truncation

Input: integers a, b, k, k ≥ 2, such that a < bk

Output: a string s of k digits in radix b (with potential
leading zeros)

1: choose an integer n such that 2kbk < 2n

2: y0 ← ⌊
(a+1)2n

bk
⌋ − 1

3: return CONVERT TRUNC(y0, k, n)
4:

5: function CONVERT TRUNC(y0, k, n)
6: choose a floating-point value α ≤ log2(b)
7: write ni for n− ⌊iα⌋
8: for i = 1 to k do
9: ti ← byi−1

10: sk−i ← ⌊
ti

2ni−1
⌋

11: zi ← ti mod 2ni−1

12: yi ← zi bdiv 2ni−1−ni [truncate the ni−1 − ni

least significant bits]

13: return (sk−1, . . . , s0)

Lemma 1: With the notations of Algorithm 2, the fol-
lowing inequalities stand:

a+
1

2
<

bky0
2n

< a+ 1.

Proof: By definition of y0, one has

y0 ≤
(a+ 1)2n

bk
− 1 < y0 + 1,

so one can deduce

a+ 1−
2bk

2n
<

bky0
2n
≤ a+ 1−

bk

2n
. (1)

The condition 2kbk < 2n with k ≥ 2 implies 4bk < 2n. It

follows a+ 1
2 ≤ a+ 1− 2bk

2n .
Theorem 2: With the notations of Algorithm 2, ∀i ∈

[0, k − 1], 0 ≤ si < b and

a =

k−1∑

i=0

sib
i.

Proof: For i ∈ [1, k], one has 0 ≤ yi−1 < 2ni−1 , thus
0 ≤ sk−i < b.

For i ∈ [1, k], the following equality stands:

byi−1 = sk−i2
ni−1 + yi2

ni−1−ni + ri,

where ri := ti mod 2ni−1−ni . So,

bky0 = sk−12
nbk−1 + bk−1y12

n−n1 + bk−1r1

= sk−12
nbk−1 + bk−1r1

+ bk−22n−n1(2n1sk−2 + y22
n1−n2 + r2)

...

=
k∑

i=1

sk−i2
nbk−i +

k∑

i=1

rib
k−i2n−ni−1 + yk2

n−nk .



FASTER BINARY-TO-DECIMAL CONVERSION 3

Using Lemma 1, the following inequalities hold:

a+
1

2
<

k−1∑

i=0

sib
i +

k∑

i=1

rib
k−i2−ni−1 + yk2

−nk < a+1. (2)

As 0 ≤ yk < 2nk , we have 0 ≤ yk2
−nk < 1. Moreover,

since 0 ≤ ri < 2ni−1−ni and 2α ≤ b:

0 ≤

k∑

i=1

rib
k−i2−ni−1 <

k∑

i=1

bk−i2−ni ≤

k∑

i=1

bk−i2iα−n

< k
bk

2n
<

1

2
.

So, one can deduce

a− 1 <

k−1∑

i=0

sib
i < a+ 1.

Since both a and
∑k−1

i=0 sib
i are integers, the equality

follows.
Algorithm 1, where no truncation occurs, corresponds
exactly to Algorithm 2 with ni = n and ri = 0. Then
Eq. (2) becomes:

a+
1

2
<

k−1∑

i=0

sib
i + yk2

−nk < a+ 1,

which gives a − 1/2 <
∑k−1

i=0 sib
i < a + 1 since 0 ≤

yk2
−nk < 1. In this case we can relax the condition of

Lemma 1 into a < bky0/2
n < a + 1, which according to

Eq. (1) holds as soon as 2bk < 2n, which is exactly what
we choose in Algorithm 1. This proves the correctness
of Algorithm 1 too.

In Algorithm 2 (with truncation), the condition for n,
2kbk < 2n, can be replaced by 2rbk < 2n, where r ≥ 2 is
an upper-bound on the number of truncations.

