R. Abgrall, Toward the Ultimate Conservative Scheme: Following the Quest, Journal of Computational Physics, vol.167, issue.2, pp.277-315, 2001.
DOI : 10.1006/jcph.2000.6672

R. Abgrall, A residual distribution method using discontinuous elements for the computation of possibly non smooth flows, Adv. in Appl. Math. Mech, vol.2, issue.1, pp.32-44, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00535815

R. Abgrall, H. Deconinck, and K. Sermeus, Status of multidimensional upwind residual distribution schemes and applications in aeronautics, 2000.

R. Abgrall and M. Mezine, Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems, Journal of Computational Physics, vol.188, issue.1, pp.16-55, 2003.
DOI : 10.1016/S0021-9991(03)00084-6

R. Abgrall and M. Mezine, Residual distribution schemes for steady problems, Computational Fluid Dynamics, VKI LS 2003-05. von Karman Institute for Fluid Dynamics, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00652412

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp et al., PETSc users manual, 2012.

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.1-3, 1982.
DOI : 10.1016/0045-7825(82)90071-8

D. Caraeni and L. Fuchs, Compact Third-Order Multidimensional Upwind Scheme for Navier-Stokes Simulations, Theoretical and Computational Fluid Dynamics, vol.15, issue.6, pp.373-401, 2002.
DOI : 10.1007/s00162-002-0060-2

J. C. Carette, H. Deconinck, H. Paillère, and P. L. Roe, Multidimensional upwinding: Its relation to finite elements, International Journal for Numerical Methods in Fluids, vol.II, issue.8-9, pp.935-955, 1995.
DOI : 10.1002/fld.1650200815

B. Cockburn and C. W. Shu, The Runge???Kutta Discontinuous Galerkin Method for Conservation Laws V, Journal of Computational Physics, vol.141, issue.2, pp.199-224, 1998.
DOI : 10.1006/jcph.1998.5892

Á. Csík and H. Deconinck, Space-time residual distribution schemes for hyperbolic conservation laws on unstructured linear finite elements, Internat. J. Numer. Methods Fluids, vol.40, pp.3-4, 2002.

Á. Csík, H. Deconinck, and M. Ricchiuto, Residual distribution for general time-dependent conservation laws, J. Comput. Phys, vol.209, issue.1, pp.249-289, 2005.

Á. Csík, H. Deconinck, M. Ricchiuto, and S. Poedts, Space-time residual distribution schemes for hyperbolic conservation laws, 15th AIAA Computational Fluid Dynamics Conference, 2001.
DOI : 10.2514/6.2001-2617

Á. Csík, M. Ricchiuto, and H. Deconinck, A Conservative Formulation of the Multidimensional Upwind Residual Distribution Schemes for General Nonlinear Conservation Laws, Journal of Computational Physics, vol.179, issue.1, pp.286-312, 2002.
DOI : 10.1006/jcph.2002.7057

D. Palma, P. Pascazio, G. Rossiello, G. Napolitano, and M. , A second-order-accurate monotone implicit fluctuation splitting scheme for unsteady problems, Journal of Computational Physics, vol.208, issue.1, pp.1-33, 2005.
DOI : 10.1016/j.jcp.2004.11.023

H. Deconinck, Upwind methods and multidimensional splittings for the Euler equations, Computational Fluid Dynamics, VKI LS 1991-01. von Karman Institute for Fluid Dynamics, 1991.

H. Deconinck and A. Ferrante, Solution of the unsteady Euler equations using residual distribution and flux corrected transport, 1997.

