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eAbstra
t. A popular way to study the tail of a distribution fun
tion is to 
onsider its high or extremequantiles. While this is a standard pro
edure for univariate distributions, it is harder for multivariateones, primarily be
ause there is no universally a

epted de�nition of what a multivariate quantile shouldbe. In this paper, we fo
us on extreme geometri
 quantiles. Their asymptoti
s are established, both indire
tion and magnitude, under suitable integrability 
onditions, when the norm of the asso
iated ve
tortends to one. It appears that the behavior of extreme geometri
 quantiles is totally dis
onne
ted from theshape of the asso
iated probability density fun
tion. As a 
onsequen
e, geometri
 quantiles should not beused as a graphi
al tool for analyzing multidimensional datasets. We illustrate this phenomenon on somenumeri
al examples.AMS Subje
t Classi�
ations: 62H05, 62G20, 62G32.Keywords: Extreme quantile, geometri
 quantile, asymptoti
 behavior.1 Introdu
tionUp to now, several de�nitions of multivariate quantiles have been introdu
ed in the statisti
al literature.We refer to Ser�ing (2002) for a review of various possibilities for this notion. Here, we fo
us on the notionof �spatial� or �geometri
� quantiles, introdu
ed by Chaudhuri (1996), whi
h generalizes the 
hara
teriza-tion of a univariate quantile shown in Koenker and Bassett (1978). For a given ve
tor u belonging to theunit open ball Bd of Rd, where d ≥ 2, the geometri
 quantile related to u is a solution of the optimizationproblem (P ) de�ned by
argmin
q∈Rd

E(φ(u,X − q)− φ(u,X)), (1)with φ a loss fun
tion de�ned by
φ : Rd × R

d → R+, (u, t) 7→ ‖t‖+ 〈u, t〉,1



where 〈·, ·〉 is the usual s
alar produ
t on R
d and ‖·‖ is the asso
iated Eu
lidean norm. Any solution q(u) ofthe problem (P ) is 
alled a u�th quantile. Note that q(u) ∈ R

d possesses both a dire
tion and magnitude.It 
an be seen that geometri
 quantiles are in fa
t spe
ial 
ases ofM�quantiles introdu
ed by Bre
kling andChambers (1988) whi
h were further analyzed by Kolt
hinskii (1997). Besides, su
h quantiles have variousstrong properties. First, the quantile related to a ve
tor u ∈ Bd is unique whenever the distribution of Xis not 
on
entrated on a single straight line in R
d (see Chaudhuri, 1996, or Theorem 2.17 in Kemperman,1987). Se
ond, although they are not fully a�ne equivariant, they are invariant under any orthogonaltransformation (Chaudhuri, 1996). Third, geometri
 quantiles 
hara
terize the asso
iated distribution.Namely, if two random variables X and Y yield the same quantile fun
tion q, then X and Y have thesame distribution (Kolt
hinskii, 1997). Finally, for u = 0, the well-known geometri
 median is obtained,whi
h is the simplest example of a �
entral� quantile (see Small, 1990). We point out that one may
ompute an estimation of the geometri
 median in an e�
ient way, see Cardot et al. (2013).These properties make geometri
 quantiles reasonable 
andidates when trying to de�ne multivariate quan-tiles, whi
h is why their estimation was studied in several papers. We refer for instan
e to Chakraborty(2001), for the introdu
tion of a transformation-retransformation pro
edure to obtain a�ne equivariantestimates of multivariate quantiles, to Chakraborty (2003) for a generalization of this notion to a mul-tiresponse linear model and to Dhar et al. (2013) for the de�nition of a multivariate quantile-quantileplot using geometri
 quantiles. Conditional geometri
 quantiles 
an also be de�ned by substituting a
onditional expe
tation to the expe
tation in (1). We refer to Cadre and Gannoun (2000) for the esti-mation of the 
onditional geometri
 median and to Cheng and de Gooijer (2007) for the estimation ofan arbitrary 
onditional geometri
 quantile. The estimation of a 
onditional median when there is anin�nite-dimensional 
ovariate is 
onsidered in Chaou
h and Laïb (2013).Our fo
us in this paper is rather on extreme geometri
 quantiles, obtained when ‖u‖ → 1. The theory ofunivariate extreme quantiles is well established, see for instan
e the monograph by de Haan and Ferreira(2006). On the 
ontrary, the few works on extreme multivariate quantiles rely on the study of extremelevel sets of the probability density fun
tion of X when it is absolutely 
ontinuous with respe
t to theLebesgue measure. We refer for instan
e to Cai et al. (2011) for an appli
ation to the estimation ofextreme risk regions for �nan
ial data or to Einmahl et al. (2013) who fo
us on the 
ase of bivariatedistributions with an appli
ation to insuran
e data. In Daouia et al. (2013), the estimation of 
onditionalextreme quantiles is addressed, the 
ase of a fun
tional 
ovariate being 
onsidered in Gardes and Girard(2012).In this study, we provide an equivalent of the dire
tion and magnitude of the extreme geometri
 quantile