Note: the quadratic division-free conversion with trun-
cation is very similar in complexity to the quadratic
division-full conversion, since the working size de-
creases regularly from n to 0 bits throughout the algo-
rithm. The main difference is that in the division-free
algorithm, divisions are replaced with multiplications,
which are cheaper.

Implementation details

In practice, in Algorithm 2, the digits are computed by
blocks of j digits, where j is the largest integer such that
bj fits in a word. This replaces the multiplication by b in
line 9 by a multiplication by bj which has the same cost,
as bj fits in a word, and decreases the number of such
multiplications by a factor of j.

The remaining problem is to extract from the sk−i’s the
j digits (instead of one digit previously). This is done by
computing sk−i separately from the rest of the product.
First, notice that sk−i is the highest word of the product
of yi−1 by bj and is, up to a carry, the high word of the
two-word product of the most significant word of yi−1

by bj . This two-word product can be performed by a
series of multiplications by b, b2, b3 or b4 and the digit, or

the 2, 3 or 4 digits, can be extracted from the high word
with look-up tables. The low word of this two-word
product is then added to the rest of the product bjyi−1

(performed with the mpn_mul_1 function of GMP). If a
carry arises, the digits are corrected.

3.2 Subquadratic Algorithm

The idea of the subquadratic algorithm is the follow-
ing: starting from a n-bit integer y such that ybk2−n

approximates an integer a of k digits in radix b, one
will compute two integers yh and yℓ of about n/2 bits
each, and corresponding integers kh, nh, kℓ, nℓ, such that
yhb

kh2−nh and yℓb
kℓ2−nℓ approximate respectively the

most significant part ah of a and the least significant
part aℓ (both in radix b). We first show that if ybk2−n is
sufficiently near from a, then yhb

kh2−nh and yℓb
kℓ2−nℓ

— as defined below — are both sufficiently near from
ah and aℓ respectively, as defined below.

Remark: In the following, we will write inequalities of
the form

a− d <
ybk

2n
< a+ 1, (3)

with d ≤ 1. The left-hand side of all these inequalities
should be seen modulo bk, meaning that when a = 0,
this is equivalent to

bk − d <
ybk

2n
< bk or 0 ≤

ybk

2n
< 1.

In the following g ≥ 2 is a fixed integer (rationale
behind g: bound on the number of recursive calls).
Assume we start from Eq. (3), where a has (at most)
k digits in radix b, y has (at most) n bits, 4gbk < 2n and
d ≤ 1.

Choose kh, kℓ < k, nh, nℓ and define k0 and n0 as k =
kh + k0 and n = nh + n0. The integers kh, kℓ, nh, and nℓ

should satisfy:

• k0 ≥ 2,
• 4gbkh < 2nh ,
• 4gbkℓ < 2nℓ .

Let us write a = ahb
k0 + a0 and y = yh2

n0 + y0 where
0 ≤ a0 < bk0 and 0 ≤ y0 < 2n0 . Moreover, let aℓ
correspond to the kℓ least significant digits in radix b of a.
Finally, let us define yℓ = [(bk−kℓy) mod 2n] bdiv 2n−nℓ ,
which means that after multiplying y by bk−kℓ , we
extract the nℓ bits from position n− nℓ to n− 1.

We will first prove that:

ah −
1

4
<

yhb
kh

2nh

< ah + 1. (4)

We have from Eq. (3):

yh2
n0 + y0
2n

bk < ahb
k0 + a0 + 1,

thus
yhb

kh

2nh

< ah + 1,



FASTER BINARY-TO-DECIMAL CONVERSION 4

since a0 +1 ≤ bk0 . On the other side, again from Eq. (3):

yh2
n0 + y0
2n

bk > ahb
k0 + a0 − d ≥ ahb

k0 + a0 − 1,

thus
yhb

kh

2nh

> ah −
1

bk0

−
y0b

kh

2n
.

Since y0 < 2n0 and bk0 > 8,

1

bk0

+
y0b

kh

2n
<

1

8
+

bkh

2nh

<
1

8
+

1

4g
≤

1

4
(since g ≥ 2).

