Pairwise MRF Models Selection for Traffic Inference

Cyril Furtlehner 1
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We survey some recent work where, motivated by traffic inference, we design in parallel two concurrent models, an Ising and a Gaussian ones, with the constraint that they are suitable for ''belief-propagation'' based inference. In order to build these model, we study how a Bethe mean-field solution to inverse problems obtained with a maximum spanning tree of pairwise mutual information, can serve as a reference point for further perturbation procedures. We consider three different ways along this idea: the first one is based on an explicit natural gradient formula; the second one is a link by link construction based on iterative proportional scaling; the last one relies on a duality transformation leading to a loop correction propagation algorithm on a dual factor graph.
Type de document :
Article dans une revue
Interdisciplinary Information Sciences, Editorial Committee of the Interdisciplinary Information Sciences, 2013, Special Issue: The 4th Young Scientist Meeting on Statistical Physics and Information Processing in Sendai, 19 (1), pp.17-22. 〈10.4036/iis.2013.17〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00865089
Contributeur : Cyril Furtlehner <>
Soumis le : mardi 24 septembre 2013 - 10:48:20
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : mercredi 25 décembre 2013 - 04:31:49

Fichier

iis2012-draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cyril Furtlehner. Pairwise MRF Models Selection for Traffic Inference. Interdisciplinary Information Sciences, Editorial Committee of the Interdisciplinary Information Sciences, 2013, Special Issue: The 4th Young Scientist Meeting on Statistical Physics and Information Processing in Sendai, 19 (1), pp.17-22. 〈10.4036/iis.2013.17〉. 〈hal-00865089〉

Partager

Métriques

Consultations de la notice

419

Téléchargements de fichiers

157