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Abstract. Many lattice cryptographic primitives require an efficient al-
gorithm to sample lattice points according to some Gaussian distribution.
All algorithms known for this task require long-integer arithmetic at some
point, which may be problematic in practice. We study how much lattice
sampling can be sped up using floating-point arithmetic. First, we show
that a direct floating-point implementation of these algorithms does not
give any asymptotic speedup: the floating-point precision needs to be
greater than the security parameter, leading to an overall complexity
Õ(n3) where n is the lattice dimension. However, we introduce a laziness
technique that can significantly speed up these algorithms. Namely, in
certain cases such as NTRUSign lattices, laziness can decrease the com-
plexity to Õ(n2) or even Õ(n). Furthermore, our analysis is practical: for
typical parameters, most of the floating-point operations only require the
double-precision IEEE standard.

1 Introduction

Lattice-based cryptography has been attracting considerable interest in the past
few years (see the survey [22]), due to unique features such as security based on
worst-case assumptions [3] or more recently fully-homomorphic encryption [11].
But it has several differences compared to classical public-key cryptography
based on factoring and discrete logarithms: in particular, the description of
many lattice schemes (such as the seminal Ajtai-Dwork cryptosystem [4] and
its LWE variants [27], or schemes using lattice sampling [12]) involves real num-
bers at some point. Although the descriptions usually mention that one can
replace these real numbers by approximations with sufficiently high precision,
which guarantees efficiency in an asymptotical sense, the practical impact is un-
clear: no article seems to specify exactly which precision one should take, and
how all the operations will be performed exactly. This was not an issue when
lattice-based cryptography was considered to be mostly of theoretical interest,
but recent works [22,26,17,28,18,20] suggest that the time has come to assess the
practicality of lattice-based constructions.

There is another reason to study carefully the use of floating-point arith-
metic in lattice-based cryptography. Many recent lattice schemes (e.g. trapdoor



signatures [12,6] and ID-based encryption [12,7,1,2]) require a Gaussian sampler,
that is an efficient algorithm to sample lattice points according to a Gaussian-
like distribution, given a (short secret) basis and a target vector. There are two
approaches for this task: Klein’s randomized variant [15] (as analyzed by Gentry
et al. [12]) of Babai’s nearest plane algorithm [5], and algorithms [26,20] based
on convolution for the so-called q-ary lattices.

The cost of Klein’s algorithm is the same as Babai’s algorithm, namely
Õ(n3 logB) (or O(n4 log2B) without fast integer arithmetic), where n is the
lattice dimension, and B is the maximal norm of the input basis vectors: since
B is polynomial in n for trapdoor bases used in lattice cryptography, the usual
cost is Õ(n3) (or Õ(n4) without fast integer arithmetic). The main reason be-
hind the cost of Klein’s algorithm is the use of long-integer arithmetic: it relies on
Gram-Schmidt orthogonalization, which involves rational numbers of bit-length
O(n logB). A natural way to improve the efficiency is to use floating-point arith-
metic (FPA) to replace exact Gram-Schmidt by suitable approximations. Indeed,
Klein’s algorithm is a variant of Babai’s nearest plane algorithm, which itself is
simply the size-reduction subroutine used extensively in the LLL algorithm [16];
and floating-point arithmetic is classically used to speed up LLL (see [29,25,23]).
But the use of FPA is not straightforward, and it is unclear at first sight how
much speed up can be gained, if any.

On the other hand, the convolution algorithms [26,20] based on Peikert’s
work [26] have two phases: an offline phase (depending on the secret basis only)
and an online phase (depending on the target vector). The online phase costs
Õ(n2) for q-ary lattices (which are widespread in lattice cryptography), or even
Õ(n) in the so-called ring setting (i.e. special lattices such as NTRU lattices);
but the offline phase is the generation of a noise following some discrete Gaussian
distribution, which seems to have the same cost Õ(n3) as Klein’s algorithm, and
involves floating-point arithmetic whose exact cost is not analyzed in [26,20].
Both algorithms [26,20] can use the same offline phase, which will later be re-
ferred to as Peikert’s offline Algorithm.

It should be stressed that the offline phase is not a precomputation: this
phase must be repeated before each sampling, which is reminiscent of DSA one-
time pairs (k, k−1), which can be precomputed as coupons or generated online;
but unlike a precomputation it should not be re-used. In some scenario, this
computational cost might be acceptable, but it is clearly valuable to analyze
and improve the offline phase.

Our results. We develop techniques to improve all three samplers, obtaining the
first algorithms with quasi-optimal complexity to sample the discrete Gaussian
distribution over lattices: their running time is quasi-linear in the size of the
input basis. More precisely, our optimized variant of Klein’s algorithm runs in
Õ(n2) (for certain bases) and our variant of Peikert’s offline algorithm runs in
average time Õ(n) in some ring setting (where n is the lattice dimension). In
both cases, our improvements do not introduce any loss of quality.

To do so, we study how much lattice sampling can be sped up using FPA. As
a starting point, we present FPA variants of Klein’s algorithm with statistically



close output. Surprisingly, the basic FPA variant has the same asymptotical
complexity Õ(n3) as Klein’s algorithm, because the precision needs to be greater
than the security parameter. However, we also present an optimized algorithm
with an improved complexity Õ(n2): it is based on a so-called laziness technique
which combines high and low precision FPA. But this optimized complexity only
applies to a special class of bases which include NTRUSign bases [13], namely
the inverse basis must be small.

