C. Berge, Théorie des graphes et ses applications, II of Collection Universitaire des Mathématiques. Dunod, 1967.

M. Chertkov, C. , and V. Y. , Loop series for discrete statistical models on graphs, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.06, p.6009, 2006.
DOI : 10.1088/1742-5468/2006/06/P06009

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees. Information Theory, IEEE Transactions on, vol.14, issue.3, pp.462-467, 1968.

J. Darroch and D. Ratcliff, Generalized Iterative Scaling for Log-Linear Models, The Annals of Mathematical Statistics, vol.43, issue.5, pp.1470-1480, 1972.
DOI : 10.1214/aoms/1177692379

D. Pietra, S. , D. Pietra, V. Lafferty, and J. , Inducing features of random fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.19, issue.4, pp.380-393, 1997.

C. Furtlehner, Y. Han, J. Lasgouttes, M. , and V. , Pairwise MRF Calibration by Perturbation of the Bethe Reference Point, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743334

C. Furtlehner, J. Lasgouttes, and A. Auger, Learning multiple belief propagation fixed points for real time inference, Physica A: Statistical Mechanics and its Applications, vol.389, issue.1, pp.149-163, 2010.
DOI : 10.1016/j.physa.2009.08.030

URL : https://hal.archives-ouvertes.fr/inria-00371372

C. Furtlehner, J. Lasgouttes, and A. De-la-fortelle, A Belief Propagation Approach to Traffic Prediction using Probe Vehicles, 2007 IEEE Intelligent Transportation Systems Conference, pp.1022-1027, 2007.
DOI : 10.1109/ITSC.2007.4357716

URL : https://hal.archives-ouvertes.fr/hal-00175627

H. Kappen, R. , and F. , Efficient Learning in Boltzmann Machines Using Linear Response Theory, Neural Computation, vol.4, issue.5, pp.1137-1156, 1998.
DOI : 10.1162/neco.1994.6.3.341

M. Mézard, M. , and T. , Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, issue.1-2, pp.1-2, 2009.
DOI : 10.1016/j.jphysparis.2009.05.013

H. Nguyen and J. Berg, Bethe-Peierls approximation and the inverse Ising model, J. Stat. Mech, pp.3501-03004, 1112.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, 1988.

T. Plefka, Convergence condition of the TAP equation for the infiniteranged Ising spin glass model, J. Phys. A: Mathematical and General, vol.15, issue.6, 1971.

M. Welling and Y. Teh, Approximate inference in Boltzmann machines, Artificial Intelligence, vol.143, issue.1, pp.19-50, 2003.
DOI : 10.1016/S0004-3702(02)00361-2

M. Yasuda and K. Tanaka, Approximate Learning Algorithm in Boltzmann Machines, Neural Computation, vol.21, issue.11, pp.3130-3178, 2009.
DOI : 10.1080/14786437708235992

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation, Advances in Neural Information Processing Systems, pp.689-695, 2001.