q(u), ‖u‖ → 1 under suitable integrability 
onditions. As a 
orollary of our results, it appears that extremegeometri
 quantiles and extreme level sets (of the probability density fun
tion) are two fundamentallydi�erent notions: the respe
tive shapes of the extreme quantile 
ontour q(u), i.e. when ‖u‖ is 
onstant2



and 
lose to 1, and of the extreme level sets are not at all similar. In the 
ase of ellipti
ally 
ontoureddistributions (Cambanis et al. (1981)), these shapes are even orthogonal, in some sense. Moreover, weshow that the magnitude of an extreme geometri
 quantile does not take into a

ount the tail heavinessof the probability density fun
tion. As a 
on
lusion, the behavior of high geometri
 quantiles is totallydis
onne
ted from the shape of the asso
iated probability density fun
tion. Consequently, geometri
quantiles should not be used as a graphi
al tool for analyzing multidimensional datasets, parti
ularlywhen trying to dete
t outliers of a data 
loud (Chaou
h and Goga, 2010).The outline of the paper is as follows. The main results are stated in Se
tion 2. Some examples andillustrations on the asymptoti
 behavior of extreme geometri
 quantiles are presented in Se
tion 3. Proofsare deferred to Se
tion 4.2 Main resultsFrom now on, we assume that X has a probability density fun
tion f on R
d, d ≥ 2. In this 
ase, theoptimization problem (P ) is equivalent to

argmin
q∈Rd

ψ(u, q)where
ψ : Rd × R

d → R, (u, q) 7→
∫

Rd

[φ(u, x− q)− φ(u, x)]f(x)dx.From Chaudhuri (1996), sin
e the distribution of X is not 
on
entrated on a straight line in R
d, thesolution q(u) of (P ) is unique for every u ∈ Bd:Lemma 1. For every u belonging to the unit open ball Bd of Rd, the optimization problem

argmin
q∈Rd

ψ(u, q),denoted by (P ), has a unique solution q(u) in R
d.The ve
tor q(u) is the geometri
 quantile of X asso
iated with u. Introdu
ing the 
onvention t/‖t‖ = 0if t = 0 and remarking that ϕ(u, ·) is a stri
tly 
onvex fun
tion, Chaudhuri (1996) proved the following
hara
terization of a geometri
 quantile: for every u ∈ R

d, q(u) is the solution of problem (P ) if and onlyif
u+ E

(
X − q(u)

‖X − q(u)‖

)
= 0. (2)This property makes it possible to prove that the su�
ient 
ondition u ∈ Bd for the existen
e of q(u)established in Lemma 1 is also ne
essary:Proposition 1. The optimization problem (P ) has a solution if and only if u ∈ Bd.3



In parti
ular, this entails that the fun
tion G : Rd → Bd de�ned by
∀q ∈ R

d, G(q) = E

(
X − q

‖X − q‖

)is a 
ontinuous bije
tion. Inverting the fun
tion G, we obtain that the geometri
 quantile fun
tion u 7→ q(u)is 
ontinuous on Bd. Its behavior on the boundary of the unit open ball is somewhat spe
i�ed in the nextresult.Proposition 2. For every sequen
e (un) ⊂ Bd su
h that ‖un‖ → 1, one has ‖q(un)‖ → ∞ as n→ ∞.If moreover (un) 
onverges to some ve
tor u belonging to the unit sphere Sd−1 of Rd, then
q(un)