Next, we show that the same optimization can be used to speed up Peikert’s
offline algorithm, improving the total complexity, to bring its offline complexity
down to that of its online complexity for both sampling algorithms of [26,20].
More precisely, we apply our laziness technique to reduce the offline complexity
to Õ(n2). And for certain ring settings (precisely when the ring isR = Xb±1), we
show that the offline phase can also be sped up to average quasi-linear time. This
is achieved by using two additional tricks: a structured square-root algorithm and
an improved rejection sampler for Gaussians over Z.

As a direct application of this last result, one can strengthen the security
of NTRUSign [13] by replacing their heuristic perturbation technique with our
optimized sampler, without any loss of efficiency asymptotically. This prevents
learning attacks [24,10] on NTRUSign as the signature scheme is now provably
secure in the random-oracle model (see [12]), under the (reasonable) assumption
that finding close vectors in NTRUSign lattices is hard.

While numerical analysis has often be used [29,25,23] to speed up lattice
reduction algorithms in a rigorous way, our work might be its first application
to provable security.

Practical impact of laziness. The precision used for floating-point arithmetic has
non-negligible practical impact, because fp-operations become much more expen-
sive when the precision goes over the hardware precision. For instance, modern
processors typically provide floating-point arithmetic following the double IEEE
standard (53-bit precision), but quad-float FPA (113-bit precision simulated by
software libraries) is usually about 10-20 times slower for basic operations, and
the overhead is much more for multiprecision FPA.

Our complexity results are stated in an asymptotical manner, but our analysis
can give concrete bounds (which are provided in the full version [9]). It turns
out that in typical cryptographic settings, the double-precision (53-bit) IEEE
standard can be selected as the “low precision” of our lazy algorithm, which
means that most of our fp-operations are hardware fp-operations, even though
the security level is not limited to 53 bits.

Roadmap. We start in Sect. 2 with background and notation on lattices, sampling
and FPA. In Sect. 3, we present our basic FPA variant of Klein’s algorithm, which
we optimize using laziness in Sect. 4. In Sect. 5, we apply laziness to speedup
Peikert’s Offline Algorithm. Eventually, in Sect. 6, we explain how to reach quasi-
linear time complexity in the ring setting. Missing proofs and additional details,
such as non-asymptotic bounds can be found in the full version [9].



2 Preliminaries

Throughout the paper, we use row representations of matrices (to match lat-
tice software), and use bold fonts to denote vectors: if B = (b1, . . . ,bn) is a
matrix, then its row vectors are the bi’s. Notation Mn and S+n denote respec-
tively the square matrices, and the square symmetric definite positive matrices
of dimension n over R.

2.1 Notation

Lattices. Lattices are discrete subgroups of Rm. A lattice L is represented by a
basis, that is, a set of linearly independent vectors b1, . . . ,bn in Rm such that L
is equal to the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z} of all integer linear

combinations of the bi’s. The integer n is the dimension of the lattice L. The
volume vol(L) is the n-dimensional volume of the parallelepiped generated by
any basis of L. In lattice-based cryptography, one mainly uses the so-called q-ary
lattices, which include NTRU lattices [14,13] and Ajtai’s worst-case/average-case
lattices [3]. A q-ary lattice is simply a full-rank integer lattice L ⊆ Zn such that
qZn ⊆ L, where q is a somewhat small integer. For such a lattice, vol(L) divides
qn.

Norms. For a vector x ∈ Rn, ‖x‖ =
√
〈x,x〉 will denote its Euclidean norm.

The norm of a matrix B is the maximal norm of its rows: ‖B‖ = maxni=1 ‖bi‖.
The spectral norm of a square n×n matrix M is: ‖M‖s = maxx∈Rn/{0}

‖x·M‖
‖x‖ .

Orthogonalization. An n×m basis B = (b1, . . . ,bn) can be written uniquely as
B = µ · D · Q where µ = (µi,j) is an n × n lower-triangular matrix with unit
diagonal, D an n-dimensional positive diagonal matrix and Q an n×m matrix
with orthonormal row vectors. Then µD is a lower triangular representation of
B (with respect to Q), B? = DQ = (b?1, . . . ,b

?
n) is the Gram-Schmidt orthogo-

nalization of the basis, and D is the diagonal matrix formed by the ‖b?i ‖’s. With
those notations, we have µi,j = 〈bi ,b?j 〉/‖b?j‖2.

For any σ > 0, we let σi = σ/ ‖b?i ‖ and σ̂ = maxni=1 σi. Since the b?i ’s are
orthogonal, we have σ̂ = σ/(minni=1 ‖b?i ‖) = σ

∥∥B?−1∥∥
s
≤ σ

∥∥B−1∥∥
s
‖µ‖s ≤

σ
∥∥B−1∥∥

s
nµ̂ where µ̂ ≥ 1 upper bounds the coefficients of µ.

Gaussian Distribution. The (unnormalized) weight of Gaussian distribution of
parameter σ ∈ R and center c ∈ R at x ∈ R is defined by ρσ,c(x) = exp

(
−

π (x−c)2
σ2

)
, and more generally by ρσ,c(x) = exp

(
−π ‖x−c‖

2

σ2

)
for c,x ∈ Rn. The

discrete Gaussian distribution over Z is defined by DZ,σ,c(x) = ρσ,c(x)/ρσ,c(Z),
and more generally, over a lattice L by DL,σ,c(x) = ρσ,c(x)/ρσ,c(L). Peikert [26]
generalized the discrete Gaussian distribution over a lattice L using a posi-
tive definite matrix Σ > 0 (which generalizes σ ∈ R) as follows: the density
DL,

√
Σ,c(x) is proportional to ρ1,0((x− c)B−1) where Σ = BtB, for x ∈ L.