Thus we get:

ah −
1

4
<

yhb
kh

2nh

< ah + 1.

We will now prove:

aℓ − d−
1

4g
<

yℓb
kℓ

2nℓ

< aℓ + 1. (5)

For now, we assume 0 < aℓ. We have from Eq. (3):

2n
a− d

bkℓ

< ybk−kℓ < 2n
a+ 1

bkℓ

.

Writing a = a1b
kℓ+aℓ, with a1 representing the most sig-

nificant digits, and taking the above inequality modulo
2n, the terms in a1 cancel (since aℓ is an integer, aℓ > 0
and d ≤ 1, we have aℓ − d ≥ 0):

2n
aℓ − d

bkℓ

< ybk−kℓ mod 2n < 2n
aℓ + 1

bkℓ

.

Truncating the low n− nℓ bits, we get:

2nℓ
aℓ − d

bkℓ

− 1 < yℓ < 2nℓ
aℓ + 1

bkℓ

,

thus:

aℓ − d−
bkℓ

2nℓ

<
yℓb

kℓ

2nℓ

< aℓ + 1.

We thus get for the least significant part:

aℓ − d−
1

4g
<

yℓb
kℓ

2nℓ

< aℓ + 1.

In the case where aℓ = 0, the above inequality has to be
interpreted modulo bkℓ , i.e.:

0 ≤
yℓb

kℓ

2nℓ

< 1 or bkℓ − d−
1

4g
<

yℓb
kℓ

2nℓ

< bkℓ .

Note also that we did not assume that ah and aℓ overlap
up to here, i.e., that kh + kℓ > k.

Algorithm 3 uses a scaled remainder tree [3]; the
main difference with Bernstein’s work in [3] is that our
scaled remainder tree is asymmetrical, and going to a
left subtree requires no multiplication. In this algorithm
the parameter a of function CONVERT REC is only here
for proof purpose. This means that ah and aℓ need not
be computed at lines 9 and 10 during an actual run of
the algorithm.

Algorithm 3 Subquadratic Division-Free Conversion

Input: integer a, radix b ≥ 3, threshold kt ≥ 3
Output: a string s of digits in radix b (with potential

leading zeros)
1: function CONVERT REC(a, k, y, n, g)
2: if k ≤ kt then
3: return CONVERT TRUNC(y, k, n)
4: else
5: kh ← ⌊

k+1
2 ⌋

6: kℓ ← k − kh + 1
7: Choose nh such that 4gbkh < 2nh

8: Choose nℓ such that 4gbkℓ < 2nℓ

9: ah ← ⌊ab
kh−k⌋

10: aℓ ← a mod bkℓ

11: yh ← ⌊y2
nh−n⌋

12: yℓ = [(bk−kℓy) mod 2n] bdiv 2n−nℓ .
13: sh ← CONVERT REC(ah, kh, yh, nh, g)
14: sℓ ← CONVERT REC(aℓ, kℓ, yℓ, nℓ, g)
15: if the trailing digit of sh is b−1 and the leading

digit of sℓ is 0 then
16: sh ← sh + 1 mod bkh

17: if the trailing digit of sh is 0 and the leading
digit of sℓ is b− 1 then

18: sℓ ← 000 . . . 000 (kℓ times)

19: return s = ⌊sh/b⌋b
kℓ + sℓ

20:

21: k ← ⌈logb(a)⌉
22: g ← max(⌈log2(k)⌉+ 1, kt)
23: Choose n such that 4gbk < 2n

24: y ← ⌊ (a+1)2n

bk
⌋ − 1

25: return CONVERT REC(a, k, y, n, g)

Before we prove the correctness of Algorithm 3, we
make a comment: the condition kt ≥ 3 ensures that k ≥
4 in the recursive calls, thus kh ≥ 2 (if kh = 1 then
kℓ = k and the function would loop forever) and that
the condition k0 = k − kh ≥ 2 is always true.