‖q(un)‖
→ u as n→ ∞.Proposition 2 shows two properties of geometri
 quantiles:(i) The norm of the geometri
 quantile q(u) asso
iated with u diverges to in�nity as ‖u‖ → 1. Thisis a rather disturbing property of geometri
 quantiles, sin
e it holds even if the density f of X is
ompa
tly supported.(ii) If (un) is a sequen
e of ve
tors 
ontained in Bd 
onverging to some unit ve
tor u, then the geometri
quantile q(un) is asymptoti
ally 
ollinear with un (and u).Our �rst main result examines the behavior of geometri
 quantiles when the random ve
tor X has anisotropi
 distribution. In this 
ase, Proposition 2 
an be 
onsiderably strengthened:Proposition 3. If X has an isotropi
 distribution, i.e. there exists a measurable fun
tion g : R+ → R+su
h that for all x ∈ R

d, f(x) = g(‖x‖), then:(i) The map u 7→ q(u) 
ommutes with every linear isometry of Rd. Espe
ially, the norm of a geometri
quantile q(u) of an isotropi
 distribution only depends on the norm of u.(ii) For all u ∈ Bd, the geometri
 quantile q(u) and u are 
ollinear:
q(u)

‖q(u)‖ =
u

‖u‖if u 6= 0 and q(0) = 0 otherwise.Coming ba
k to the general 
ase, it is possible to spe
ify the 
onvergen
es obtained in Proposition 2 underintegrability assumptions. When X has a �nite expe
tation, Theorem 1 provides a �rst-order expansionof the dire
tion of an extreme geometri
 quantile.Theorem 1. Assume that (un) ⊂ Bd is a sequen
e su
h that un → u ∈ Sd−1 and (un) ⊂ Ru. If
E‖X‖ <∞ then

q(un)− {‖q(un)‖u+ E(X − 〈X,u〉u)} → 0 as n→ ∞.4



It appears that the di�eren
e between the dire
tion of an extreme geometri
 quantile and its asymptoti
dire
tion u
q(un)

‖q(un)‖
− u =

1

‖q(un)‖
E(X − 〈X,u〉u) + o

(
1

‖q(un)‖

) as n→ ∞,essentially depends on the behavior of X in the orthogonal 
omplement of Ru. In parti
ular, sin
e the�rst-order term on the right-hand side of this equality is the orthogonal proje
tion of E(X) onto theorthogonal 
omplement of Ru, its magnitude is minimum when u and E(X) are 
ollinear and maximumwhen they are orthogonal.Theorem 2 provides an equivalent of the norm of an extreme geometri
 quantile when X has a �nite
ovarian
e matrix.Theorem 2. Assume that (un) ⊂ Bd is a sequen
e su
h that un → u ∈ Sd−1 and (un) ⊂ Ru. If
E‖X‖2 <∞ then, letting Σ be the 
ovarian
e matrix of X, it holds that

‖q(un)‖2(1 − ‖un‖) →
1

2
(tr Σ− u′Σu) as n→ ∞.As a 
onsequen
e of Theorem 2, we 
an remark that if X has a �nite 
ovarian
e matrix then the magnitudeof an extreme geometri
 quantile q(un) is essentially a fun
tion of the norm of un and of the behavior of

X in the orthogonal 
omplement of Ru. Besides, Theorem 2 entails
‖q(βnu)‖
‖q(αnu)‖

=

√
1− αn

1− βn
(1 + o(1))when (αn), (βn) ⊂ (0, 1) are two arbitrary sequen
es tending to 1. Therefore, the way the density fbehaves far from the origin is not 
aptured by extreme geometri
 quantiles when X is square integrable.Moreover, in this 
ase, given an arbitrary extreme geometri
 quantile, one 
an dedu
e the asymptoti
behavior of every other extreme geometri
 quantile sharing its dire
tion, independently of the probabilitydensity fun
tion f . This is fundamentally di�erent from the univariate 
ase when dedu
ing the value of anextreme quantile from another one requires the knowledge of the extreme-value index of the distribution,see de Haan and Ferreira (2006), Chapter 4.Finally, Theorem 2 provides some information on the shape of an extreme quantile 
ontour. It is read-ily seen that the global maximum of the fun
tion h1(u) := tr Σ − u′Σu on Sd−1 is rea
hed at the uniteigenve
tor umin of Σ asso
iated with its smallest eigenvalue λmin > 0. Thus, the norm of an extremegeometri
 quantile is asymptoti
ally the largest in the dire
tion where the varian
e is the smallest. Sim-ilarly, the global minimum of h1 is rea
hed at the unit eigenve
tor umax of Σ asso
iated with its largesteigenvalue λmax > 0. This is a very 
ounterintuitive property. In parti
ular, if f is the density asso
iatedwith an ellipti
ally 
ontoured distribution, the level sets of f 
oin
ide with the levels sets of the fun
tion