2.2 Gaussian Lattice Sampling

The goal of Gaussian lattice sampling is to efficiently sample lattice points
according to a distribution statistically close to DL,σ,c. All lattice samplers
known [15,12,26,20] have constraints on the parameter σ and the statistical dis-
tance, which are related to the so-called smoothing parameter. The sampling
parameter σ determines the average distance of the sampled lattice point to the
target point: the smaller σ, the better for cryptographic applications. For in-
stance, σ impacts the verification threshold of lattice-based signatures [12] and
therefore the security of the scheme; a lower quality forces to increase lattice
parameters. And for a security level of λ bits, we need a statistical distance less
than 2−λ.

Smoothing Parameter. For any n-dimensional lattice L and any real ι > 0,
the smoothing parameter ηι(L) (see [21]) is the smallest real s > 0 such that
ρ1/s(L

∗\{0}) ≤ ι, where L∗ is the dual lattice of L. For details on the importance
of this parameter, please refer to [21,12].

Klein’s sampling. Gentry et al. showed in [12] that given as input a lattice
basis B of an n-dimensional lattice L such that σ ≥ ‖B∗‖ω(

√
log n), Klein’s

algorithm [15] outputs lattice points with a distribution statistically close to
DL,σ,c(x). For applications, it is more convenient to have a concrete bound on
the statistical distance, and to separate this bound from the lattice dimension
n. We therefore use the following concrete analysis of Klein’s algorithm:

Theorem 1 (Concrete version of [12, Th. 4.1]). Let n, λ ∈ N be any positive
integers, and ι = 2−λ/(2n). For any n-dimensional lattice L generated by a
basis B ∈ Zn×n, and for any target vector c ∈ Z1×n, Alg. 2 is such that the
statistical distance ∆(DL,σ,c,SampleLattice∞(B, σ, c)) is less than 2−λ, under
the condition:

σ ≥ ‖B?‖ ηι(Z) where ηι(Z) /
√

(λ ln 2 + lnn)/π .

Tailcut. We will also use a tailcut parameter τ , chosen such that (informally)
a sample from a normal distribution of parameter σ is at distance at most τσ
from the center with overwhelming probability:

Corollary 1 (Tailcut error, Corollary of [21, Lemma 2.10] ). Let L be
an n-dimensional lattice, ι ≤ 1/2, σ ≥ ηι(L), τ > 1 δτ ∈ (0, 1) and c ∈ Rn.
For x ← DL,σ,c we have: Pr

[
‖x− c‖ ≥ (1 − δτ )τσ

]
≤ 3Etailcut(τ, δτ )n where

Etailcut(τ, δτ )
def
= τ
√

2πe · e−π(1−δτ )2τ2

.

2.3 Floating-point arithmetic

We consider floating-point arithmetic (FPA) with m bits of mantissa, which we
denote by FPm: the precision is ε = 2−m+1. A floating-point number f̄ ∈ FPm is a
triplet f̄ = (s, e, v) where s ∈ {0, 1}, e ∈ Z and v ∈ N2m−1, which represents the



real number R(f̄) = (−1)s · 2e−m · v ∈ R. Every FPA-operation ◦̄ ∈ {+̄, −̄, ×̄, /̄}
and its respective arithmetic operation on R, ◦ ∈ {+,−, · , / } verify:

∀f̄1, f̄2 ∈ FPm,
∣∣R(f̄1◦̄f̄2)− (R(f̄1) ◦R(f̄2))

∣∣ ≤ (R(f̄1) ◦R(f̄2))ε (1)

We require a floating-point implementation of the exponentiation function
¯exp(·) and we assume that it verifies a similar error bound: for any f̄ ∈ FPm,∣∣R( ¯exp

(
f̄
)
)− exp(R(f̄))

∣∣ ≤ ε. Finally, we note that if an integer x ∈ Z verifies
|x| ≤ 2m, it can be converted to a float f̄ ∈ FPm with no error, i.e. R(f̄) = x.
For the rest of the article, we omit the function R and consider FPm as a subset
of R.

2.4 Pseudo-code

Types. Variables are typed, and the type is given at each initialization and
assignment, as follows: variable← value : type. We use a simpler syntax for the
definition of local functions: {variable 7→ value}. Functional types are denoted
by (t1 → t2).

Primitives. We use the basic arithmetic operations {+,−, ·, /}, as well as squar-
ing �2 and exponentiation exp; the arguments are either integers in Z, or
floating-point numbers in FPm. We extend these notations to vectors and matri-
ces. We also use the following additional primitives:
RandInt(a, b) : Z×Z→ Z : return a random uniform integer in the range [a, b].
RandFloatm() : void→ FPm : return a random uniform float in the range [0, 1).
ExtRandFloatm′,m(r) : FPm′ → FPm: return a random uniform floating-point

number in the range [r, r+2−m
′
). For a random r ← RandFloatm′(), the output

follows the same distribution as RandFloatm().

3 A Basic Floating-Point Variant of Klein’s Algorithm

3.1 Description

Algorithm 2 describes both Klein’s algorithm [15] and our basic floating-point
variant: given a basis B of a lattice L, a target c and a parameter σ, the al-
gorithm outputs a vector with distribution statistically close to DL,σ,c. It uses
two subroutines: DecomposeGSm (Alg. 3) to compute the coordinates ti’s of
the target vector c with respect to the Gram-Schmidt basis B?, and SampleZm
(Alg. 1) to sample according to the Gaussian distribution over Z. Algorithm 2
comes in two flavors:

– SampleLattice∞ is the exact version, which corresponds to Klein’s original
algorithm [15]. The µi,j ’s and the ti’s are represented exactly by rational
numbers, and all the computations use exact integer arithmetic. Assuming
σ ∈ Q, we can only ensure that σi ∈

√
Q, thus we can represent them exactly

by their square. We also assume that this version has access to a perfect



primitive (or an oracle) SampleZ∞(σi, ti, τ = ∞) that given ti, σ
2
i ∈ Q

answers an integer x : Z exactly according to the distribution DZ,σi,ti . It
does not matter how to sample such a perfect distribution, as the purpose
of this perfect algorithm is to be a reference for inexact ones.