Lemma 3: Assume CONVERT REC is called with a, k >
kt, y, n, g ≥ 2. If

4gbk < 2n and a− d <
ybk

2n
< a+ 1 with d ≤

1

2
, (6)

then

4gbkh < 2nh and 4gbkℓ < 2nℓ , (7)

ah −
1

4
<

ybkh

2nh

< a+ 1,

aℓ − d−
1

4g
<

ybkℓ

2nℓ

< a+ 1.

Moreover, for d ≤ 1
4 and at most g recursive calls, the

inequality

a−
1

2
<

ybk

2n
< a+ 1

holds at any level of the recursion.



FASTER BINARY-TO-DECIMAL CONVERSION 5

Proof: Condition (7) is due to lines 7 and 8 of
Algorithm 3. The others two conditions are proven in
the beginning of this Section.

Now if we start from Eq. (6) with d ≤ 1/4, then for
a left node — i.e., corresponding to some ah — Eq. (4)
holds, and for a right node at the end of a branch of
t ≤ g successive right nodes, we have

a−
1

4
−

t

4g
<

ybk

2n
< a+ 1.

Lemma 4: Assume CONVERT REC is called with a, k,
y, n, g. Moreover, assume that the input values satisfy
condition (6), that d ≤ 1

4 and that at most g recursive calls
are made. Then, the output string s satisfies (identifying
s and its value in radix b) s = a or s = a− 1 mod bk.

Proof: We consider the tree made of the recursive
calls of function CONVERT REC. Let us call its height h.
By hypothesis, we have h ≤ g. Using Lemma 3, we have,

for all nodes of the tree, a− 1/2 < ybk

2n < a+ 1.
We will prove that s = a or s = a − 1 mod bk by

induction on h. For h = 0, we are in the case k ≤ kt
and it follows from the proof of Algorithm 2: indeed
if a + 1/2 < ybk/2n < a + 1, we have seen that
necessarily function CONVERT TRUNC gives s = a; and
if a−1/2 < ybk/2n ≤ a+1/2, it can give s = a or s = a−1
(all others requirements of Theorem 2 are verified). For
h > 0, we have by induction hypothesis, sh = ah or
sh = ah − 1 mod bkh , and sℓ = aℓ or sℓ = aℓ − 1 mod bkℓ .
But since kh+kℓ = k+1, sh and sℓ overlap by one digit.
We distinguish the following cases, where we denote by
ah,0 the trailing digit of ah, by sh,0 the trailing digit of sh,
by aℓ,1 the leading digit of aℓ (which equals ah,0), and
by sℓ,1 the leading digit of sℓ. We first note that only
one fixup can occur at a time, even when the first one
occurs, since in that case sℓ stays 0. In the following,
except mentioned otherwise, we consider values of sh
and sℓ after the recursive calls to CONVERT REC:

• sh = ah and sℓ = aℓ: no fixup occurs since sh,0 =
sℓ,1, thus the value s at line 19 equals a;

• sh = ah and sℓ = aℓ − 1 mod bkℓ : if aℓ = 0, then
sh,0 = ah,0 = 0 and sℓ,1 = b−1 and the second fixup
occurs, thus s = a at line 19.
If aℓ > 0, then sh,0 = ah,0 and sℓ,1 = aℓ,1. As ah,0 =
aℓ,1, we have sh,0 = sℓ,1, and no fixup occurs, thus
s = a− 1 at line 19.

• sh = ah − 1 mod bkh and sℓ = aℓ: in that case sh,0 =
sℓ,1 − 1 mod b, and the second fixup cannot occur
since b ≥ 3. If ah,0 6= 0, then sh,0 6= b − 1, thus the
first fixup cannot occur, in that case s = a at line 19.
Now if ah,0 = 0, the first fixup occurs, and we get
s = a at line 19;

• sh = ah − 1 mod bkh and sℓ = aℓ − 1 mod bkℓ : as in
the above case, the second fixup cannot occur since
b ≥ 3. If aℓ = 0, then aℓ,1 = ah,0 = 0 so sℓ,1 = sh,0 =
b− 1. So no fixup can occur and s = a− 1 mod bk at
line 19.