h2(u) := u′Σu. The global maximum of h2 is rea
hed at the eigenve
tor umax while the global minimumis rea
hed at umin. In su
h a 
ase, the extreme geometri
 quantile 
ontour plot and the density level plotshave opposite behaviors. For instan
e, the extreme geometri
 quantile is furthest from the origin in the5



dire
tion where the density level is 
losest to the origin. This phenomenon is dire
tly related to the fa
tthat the behavior of extreme geometri
 quantiles in a given dire
tion u only depends on the distribution of
X in the orthogonal 
omplement of Ru, both in dire
tion and magnitude. For more on spe
i�
 examplesto illustrate this pe
uliar behavior, we refer to the next se
tion.3 Examples and illustrations3.1 About our theoreti
al resultsOur goal in this paragraph is to illustrate our results and espe
ially Theorem 2. To this end, let us notethat this result 
an be rewritten in the following way: for all u ∈ R

d su
h that ‖u‖ = 1,
q(αu) =

(
tr Σ− u′Σu

2

)1/2
1

(1− α)1/2
u (1 + o(1)) (3)as α ↑ 1, whi
h is referred to as the equivalent of an extreme geometri
 quantile. To make matters easier,we shall fo
us on the 
ase d = 2. In this 
ase, u ∈ S1 
an be represented by an angle and we maywrite u = uθ = (cos θ, sin θ)′, θ ∈ [0, 2π). The iso-quantile 
urves Cqα = {q(αuθ), θ ∈ [0, 2π)} are then
onsidered in order to get a grasp of the behavior of extreme quantiles in every dire
tion.We start by 
onsidering two di�erent 
ases for the distribution ofX : the �rst one is the uniform distributionon the square [−1, 1]2 while the se
ond one is the 
entered bivariate Gaussian distribution with the same
ovarian
e matrix Σ = diag(1/3, 1/3). Note that, in the �rst 
ase, X is 
ompa
tly supported. In Figure 1,the iso-quantile 
urves are 
omputed by either a numeri
al minimization of the fun
tion ψ or using theequivalent (3). It appears that the equivalent of q(αu) is very 
lose to the true q(αu) for α ≥ 0.99.Besides, the iso-quantile 
urves asso
iated with the uniform and Gaussian distributions are very 
lose:high geometri
 quantiles do not bring any information on the asso
iated probability density fun
tion. Inparti
ular, as predi
ted by Proposition 2, the iso-quantile 
urves asso
iated with the uniform distributionare not ne
essarily in
luded in the support of the distribution. The latter remark suggests that in a largenumber of 
ases, the iso-quantile 
urve Cqα and the iso-density 
urve of level α, de�ned as

Cfα = {x ∈ R
d | f(x) = (1− α)‖f‖∞} where ‖f‖∞ = sup

Rd

f,for any bounded density fun
tion f , have very di�erent shapes. As seen before, this fa
t is 
learly truein the 
ase of a 
ompa
tly supported distribution. The next example provides an illustration of thisproperty in a 
ase where X is unbounded: we 
onsider the 
ase when X is a 
entered bivariate Gaussianrandom pair having 
ovarian
e matrix Σ = diag(σ2
1 , σ