– SampleLatticem is our basic floating-point version, using FPm. The matri-
ces µ and B? and values σi may have been pre-computed exactly, but only
approximations are stored.

Algorithm 1 SampleZm: Rejection Sampling for Discrete Gaussian on Z
input: A center t : FPm, and a parameter σ : FPm, and a tailcut parameter τ : FPm
output: output x : Z, with distribution statistically close to DZ,t,σ
1: h← −π/σ2 : FPm ; xmax ← dt+ τσe : Z ; xmin ← bt− τσc : Z
2: x← RandInt(xmin, xmax) : Z; p← exp(h · (x− t)2) : FPm
3: r ← RandFloatm() : FPm; if r < p then return x
4: Goto Step 2.

Algorithm 2 SampleLatticem: Gaussian Sampling over a lattice

input: a (short) lattice basis B = (b1, . . . ,bn) : Zn×n, parameter σ : FPm, A target
vector c : Z1×n, and a tailcut parameter τ : FPm Precomputation: The GS
decomposition (B? = (b?1, . . . ,b

?
n), (µi,j) = (µ1, . . . ,µn)), norms ri = ‖b?i ‖ : FPm

and σi = σ/ri : FPm
output: a vector v : Z1×n drawn approximately from DL,c,σ where L = L(B)
1: v, z← 0 : Zn ; t← DecomposeGSm(c, B?) : FPm
2: for i = n downto 1 do
3: zi ← SampleZm(σi, ti, τ) : Z
4: v← v + zi · bi : Zn; t← t− zi · µi : FPnm
5: end for
6: return v

Algorithm 3 DecomposeGSm: Decompose a vector c over the GS Basis

input: A vector c : Z1×n, an orthogonal basis B? = (b?1, . . . ,b
?
n) : Qn×n, and r2i =

‖b?i ‖2 ∈ FPm
output: output t : Qn such that c = t1b

?
1 + · · ·+ tnb

?
n

1: y← c · B?t : Z1×n

2: return (y1/r
2
1, . . . , yn/r

2
n)

The description of SampleLattice∞ differs from the original description [15,12]
only in the way we compute and update the coordinates ti’s. In our version, the
final value of ti before it is used is ti = 〈c,b?i 〉 /r2i −

∑n
j>i zjµj,i, which matches

with the original value :

t′i =

〈
c−

n∑
j>i

zjbj , b?i

〉/
r2i =

〈c,b?i 〉 − n∑
j>i

zj 〈bj ,b?i 〉

 /r2i = ti



We unroll this computation and update the sum after each value zi is known.
This allows a parallelization up to n processors without the usual log n factor
required for summing up all terms.

Since we use the matrix µ in the main loop, we might want to get rid of B?

for the DecomposeGS algorithm, to save some precomputation and storage,
by computing c′ ← c ·Bt and then solving the triangular system y µt = c′. Solv-
ing this system also requires n2 operations, however when using FPA, it would
produce a relative error exponential in the dimension n, because we recursively
use previous results.

Our main loop may also be seen as solving a triangular system, where we
apply Gaussian rounding at each step. It is worth noting that this additional
rounding prevents such relative exponential error, as our proof will show.

Efficiency of SampleLattice∞. The algorithm SampleLattice∞ performsO(n2)
arithmetic operations on rational numbers of size O(n logB), which leads to a
complexity of Õ(n4) for cryptographic use. Here, we ignored the calls to the
oracle SampleZ∞(·, ·, τ =∞).

Termination of SampleZ∞(·, ·, τ <∞). We upper bound the number of trials of
Rejection Sampling, ignoring issues related to the transcendental function exp:

Fact 2 If σ ≥ 4 and τ ≥ 1, and uniforms x ← Z ∩ [xmin, xmax] and r ← [0, 1),
we have Pr

[
r < ρσ,t(x)

]
> 1/(6τ) where xmin = dt− τσe and xmax = bt+ τσc.

Thus SampleZ∞(·, ·, τ) performs less than 6τ trials on average.

3.2 Correctness

We give the list of assumptions needed for our correctness results (Theorems 3
and 5), and which we refer to as conditions A.

Assumption on Gram-Schmidt precomputation. We assume that the Gram-
Schmidt values are (possibly approximately) precomputed, and that the com-
puted values µ̄i,j , b̄

?
i,j and σ̄i verify:

|∆µi,j | = |µi,j − µ̄i,j | ≤ µ̂ε,
∣∣∆b?i,j∣∣ =

∣∣b?i,j − b̄?i,j∣∣ ≤ ‖b?i ‖ ε,
|∆σi| = |σi − σ̄i| ≤ σiε,

where µ̂ denotes the maximal absolute value of the sub-diagonal coefficient of
µ. Those condition can be achieved by running the precomputation exactly,
then convert the result to floating points of mantissa size m.

Assumption on the target vector. We assume that the components ci of
the input target vector c satisfy: |ci| ≤ q for a parameter q. This holds in all
known cryptographic applications of lattice sampling, for which the lattice
is q-ary. But we do not require that the lattice is q-ary.



Assumption on the parameters.