If aℓ > 0 and ah,0 = 0, then sh,0 = b − 1 and sℓ,1 =
aℓ,1 = ah,0 = 0 so the first fixup occurs. Thus s =
a− 1 at line 19.
If aℓ > 0 and ah,0 > 0, then no fixup can occur. Thus
s = a− 1 at line 19.

So the result is proven by induction on the height of tree
made of the recursive calls.

Theorem 5: Assume Algorithm Convert is called with
the integer a, then the output string s verifies s = a
(identifying s and its value in radix b).

Proof: At line 25 of Algorithm 3, the call of the
function CONVERT REC satisfies Eq. (6) with d = −3/4,
due to Eq. (1) and line 23 of Algorithm 3. Moreover,
line 22 of Algorithm 3 assures us that at most g recursive
calls will be made. So Lemma 4 can be applied, and we
have s = a or s = a− 1 mod bk.

We will now show that the case s = a−1 mod bk is im-
possible. Having s = a−1 mod bk means that an error of
one was done on the least significant digit. The least sig-
nificant digit is handled by CONVERT TRUNC (basecase)
after (at most) g recursive calls of CONVERT REC on the
low part. This means that when CONVERT TRUNC is
called, we have a − d0 − g/(4g) < ybk/2n < a + 1, with
d0 = −3/4 being the error before the first call to CON-
VERT REC, as seen above. Thus, when CONVERT TRUNC

is called, we have a + 1/2 < ybk/2n < a + 1, which is
sufficient to assure that the output of CONVERT TRUNC

will be a, as proven by Theorem 2. So no error can be
done on the least significant digit, and so we necessarily
have s = a.

Using a middle product to compute yℓ

The computation of yℓ on line 12 of Algorithm 3 can
be done by computing a middle product [5]. A product
of a 2N -bit integer by a N -bit integer gives a 3N -bit
result that can be divided in 3 parts of N bits each. A
middle product is the computation of the N -bit middle
part. The computation of yℓ falls into this scheme. By
taking kh = ⌊(k + 1)/2⌋ and nℓ as small as possible, we
ensure that nℓ ≃ n − nℓ ≃ n/2 and bk−kℓ < 2n−nℓ+1. So,
the product on line 12 is the middle product of y (of size
n) by bk−kℓ (of size n − nℓ + 1 ≃ n/2), as we only need
the nℓ ≃ n/2 middle bits.

For small sizes (less than a couple of thousands words)
we can use the mpn_mulmid function of GMP. For larger
sizes we use an FFT middle product. This means that to
compute the product of x (of size n/2) by y (of size n),
one computes xy mod 2n + 1 with an FFT algorithm and
gets the middle product from the n/2 high bits of the
n-bit result.

In both cases, by using the middle product, we com-
pute either yℓ or yℓ − 1, the latter one with very low
probability. So this adds a −1/(4g) term on the left hand
side of the inequality about yℓ in Lemma 3 and leaves
the right hand side unchanged. In order to ensure that
CONVERT TRUNC still returns a or a − 1, we just
have to change the condition 4gbk < 2n into 8gbk < 2n

everywhere in the algorithm.



FASTER BINARY-TO-DECIMAL CONVERSION 6

4 FLOATING-POINT CONVERSION

A floating-point number is represented in a binary com-
puter as x·2e, where the integer x is the n-bit significand,
and e is the exponent. Since the algorithms presented in
Section 3 first compute a fractional approximation y2−n

of ab−k, when converting a floating-point number we
have such an approximation for free, especially when e
is near −n, which means the floating-point number we
consider is in the vicinity of 1.

On the contrary, when using the classical conversion,
to obtain the integer a such that ab−k approximates y2−n,
one will need to multiply y by bk, and then divide by
2n. This adds an overhead with respect to the integer
conversion routine.