H. Deconinck and M. Ricchiuto, Residual Distribution Schemes: Foundations and Analysis, Encyclopedia of Computational Mechanics, 2007.
DOI : 10.1002/0470091355.ecm054

URL : https://hal.archives-ouvertes.fr/hal-00402592

H. Deconinck, P. L. Roe, and R. Struijs, A multidimensional generalization of Roe's flux difference splitter for the euler equations, Computers & Fluids, vol.22, issue.2-3, pp.215-222, 1993.
DOI : 10.1016/0045-7930(93)90053-C

J. Dobe? and H. Deconinck, Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations, Journal of Computational and Applied Mathematics, vol.215, issue.2, pp.378-389, 2008.
DOI : 10.1016/j.cam.2006.03.046

A. F. Emery, An evaluation of several differencing methods for inviscid fluid flow problems, Journal of Computational Physics, vol.2, issue.3, pp.306-331, 1968.
DOI : 10.1016/0021-9991(68)90060-0

E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.
DOI : 10.1007/978-1-4612-0713-9

S. M. Guzik and C. P. Groth, Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods, International Journal of Computational Fluid Dynamics, vol.47, issue.1-2, pp.61-83, 2008.
DOI : 10.1006/jcph.1999.6281

M. Hubbard and M. Ricchiuto, Discontinuous fluctuation distribution, ICFD 2010 International Conference on Fluid Dynamics, 2010.
DOI : 10.1016/j.jcp.2008.08.017

URL : https://hal.archives-ouvertes.fr/inria-00522477

M. E. Hubbard, Discontinuous fluctuation distribution, Journal of Computational Physics, vol.227, issue.24, pp.125-10147, 2008.
DOI : 10.1016/j.jcp.2008.08.017

URL : https://hal.archives-ouvertes.fr/inria-00522477

M. E. Hubbard, A framework for discontinuous fluctuation distribution, International Journal for Numerical Methods in Fluids, vol.43, issue.8, pp.1305-1311, 2008.
DOI : 10.1002/fld.1726

T. J. Hughes and M. Mallet, A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Computer Methods in Applied Mechanics and Engineering, vol.58, issue.3, pp.305-328, 1986.
DOI : 10.1016/0045-7825(86)90152-0

C. Johnson, Numerical solution of partial differential equations by the finite element method, 2009.

R. J. Leveque, Numerical methods for conservation laws, second edn, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 1992.

R. J. Leveque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, 2002.

J. März and G. Degrez, Improving time accuracy of residual distribution schemes, 1996.

M. Ricchiuto, Explicit Runge???Kutta residual distribution schemes for time dependent problems: Second order case, Journal of Computational Physics, vol.229, issue.16, pp.5653-5691, 2010.
DOI : 10.1016/j.jcp.2010.04.002

URL : https://hal.archives-ouvertes.fr/inria-00406958

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.457.5978

P. L. Roe, Fluctuations and signals -a framework for numerical evolution problems In: Numerical Methods for Fluid Dynamics, pp.219-257, 1982.

P. L. Roe, Linear advection schemes on triangular meshes, 1987.

C. W. Shu, S. Osher, R. Struijs, H. Deconinck, and P. L. Roe, Efficient implementation of essentially nonoscillatory shock-capturing schemes Fluctuation splitting schemes for the 2D Euler equations, Computational Fluid Dynamics, VKI LS 1991-01. von Karman Institute for Fluid Dynamics, pp.439-471, 1988.

A. Warzy?ski, M. E. Hubbard, and M. Ricchiuto, Discontinuous residual distribution schemes for time-dependent problems, ) Recent Advances In Scientific Computing And Applications , Contemporary Mathematics, pp.375-382, 2013.
DOI : 10.1090/conm/586/11647

E. Van-der-weide and H. Deconinck, Positive matrix distribution schemes for hyperbolic systems, with application to the Euler equations, Computational Fluid Dynamics '96, pp.747-753, 1996.

E. Van-der-weide, H. Deconinck, E. Issman, and G. Degrez, A parallel, implicit, multi-dimensional upwind, residual distribution method for the Navier-Stokes equations on unstructured grids, Computational Mechanics, vol.23, issue.2, pp.199-208, 1999.
DOI : 10.1007/s004660050401

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, issue.1, pp.115-173, 1984.
DOI : 10.1016/0021-9991(84)90142-6