A

 ε ≤ 0.01, Kn = (1 + ε)n ≤ 1.1, 1 + nKnε ≤ 1.01
nι ≤ 0.01, ∀i, σi ≥ ηι(Z), ∀i, σi ≥ 4
n ≥ 10 τ ≥ 4

The assumptions on ε are easily achievable for a mantissa size m at least
logarithmic in the dimension n. The condition on ι is not restrictive as it
needs to be negligible. Similarly, conditions on σi’s are not restrictive since
the security requires all σi ≥ ηι(Z) > 4 for security parameters λ ≥ 80.

For the rest of the analysis, we assume that all parameters B, c and σ are
fixed. Our main result states that with enough precision, the outputs of the exact
sampler SampleLattice∞ and the floating-point sampler SampleLatticem are
statistically close:

Theorem 3. There exist constants Cλ, Cτ , Cm, such that for any security pa-
rameter λ ≥ Cλ, and under conditions A, the statistical distance between SampleLatticem
and SampleLattice∞ is less than 2−λ on the same input if the following con-
ditions are satisfied:

τ ≥ Cτ
√
λ log n m ≥ Cm + λ+ 2 log2(

∥∥B−1∥∥
s
) + log2

(
µ̂2n4(q + σ2)τ3

)
Furthermore, under those conditions, the integers manipulated by SampleLatticem
can be represented by floating-point numbers without errors.

3.3 Efficiency

We deduce the efficiency of the basic floating-point sampler from Theorem 3.
We first analyze SampleZm:

Fact 4 There is a constant Cm such that for any m ≥ Cm, and any τ ≥ 1,
SampleZm(·, ·, τ) performs less than 6τ trials on the average.

This can be easily derived from Fact 2 and appropriate error bound (see full
version). This ensures that SampleLatticem performs ∼ 6n2 FPm-operations
as long as τ = o(n).

Arbitrary bases. To minimize the FPA-precision m in Theorem 3, we need to
evaluate log(

∥∥B−1∥∥
s
): this is always less than ≈ n log(B) by Cramer’s rule. This

leads to the constraint m ≥ λ + n` where ` is logarithmic in n and B, yielding
a Õ(n3) bit-complexity as long as λ = O(n), or Õ(n4) without fast integer
arithmetic.

The exact algorithm SampleLattice∞ also has complexity Õ(n3). However,
the constants are likely to be smaller for the FPA sampler. Indeed, the exact al-
gorithm must handle integers of size log(max1≤i≤n vol(b1, . . . ,bi)), whereas the
quantity log(

∥∥B−1∥∥
s
) is typically smaller, though they have similar worst-case

asymptotical bounds. And the constants of the FPA sampler can be improved
by processing the basis, for instance using LLL reduction.

Furthermore, in cryptographic applications, we may focus on bases B of a
particular shape. More precisely, we will consider the following type of basis:



Small-inverse bases. A sequence C = (Cn) of square matrices generating qn-ary
lattices of dimension n is a class of small-inverse bases if there exists a polynomial
function f such that for any basis B ∈ Cn, ‖B‖s ≤ f(n) and

∥∥B−1∥∥
s
≤ f(n).

In particular, the bases used by the NTRUSign signature scheme [13] form
a small-inverse class (see [13]). For such bases, we only need m ≥ λ + ` for `
logarithmic in λ. This still gives a Õ(n3) complexity for cryptographic use (when
λ ∼ n), but with much better constants.

4 A Lazy Floating-Point Variant of Klein’s Algorithm

Overview. We now describe our optimized sampler, which is more efficient than
the basic sampler, due to a better use of FPA. The analysis of the basic sampler
showed that it was sufficient to compute ti up to ≈ λ bits below the unity to get
an error below 2−λ on the output distribution. However, a careful analysis of
the rejection sampling algorithm (Alg. 1) shows that most of the time, many of
those bits are not used: the precision of ti impacts the precision of p = ρσ,t(x),
which is only used to make a comparison with a uniform random real r ∈ [0, 1).
For all j > 1, such a comparison is determined by the first j bits, except with
probability 2−j (exactly when the j first bits of r and p match); and on average
only the first two bits contribute to the decision.

However, we still need to decide properly this comparison even when the first
j ≤ λ bits match, to output a proper distribution. This suggests a new strategy:
compute lazily the bits of ti and p. We first only compute most significant bits
and backtrack for additional bits until the comparison can be determined. We
choose a simple lazyness control, using only two levels of precision (for simplicity,
but also for practical efficiency). Informally, we choose k ≤ λ, and compute ti up
to a precision m′ that only guarantees the first k bits of p, draw the first k bits
of the random real r. If the comparison is decided with those k bits, continue
normally. Otherwise (which happens with probability less than 2−k), recompute
ti and p at a precision m to ensure λ correct bits.

4.1 Description

Our optimized sampler LazySampleLatticem′,m (Alg 4) works with two floating-
point types, FPm (high precision) and FPm′ (low precision), where m > m′. The
algorithm works similarly to the original one, except it now works most of the
time at low precision m′. The subroutine for sampling over Z is replaced by
LazySampleZm′,m, which takes the usual arguments at low precision, plus an
error bound, and access to high-precision arguments: σ is precomputed thus re-
quiring no special care, however, the access to high precision value of t is given
through a function that takes no argument.

This new subroutine LazySampleZm′,m (Alg. 5) works identically to the
original SampleZm′ as long as the decisive comparison is trusted, i.e. as long as
the difference |r′ − p′| is higher than the error bound δp. Otherwise, the high pre-
cision is triggered, and high-precision inputs are requested through the function
F . Then all sample trials are computed with high precision.