2
2) where σ2

1 = 2 and σ2
2 = 1. In this setting, it isstraightforward to show that the iso-density 
urve Cfα is an ellipse with radii σi√−2 log(1− α), i ∈ {1, 2}.In Figure 2, both the iso-quantile and iso-density 
urves are represented for a 
ouple of values of α. Onemay see that the shape of an extremal iso-quantile 
urve is very di�erent from that of the 
orrespondingiso-density 
urve. The orientations of both shapes are orthogonal, as already mentioned as a 
onsequen
e6



of Theorem 2. Moreover, the volumes bounded by these respe
tive 
urves turn out to be very di�erent.Indeed, the volume within the iso-density ellipse is given by −2πσ1σ2 log(1− α) while the volume withinthe iso-quantile 
urve is
1

2

∫ 2π

0

‖q(αuθ)‖2dθ =
1

4(1− α)

∫ 2π

0

(σ2
1 sin

2 θ + σ2
2 cos

2 θ)dθ(1 + o(1))

=
π(σ2

1 + σ2
2)

4

1

1− α
(1 + o(1)).Therefore, as α ↑ 1, the volume within the iso-quantile 
urve grows at a polynomial rate, while the volumewithin the iso-density ellipse in
reases at a logarithmi
 rate. As a 
on
lusion, in view of Figures 1 and 2,high geometri
 quantiles do not appear as a 
onvenient tool for analyzing the tail behavior of multivariatedistributions.3.2 Estimating an extreme geometri
 quantileIn this paragraph, we show that basing on a small sample, extreme geometri
 quantiles may be estimatedin an unexpe
tedly a

urate way. To this end, equation (3) is used to suggest the following estimator ofan extreme geometri
 quantile q(αnu), αn ↑ 1:

q̂(αnu) =

(
tr Σ̂n − u′Σ̂nu

2

)1/2
1

(1− αn)1/2
u (4)where Σ̂n is the empiri
al estimator of the 
ovarian
e matrix: if (X1, . . . , Xn) is a sample of independent
opies of the random ve
tor X , then

Σ̂n =
1

n

n∑

i=1

(Xi −Xn)
′(Xi −Xn) with Xn =

1

n

n∑

i=1

Xi.The estimator q̂(αnu) is illustrated in the 
ase where X is a 
entered bivariate Gaussian random pairwith 
ovarian
e matrix Σ = diag(σ2
1 , σ

2
2) where σ2

1 = 2 and σ2
2 = 1. The sample size is n = 100 and

αn = 0.995. The estimator is 
omputed on N = 100 repli
ations of the sample. For ea
h repli
ation,the mean-squared error between the true iso-quantile 
urve and the estimated one is evaluated, and theresults 
orresponding to the �rst, �fth (median) and ninth de
ile of the error are displayed in Figure 3. Itappears that the estimated 
urve �ts the true iso-quantile 
urve reasonably well, although the sample sizeis moderate. This may be seen as a 
onsequen
e of both the fa
t that the true iso-quantile 
urve is wellapproximated by the one 
omputed with the equivalent (3) and that the estimator Σ̂n is √n−
onsistent.Note that this is very di�erent from the univariate 
ase, when the sample size needed to estimate extremequantiles has to be mu
h larger.
7



4 ProofsProof of Proposition 1. Let us assume that u ∈ R
d is su
h that problem (P ) has a solution q(u) ∈ R

d.Equation (2) entails ∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥ = ‖u‖.Besides, using the Cau
hy-S
hwarz inequality together with the fa
t that f is a probability density fun
tionyields
‖u‖2 =

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥
2

=

d∑

i=1

(∫

Rd

xi − qi(u)

‖x− q(u)‖f(x) dx
)2

≤
d∑

i=1

∫

Rd

(xi − qi(u))
2

‖x− q(u)‖2 f(x) dx.Furthermore, equality holds if and only if for all i ∈ {1, . . . , d}, there exists (λi, µi) ∈ R
2 \ {0} su
h that

√
f(x)

[
λi
xi − qi(u)

‖x− q(u)‖ + µi

]
= 0for almost every x ∈ R

d, whi
h leads to
λi
xi − qi(u)