5 EXPERIMENTAL RESULTS

All timings were obtained with GMP 5.1.2 on an AMD
Phenom II X2 B55 processor running at 3Ghz, with
8Gb of memory and gcc 4.7.3, with optimization level
-O3. In all the following figures, the x-axis represents
the number of 64-bit words (limbs) of the correspond-
ing integer or floating-point numbers and the y-axis
represents the time (in milliseconds) for one run of
the algorithm. GMP uses a quadratic algorithm up to
GET_STR_PRECOMPUTE_THRESHOLD words (29 words
in our experiment). The output radix is always b = 10.

5.1 Quadratic Algorithm

Fig. 1. Integer conversion: comparison with GMP for

small sizes

Figure 1 compares our implementation of Algorithm 2
with the GMP mpz_get_str function, for 1 to 50 words.
Our implementation is up to about 55% faster than GMP
(between 20 and 28 words), then when the number
of words increases the subquadratic algorithm used
by GMP wins over Algorithm 2 which has quadratic
complexity (the crossover happens around 240 words).

Figure 2 compares the conversion of a floating-point
approximation of 2/3 with GMP and with our imple-
mentation of Algorithm 3, for 1 to 100 words. As noted

Fig. 2. Floating-point conversion: comparison with GMP

for small sizes

in Section 4, this is the optimal case for the “scaled
remainder tree” algorithm, since no initial division is
needed, whereas the classical algorithm requires an ini-
tial multiplication. The speedup over GMP decreases
from 84% (for one word) to 74% (for 100 words). Our
algorithm is faster than GMP until around 2100 words.

5.2 Subquadratic Algorithm

For those experiments, the threshold between the
quadratic and subquadratic case was kt = 3700, which
means that Algorithm 3 outperforms Algorithm 2 up
from about 200 words. In Algorithm 3, the GMP
mpn_mulmid function was used to compute the middle
product up to 2500 words, otherwise the middle product
was computed with an FFT algorithm.

Fig. 3. Integer conversion: comparison with GMP for

larger sizes

Figure 3 compares our implementation of Algorithm 3
with the GMP mpz_get_str function, up to ten million
words. Algorithm 3 outperforms GMP up from about
250000 words. Around ten million words, our implemen-
tation is about 19% faster than GMP.



FASTER BINARY-TO-DECIMAL CONVERSION 7

Fig. 4. Floating-point conversion: comparison with GMP

for larger sizes

Figure 4 compares the conversion of a floating-point
approximation of 2/3 with GMP and with our imple-
mentation of Algorithm 3, up to 50000 words. The
speedup over GMP is around 65% for 250 words and
then stabilizes around 50% for more than 2500 words.
For ten million words, the speedup over GMP is around
55%.

ACKNOWLEDGMENTS

Both authors thank Alain Filbois who helped them to
optimize the implementation of the quadratic algorithm
on modern processors. Paul Zimmermann thanks Petr
Filipsky who motivated him to work on this problem,
by asking an answer to Exercise 1.35 of [2].

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, 3rd ed.
Addison-Wesley, 1998, vol. 2 : Seminumerical Algorithms, http:
//www-cs-staff.stanford.edu/∼knuth/taocp.html.

[2] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, ser.
Cambridge Monographs on Applied and Computational Math-
ematics. Cambridge University Press, 2010, no. 18, electronic
version freely available at http://www.loria.fr/∼zimmerma/mca/
pub226.html.

[3] D. J. Bernstein, “Scaled remainder trees,” http://cr.yp.to/papers.
html, 2004, 8 pages.

[4] T. Granlund and the GMP development team, GNU MP: The GNU
Multiple Precision Arithmetic Library, 5th ed., 2013, http://gmplib.
org/.

[5] D. Harvey, “The Karatsuba integer middle product,” J. Symb.
Comput., vol. 47, no. 8, pp. 954–967, 2012.