Algorithm 4 LazySampleLatticem′,m: Lazy Gaussian Sampling over a lattice

input: Same as SampleLattice plus low precision versions of µ,B? and σi’s values:
µ′, B?′ : FPn×nm′ , σ′i : FPm′ , and an error bound δp

output: Same as SampleLattice
1: v, z← 0 : Zn; t′ ← DecomposeGSm′(c, B?

′) : FPnm′

2: for i = n downto 1 do
3: Fi ← {() 7→ 〈c,b?i 〉 −

〈
z,
[
µt
]
i

〉
}: (void → FPm)

4: zi ← LazySampleZm′,m(σ′i, τ, t
′
i, δp, σi, Fi) : Z

5: v← v + zi · bi : Zn; t′ ← t′ − zi · µ′i : FPnm′

6: end for
7: return v

Algorithm 5 LazySampleZm′,m(σ′, τ, t′, δp : FPm′ , σ : FPm, F : (void→ FPm))

1: h′ ← −π/σ2 : FPm′ ; xmax ← dt′ + τσ′e : Z ; xmin ← bt′ − τσ′c : Z ; highprec ←
false : bool

2: x← RandInt(xmin, xmax) : Z; r′ ← RandFloatm′() : FPm′

3: if not(highprec) then
4: p′ ← exp(h′ · (x− t′)2) : FPm′

5: if |r′ − p′| ≤ δp then {t← F () : FPm; h← −π/σ2 : FPm ; highprec ← true }
6: else if r′ < p′ then return x
7: end if
8: if highprec then
9: r ← ExtRandFloatm′,m(r′) : FPm; p← exp(h · (x− t)2) : FPm

10: if r < p then return x
11: end if
12: Goto Step 2.

4.2 Correctness

We need to determine a proper value for the error bound δp in terms of the
basis and m′ (the size of the low precision), to ensure correctness. For this
parameter, the lower the better, since it determines the probability to trigger
the re-computation of t at high precision, as detailed in the next section. The
behavior of the new subroutine is analyzed by the following:

Lemma 1 (Informal, see [9] for a formal statement). The behaviour of
LazySampleZm,m′ given approximate inputs σ±δσ and t±δt and δp, is similar
to SampleZm on input σ, t under the condition:

δp ≥ 4σ2ε′ + 1.7σδσ + (1.7/σ)δt where ε′ = 21−m
′

From this lemma, we prove the correctness of LazySampleLatticem′,m, sum-
marized by the following result.

Theorem 5. There exist constants Cλ, Cτ , Cm, C
′
m, Cδp , such that for any secu-

rity parameter λ ≥ Cλ, and under Conditions A, the statistical distance between
LazySampleLatticem,m′ and SampleLattice∞ is less than 2−λ on the same



input if the following conditions are satisfied:

τ ≥ Cτ
√
λ log n

m ≥ Cm + λ+ 2 log2(
∥∥B−1∥∥

s
) + log2

(
µ̂2n4qσ2τ3

)
m′ ≥ Cm′ + 2 log2(

∥∥B−1∥∥
s
) + log2

(
µ̂2n4(Q+ σ2)τ3

)
δp ≥ 2−k where k = m′ −

(
Cδp + 2 log2(

∥∥B−1∥∥
s
) + log2

(
µ̂2n3τσ2q

))
Furthermore, under those conditions, the integers manipulated by the algorithm
can be represented by low-precision floating-point numbers (FPm′) without errors.

4.3 Efficiency

The error bound δp impacts the efficiency of the optimized sampler as follows:

Lemma 2. Under the conditions of Theorem 5, each call to LazySampleZm,m′

triggers high precision with probability less than 12τδp. On the average, the al-
gorithm LazySampleLatticem,m′ performs less than O(n2τδp) high-precision
floating-point operations.

Proof. At each trial performed by LazySampleZm,m′ , the probability to trigger
high precision is less than 2δp: indeed it happens only if the randomness r′ ←
[0, 1) falls in the interval [p′−δp, p′+δp]. It remains to bound the average number
of trials performed by LazySampleZm,m′ . The condition of Theorem 5 ensures
that it behaves similarly to SampleZm. Thus, for a large enough m, Fact 4
ensures that the average number of trials is less than 6τ .

Triggering high precision during LazySampleZm,m′ requires O(n) high-
precision FPA operations. This subroutine is called n times, thus on the average
less than O(n2τδp) high-precision FPA operations. ut

This leads to our main result: with Small-Inverse bases, the discrete Gaussian
distribution can be sampled in quasi-quadratic time, with an exponentially small
statistical distance, and no sacrifice on the quality compared to the analysis
of [12].

Theorem 6 (Gaussian sampling in quasi-quadratic time). Let (Cn) be a
Small-Inverse class of bases. For any implicit function λ, such that λ ∼ n, and
σ polynomial in n, there exist implicit functions m,m′, τ, δp of n such that, for
any basis B ∈ Cn generating a lattice L:

– LazySampleLatticem,m′(B, σ, c, τ, δp) runs in expected time Õ(n2) without
fast integer arithmetic.

– ∆(DL,σ,c,LazySampleLatticem,m′(B, σ, c, τ, δp)) ≤ 2−λ whenever σ veri-

fies σ ≥ ‖B?‖ ηι(Z) with ι = 2−λ/(4n).

Proof. For a small-inverse class of bases, the conditions of Theorem 5 can be
satisfied with functions verifying:

τ = O(
√
n),m = O(n),m′ = O(log n), δp = O(1/n5/2).