‖x− q(u)‖ + µi = 0for every i ∈ {1, . . . , d} almost everywhere on the support S of f . In parti
ular, sin
e S is not 
ontainedin an a�ne hyperplane of Rd, one must have λi, µi 6= 0. Hen
e, sin
e d ≥ 2, this implies that there existsa nonzero linear form θ on R
d su
h that θ(x− q(u)) = 0 almost everywhere on S, whi
h is 
learly not truesin
e the set H = {x ∈ R

d | θ(x− q(u)) = 0} is pre
isely an a�ne hyperplane of Rd. It follows that
‖u‖2 <

d∑

i=1

∫

Rd

(xi − qi(u))
2

‖x− q(u)‖2 f(x) dx =

∫

Rd

f(x) dx = 1.Lemma 1 then proves the 
onverse part of the result.Proof of Proposition 2. Let (un) be a sequen
e 
ontained in Bd su
h that ‖un‖ → 1. Assume thatthe sequen
e (‖q(un)‖) does not tend to in�nity. Up to extra
ting a subsequen
e, one 
an assume that
(‖q(un)‖) is bounded. Again, up to extra
tion, one 
an assume that (un) 
onverges to some u∞ su
h that
‖u∞‖ = 1 and that (q(un)) 
onverges to some q∞ ∈ R

d. For every q ∈ R
d, the de�nition of q(un) impliesthat ψ(un, q(un)) ≤ ψ(un, q). Letting n tend to in�nity and using the 
ontinuity of φ entails

q∞ = argmin
q∈Rd

ψ(u∞, q).This 
ontradi
ts Proposition 1, and the proof of the �rst statement is 
omplete: ‖q(un)‖ → ∞ as n→ ∞.To show the se
ond part of Proposition 2, remark that from equation (2),
un + E

(
X − q(un)

‖X − q(un)‖

)
= 0for every integer n. Hen
e, for n large enough, the following equality holds:

un + E

(∥∥∥∥
X

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1 [

X

‖q(un)‖
− q(un)

‖q(un)‖

])
= 0. (5)8



Sin
e the sequen
e (q(un)/‖q(un)‖) is bounded it is enough to show that its only a

umulation point is
u. Let then u∗ be an a

umulation point of this sequen
e. By letting n → ∞ in (5) and applying thedominated 
onvergen
e theorem, we get u− u∗ = 0, whi
h 
ompletes the proof.Proof of Proposition 3. Equation (2) implies that, for every linear isometry h of Rd and every u ∈ Bd,

h(u) + E

(
h(X)− h ◦ q(u)
‖X − q(u)‖

)
= 0.Sin
e h is a linear isometry, the random ve
tors X and h(X) have the same distribution and the equality

‖X − q(u)‖ = ‖h(X)− h ◦ q(u)‖ holds almost surely. It follows that
h(u) + E

(
X − h ◦ q(u)

‖X − h ◦ q(u)‖

)
= 0.Applying together Lemma 1 and equation (2) 
ompletes the proof of the �rst statement. To prove these
ond part of Proposition 3, let us 
onsider the following 
oordinate representation:

E

(
X

‖X‖

)
=

(∫

Rd

x1
‖x‖g(‖x‖) dx, . . . ,

∫

Rd

xd
‖x‖g(‖x‖) dx

)
.For every j ∈ {1, . . . , d}, the fun
tion

xj 7→
xj
‖x‖g(‖x‖)is an odd integrable fun
tion, so that E (X/‖X‖) = 0 and the 
ase u = 0 of the se
ond statement isobtained via equation (2). If u 6= 0, up to using the �rst part of the result with a suitable linear isometry,we shall assume without loss of generality that u = (u1, 0, . . . , 0) for some 
onstant u1 ∈ (0, 1). It is thenenough to prove that there exists some 
onstant q1(u) > 0 su
h that q(u) = (q1(u), 0, . . . , 0). To thisend, let us remark that, on the one hand, if v1 ∈ R and v = v1w ∈ R

d where w = (1, 0, . . . , 0) then
∀ j ∈ {2, . . . , d},

∫

Rd

xj
‖x− v1w‖

g(‖x‖)dx = 0, (6)sin
e, for every j ∈ {2, . . . , d}, the fun
tion
xj 7→

xj
‖x− v1w‖

g(‖x‖)is an odd integrable fun
tion, On the other hand, the dominated 
onvergen
e theorem entails that thefun
tion
v1 7→

∫

Rd

x1 − v1
‖x− v1w‖

g(‖x‖)dxis 
ontinuous, 
onverges to 1 at −∞, is equal to 0 at 0 and 
onverges to −1 at +∞. Thus, the intermediatevalue theorem yields that there exists some 
onstant q1(u) > 0 su
h that
u1 +

