S. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, vol.37, issue.2, pp.251-276, 1998.
DOI : 10.1103/PhysRevLett.76.2188

L. Arnold, A. Auger, N. Hansen, and Y. Ollivier, Information- Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00601503

M. Bailly-bechet, A. Braunstein, A. Pagnani, M. Weigt, and R. Zecchina, Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach, BMC Bioinformatics, vol.11, issue.1, p.355, 2010.
DOI : 10.1186/1471-2105-11-355

URL : https://hal.archives-ouvertes.fr/hal-00539494

C. Berge, Théorie des graphes et ses applications, II of Collection Universitaire des Mathématiques. Dunod, 1967.

M. Chertkov, C. , and V. Y. , Loop series for discrete statistical models on graphs, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.06, p.6009, 2006.
DOI : 10.1088/1742-5468/2006/06/P06009

M. Chertkov, V. Y. Chernyak, and R. Teodorescu, Belief propagation and loop series on planar graphs, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.05, pp.5-05003, 2008.
DOI : 10.1088/1742-5468/2008/05/P05003

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees. Information Theory, IEEE Transactions on, vol.14, issue.3, pp.462-467, 1968.

S. Cocco and R. Monasson, Adaptive Cluster Expansion for the Inverse Ising Problem: Convergence, Algorithm and Tests, Journal of Statistical Physics, vol.5, issue.2, pp.252-314, 2012.
DOI : 10.1007/s10955-012-0463-4

URL : https://hal.archives-ouvertes.fr/hal-00634921

S. Cocco, R. Monasson, and V. Sessak, High-dimensional inference with the generalized Hopfield model: Principal component analysis and corrections, Physical Review E, vol.83, issue.5, p.51123, 2011.
DOI : 10.1103/PhysRevE.83.051123

URL : https://hal.archives-ouvertes.fr/hal-00586950

J. Darroch and D. Ratcliff, Generalized Iterative Scaling for Log-Linear Models, The Annals of Mathematical Statistics, vol.43, issue.5, pp.1470-1480, 1972.
DOI : 10.1214/aoms/1177692379

D. Pietra, S. , D. Pietra, V. Lafferty, and J. , Inducing features of random fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.19, issue.4, pp.380-393, 1997.

C. Furtlehner, Y. Han, J. Lasgouttes, M. , and V. , Pairwise MRF Calibration by Perturbation of the Bethe Reference Point, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743334

C. Furtlehner, Y. Han, J. Lasgouttes, V. Martin, F. Marchal et al., Spatial and temporal analysis of traffic states on large scale networks, 13th International IEEE Conference on Intelligent Transportation Systems, pp.1215-1220, 2010.
DOI : 10.1109/ITSC.2010.5625175

URL : https://hal.archives-ouvertes.fr/hal-00527481

C. Furtlehner, J. Lasgouttes, and A. Auger, Learning multiple belief propagation fixed points for real time inference, Physica A: Statistical Mechanics and its Applications, vol.389, issue.1, pp.149-163, 2010.
DOI : 10.1016/j.physa.2009.08.030

URL : https://hal.archives-ouvertes.fr/inria-00371372

C. Furtlehner, J. Lasgouttes, and A. De-la-fortelle, A Belief Propagation Approach to Traffic Prediction using Probe Vehicles, 2007 IEEE Intelligent Transportation Systems Conference, pp.1022-1027, 2007.
DOI : 10.1109/ITSC.2007.4357716

URL : https://hal.archives-ouvertes.fr/hal-00175627

A. Georges, Y. , and J. , How to expand around mean-field theory using high-temperature expansions, Journal of Physics A: Mathematical and General, vol.24, issue.9, p.2173, 1991.
DOI : 10.1088/0305-4470/24/9/024

A. Globerson and T. Jaakkola, Approximate inference using planar graph decomposition, NIPS, pp.473-480, 2006.

G. E. Hinton and T. J. Sejnowski, Learning and relearning in boltzmann machines In Parallel distributed processing: explorations in the microstructure of cognition, pp.282-317, 1986.

H. Höfling and R. Tibshirani, Estimation of sparse binary pairwise Markov networks using pseudo-likelihood, pp.883-906, 2009.

J. J. Hopfield, Neural network and physical systems with emergent collective computational abilities, Proc. of Natl. Acad. Sci. USA, pp.2554-2558, 1982.

J. Horton, A Polynomial-Time Algorithm to Find the Shortest Cycle Basis of a Graph, SIAM Journal on Computing, vol.16, issue.2, pp.358-366, 1987.
DOI : 10.1137/0216026

S. Lee, V. Ganapathi, and D. Koller, Efficient structure learning of Markov networks using L 1 -regularization, NIPS, 2006.

H. Kappen, R. , and F. , Efficient Learning in Boltzmann Machines Using Linear Response Theory, Neural Computation, vol.4, issue.5, pp.1137-1156, 1998.
DOI : 10.1162/neco.1994.6.3.341

K. Kuratowski, Sur leprobì eme des courbes gauches en topologie, Fund. Math, vol.15, pp.271-283, 1930.

S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, Readings in uncertain reasoning

S. Maclane, A combinatorial condition for planar graphs, Fund. Math, vol.28, pp.22-32, 1937.

R. Malouf, A comparison of algorithms for maximum entropy parameter estimation, proceeding of the 6th conference on Natural language learning , COLING-02, pp.49-55, 2002.
DOI : 10.3115/1118853.1118871

M. Mézard, M. , and T. , Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, issue.1-2, pp.1-2, 2009.
DOI : 10.1016/j.jphysparis.2009.05.013

A. Montanari and T. Rizzo, How to compute loop corrections to the Bethe approximation, Journal of Statistical Mechanics: Theory and Experiment, vol.2005, issue.10, pp.10-10011, 2005.
DOI : 10.1088/1742-5468/2005/10/P10011

J. Mooij and B. Wemmenhove, Loop corrected belief propagation, Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS, p.7, 2007.

T. Mora, Géométrie et inférence dans l'optimisation et en théorie de l'information, Thèse de doctorat, 2007.

H. Nguyen and J. Berg, Bethe-Peierls approximation and the inverse Ising model, J. Stat. Mech, pp.3501-03004, 1112.

H. Nguyen and J. Berg, Mean-Field Theory for the Inverse Ising Problem at Low Temperatures, Physical Review Letters, vol.109, issue.5, p.50602, 2012.
DOI : 10.1103/PhysRevLett.109.050602

T. Plefka, Convergence condition of the TAP equation for the infiniteranged Ising spin glass model, J. Phys. A: Mathematical and General, vol.15, issue.6, 1971.

E. Schneidman, M. Berry, R. Segev, and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, vol.37, issue.7087, pp.1007-1012, 2006.
DOI : 10.1038/nature04701

M. Welling and Y. Teh, Approximate inference in Boltzmann machines, Artificial Intelligence, vol.143, issue.1, pp.19-50, 2003.
DOI : 10.1016/S0004-3702(02)00361-2

M. Welling and Y. Teh, Linear Response Algorithms for Approximate Inference in Graphical Models, Neural Computation, vol.16, issue.1, pp.197-221, 2004.
DOI : 10.1162/08997660260028674

M. Yasuda and K. Tanaka, Approximate Learning Algorithm in Boltzmann Machines, Neural Computation, vol.21, issue.11, pp.3130-3178, 2009.
DOI : 10.1080/14786437708235992

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation, Advances in Neural Information Processing Systems, pp.689-695, 2001.