Lemma 2 states that on the average, less than O(n2τδp) high-precision opera-
tions are performed, which in our case is a O(1). Without fast integer arithmetic,
the total complexity is thus less than O(n2)O(m′2) +O(1)O(m2) ≤ Õ(n2). ut

5 Speeding Up Peikert’s Offline Algorithm

Peikert [26] recently proposed a different sampling algorithm based on convo-
lution, which was inspired by NTRUSign’s perturbation countermeasure [13].
This algorithm offers a different trade-off than Klein’s algorithm, with slightly
worse constraints on sampling parameters (see [26] for details). The discrete
Gaussian distribution is obtained by adding two points, one generated by an
offline phase, the other generated by a (cheaper) online phase. The online phase
is essentially a randomized variant of Babai’s round-off algorithm [5], which
only involves small-integer arithmetic when the input is a q-ary lattice, and
thus runs in Õ(n2) time, and even Õ(n) in ring settings. This offline phase is
itself essentially the generation of some discrete Gaussian distribution, which
requires long-integer arithmetic, and is not fully analyzed in [26], but seems to
be Õ(n3) (even Õ(n4) without fast integer arithmetic) like Klein’s algorithm. In
the follow-up work of Micciancio and Peikert [20], a new kind of lattice trapdoor
is introduced to optimize efficiency and geometric quality, which allows an even
faster online phase, but the same kind of offline computations is required. We
refer to this common offline phase as Peikert’s offline algorithm.

5.1 Peikert’s Offline Algorithm

LetB be the input basis of the lattice for which one wants to generate the discrete
Gaussian distribution. In both [26,20], the offline phase consists of generating a
(centered) discrete Gaussian noise over Zn of parameter Σ ∈ S+n such that BtB+
Σ = sIn where s is some appropriate real number: this implies certain constraints
on B which are discussed in [26]. Letting Σ = CtC, this distribution DZn,

√
Σ

has support Zn and density at x proportional to ρ1,0(xC−1): in other words,
this is “essentially’ the discrete Gaussian distribution D over the lattice spanned
by C−1, since the density of x ∈ Zn is proportional to the density of the lattice
point xC−1 in D. The offline-phase algorithm is described in Alg. 6 (from [26]):
it generates this discrete Gaussian distribution by convolution (see [26]), which
is a different strategy than Klein’s algorithm, and has different constraints. The
main idea is to consider a “shift” Σ′ = Σ− η2In of Σ such that Σ′ ∈ S+n (which
implies that Σ ≥ η2In) and η ≥ ηι(Zn), and to compute a square-root L of
Σ′, i.e. Σ′ = LtL. To implement this, it is suggested in [26] to use a Cholesky
decomposition. The parameters selected to reach security λ are η = τ = ηι(Z) =
Õ(
√
λ). The choice of the floating-point precision is not discussed in [26,20],

however a quick analysis shows that one should take m = λ + ` where ` is
logarithmic in n, s and τ . Thus, a naive implementation would have a running-
time of Õ(n2λ2), the main cost being a (non-structured) matrix-vector product:
that is n2 floating-point operations, at precision Õ(λ).



Algorithm 6 Peikert’s Offline Algorithm

input: Σ ∈ S+
n , a real η ≥ ηι(Zn) such that Σ′ = Σ − η2In ∈ S+

n and ι is negligible,
and a square-root L of Σ′ i.e. Σ′ = LtL.

output: An integer vector z ∈ Zn following the distribution DZn,
√
Σ

1: Choose x : Rn according to the continuous Gaussian distribution of covariance In
2: y = x · L
3: for i = 1 to n do zi ← SampleZm(η, yi, τ)
4: return z

5.2 Using Laziness in Peikert’s Offline Algorithm

Like in Klein’s sampling algorithm, the offline phase of Peikert’s algorithm [26]
only uses non-integer values to compute the input of the SampleZm(η, ·, τ)
subroutine. High-precision bits of this input are useless except with small prob-
ability: one may apply the laziness technique to improve efficiency to Õ(n2), by
replacing the subroutine by LazySampleZm′,m. We sketch a proof.

The floating-point computation yj =
∑n
i=1 xiLj,i with m bits of precision

produces an error less than Õ(n2 ‖x‖∞ ‖L‖∞ ε) where ε = 21−m. For τ = Õ(
√
n)

we have that ‖x‖∞ ≤ τ with overwhelming probability, and ‖L‖∞ ≤ ‖L‖S ≤ s
since LtL = C ′ ≤ σ2Id. The error propagation is thus polynomial in n, and
Lemma 1 ensures correction with the following parameters:

τ = O(
√
n),m = O(n),m′ = O(log n), δp = O(1/n5/2).

Similarly to Lemma 2, one easily proves that, on average, less than O(n2τδp)
high-precision operations are performed, which in our case is O(1). Without
fast integer arithmetic, the total complexity is thus less than O(n2)O(m′2) +
O(1)O(m2) ≤ Õ(n2).

6 Quasi-Linear Complexity in Ring Settings
R = Zq[X]/(Xb ± 1)

For efficiency purposes, lattice cryptography often uses a special class of “alge-
braic” lattices arising from polynomial rings i.e. R = Z[X]/(P (X)) for some
polynomial P of degree b. More precisely, the lattices are generated by an R-
basis, and can also be viewed as an integer lattice of dimension `b for some
` ≥ 1.

In this section, we show that for the ring settings R = Zq[X]/(Xb ± 1), it
is possible to achieve quasi-linear complexity using two improvement on top of
our lazy variant of Peikert’s offline phase [26,20]. The first improvement is to use
special square-root algorithms (e.g. Babylonian Method or the Denman-Beavers
iteration [8]) to preserve matrix structures, unlike Cholesky decomposition. In
our case, we use block-circulant or block-skew-circulant structures, which are
stable under transposition and multiplication, which implies that Σ′ = Σ −
η2In = (s − η2)In − BtB has the same structure. The second improvement
targets SampleZ.



6.1 Structured Square-Root for R = Zq[X]/(Xb ± 1)

Consider the special ring settingR = Zq[X]/(Xb±1), which includes Zq[X]/(Xb−
1) for the class of NTRU lattices [13], and some cyclotomic lattices Zq[X]/(Φm)
the m-th cyclotomic ring, when m is a power of two, made popular by the hard-
ness results of [19].

When P (X) = Xb− 1 (resp. P (X) = Xb + 1) the integer representation B ∈
Mbk×bl(Z) of any R-basis is a b-block circulant, (resp. b-block skew-circulant)
matrix, i.e. a matrix composed with (b× b)-blocks of the form :

a1 a2 · · · ab
ab a1 · · · ab−1

...
. . .

. . .
...

a2 · · · ab a1

 , resp.


a1 a2 · · · ab
−ab a1 · · · ab−1

...
. . .

. . .
...

−a2 · · · −ab a1

 .
We denote these families by Cb (resp. C>b ). These families are stable under ring
operations (addition, product and inverse, when defined) because of the ring iso-
morphism with matrices over R. Such isomorphisms also exist for other polyno-
mials P , defining other b-block structures. However, circulant and skew-circulant
structures have a key property for our improvement:

Fact 7 Matrix families Cb and C>b are stable under transposition.

From this, we deduce that Σ′ = Σ−η2In = (s−η2)In−BtB ∈ Cb (or C>b ) when
working in this ring setting. At this point, one would want to find a square root
of Σ that is still structured. Interestingly, the solution can be found in algorithms
that were designed to extract another notion of square root; namely, the Baby-
lonian Method, or the Denman-Beavers iteration [8]. Indeed, those algorithms
are searching for an Y such that Y · Y = X, without symmetry requirement
on X, and no guarentee of convergence in general. Lemma 3 proves that given
as input X ∈ S+n , such methods (quickly) converge to some Y ∈ S+n such that
Y t · Y = X.

Definition. The Babylonian Method approximates the limit of the sequence:

Y0(X) = In; Yk+1(X) = (Yk(X) +X · Yk(X)−1)/2 (2)

and if this sequence converges to an invertible limit Y (X), it must verify Y (X) =
1
2 (Y (X)+X ·Y (X)−1), which is equivalent to Y (X) ·Y (X) = X. The Denman-
Beavers iteration is similar, using the sequences:{

Y0(X) = X
Z0(X) = Id

{
Yk+1(X) =

(
Yk(X) + Zk(X)−1

)
/2

Zk+1(X) =
(
Zk(X) + Yk(X)−1

)
/2

(3)

it verifies the invariant Yk ·Z−1k = Z−1k ·Yk = X, and if it converges, the limit Y
of Yk verifies Y · Y = X.



Lemma 3. Let X ∈ S+n be a symmetric positive definite matrix, then the Baby-
lonian Method, as defined by the sequence Yk(X) in (2) converges quadratically3

to some Y (X) ∈ S+n . Furthermore, if X ∈ Cb (resp. C>b ) then Y (X) ∈ Cb
(resp. C>b ), which implies that Y (X)tY (X) = X. Similar results also hold for
the Denman-Beavers iteration (3).

Proof (sketch). By induction, write Yi(X) as QDiQ
t for a fixed orthogonal ma-

trix Q and diagonal matrices Di. Each diagonal entry of (Di) follows the Babylo-
nian Square-Root sequence over R, which allows to prove convergence. Structure
preservation follows from ring and topological closure of Cb and C>b .

6.2 Improved Efficiency

Assuming the square root L of Σ was precomputed using one of the structure-
preserving algorithms described below, each computation of y = x·L at precision
m′ can now be done in time Õ(nm′2), but some coordinate may need to be
recomputed at precision m. Using a similar analysis as in Sect. 5.2 with:

τ = O(
√
n),m = O(n),m′ = O(log n), δp = O(1/n7/2).

we show that the “average” time4 spent on the computation of y = x · L is
indeed Õ(n).

By combining Laziness and Structured-Square-Root, we move the complexity
bottleneck to the LazySampleZ subroutine, which is called n times and requires
Õ(τ) = Õ(

√
λ) trials in average. For λ ∼ n, this leads to an overall average

complexity of Õ(n1.5).

To reach quasi-linear complexity we need a third trick, detailed in the full
version [9]. There, we improve the rejection sampling algorithm SampleZ so
that it only needs a constant number of trials on average. This is done by sam-
pling from a distribution before rejection which is much closer to the target
distribution than the uniform distribution used in SampleZ.

By combining the three techniques, we eventually obtain an implementation
of Peikert’s offline phase which runs in average4 quasi-linear time. These results
also apply to the recent variant of Micciancio and Peikert [20].

3 The number of correct bits grows quadratically with the number k of iterations:

|sk − s∞| ≤ c 2−c
′k2 for some c, c′ > 0

4 We explain what we mean by average. As high-precision is triggered independently
with small probability over n trials, the running times of the optimized Klein’s Sam-
pler and optimized Peikert’s Offline Phase are bounded by some function Õ(n2), ex-
cept with negligible probability. However, when applying laziness in the ring setting,
triggering high-precision once in the whole algorithm raises this instance’s running
time to Õ(nλ2): only the average cost is below that bound. And dealing with average
running times is less problematic in an offline phase, than in an online phase which
is more subject to timing attacks.
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