∫

Rd

x1 − q1(u)

‖x− q1(u)w‖
g(‖x‖)dx = 0. (7)Consequently, 
olle
ting (6) and (7) yields

u+ E

(
X − q1(u)w

‖X − q1(u)w‖

)
= 0and it only remains to apply equation (2) to �nish the proof.9



Lemma 2 is the �rst step to prove Theorem 1.Lemma 2. Let (un) ⊂ Bd be a sequen
e su
h that un → u ∈ Sd−1. If E‖X‖ <∞ then, for all v ∈ R
d,

‖q(un)‖
〈
un − q(un)

‖q(un)‖
, v

〉
→ −E〈X − 〈X, u〉u, v〉 as n→ ∞.Proof of Lemma 2. Let v ∈ R

d and Wn(·, v) : Rd → R be the fun
tion de�ned by
Wn(x, v) =

[∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(un)‖
− q(un)

‖q(un)‖
, v

〉
.For n large enough, equation (2) entails

〈
un − q(un)

‖q(un)‖
, v

〉
+ E (Wn(X, v)) +

1

‖q(un)‖
E〈X, v〉 = 0.It is therefore enough to show that

‖q(un)‖E (Wn(X, v)) → −〈u, v〉E〈X, u〉 as n→ ∞. (8)Sin
e, for every x ∈ R
d,

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
2

= 1− 2

‖q(un)‖

〈
x,

q(un)

‖q(un)‖

〉
+

‖x‖2
‖q(un)‖2

, (9)it follows from a Taylor expansion and Proposition 2 that
‖q(un)‖Wn(X, v) → −〈u, v〉〈X, u〉 almost surely as n→ ∞. (10)Besides,

∣∣∣∣∣

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1

− 1

∣∣∣∣∣

=

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1 [

1 +

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
]−1 ∣∣∣∣

2

‖q(un)‖

〈
x,

q(un)

‖q(un)‖

〉
− ‖x‖2

‖q(un)‖2
∣∣∣∣ ,and the Cau
hy-S
hwarz inequality yields

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1〈

x

‖q(un)‖
− q(un)

‖q(un)‖
, v

〉
≤ ‖v‖.Thus, using the triangular inequality and the Cau
hy-S
hwarz inequality, it follows that

|Wn(x, v)| ≤
[
1 +

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
]−1 ‖x‖

‖q(un)‖

[
2 +

‖x‖
‖q(un)‖

]
‖v‖.Consequently, one has

‖q(un)‖ |Wn(x, v)| 1l{‖x‖≤‖q(un)‖} ≤ 3‖v‖‖x‖1l{‖x‖≤‖q(un)‖}.Furthermore, the reverse triangle inequality entails, for x ∈ R
d su
h that ‖x‖ > ‖q(un)‖

[
1 +

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
]−1

≤ ‖q(un)‖
‖x‖ ,10



and therefore,
‖q(un)‖ |Wn(x, v)| 1l{‖x‖>‖q(un)‖} ≤ 3‖v‖‖x‖1l{‖x‖>‖q(un)‖}.Finally,

‖q(un)‖ |Wn(X, v)| ≤ 3‖v‖‖X‖so that the integrand in (8) is bounded from above by an integrable random variable. One 
an nowre
all (10) and apply the dominated 
onvergen
e theorem to obtain (8). The proof is 
omplete.Proof of Theorem 1. Let (u, w1, . . . , wd−1) be an orthonormal basis of Rd and 
onsider the followingexpansion :
q(un)

‖q(un)‖
= αnu+

d−1∑

k=1

βk,nwkwhere αn, β1,n, . . . , βd−1,n are real numbers. It straightforwardly follows that
q(un)

‖q(un)‖
− u− 1

‖q(un)‖
{E(X)− 〈E(X), u〉u} = (αn − 1) +

d−1∑

k=1

‖q(un)‖βk,n − E〈X,wk〉
‖q(un)‖

wk. (11)Lemma 2 implies that
‖q(un)‖

〈
un − q(un)

‖q(un)‖
, wk

〉
= −‖q(un)‖βk,n → −E〈X,wk〉 as n→ ∞ (12)for all k ∈ {1, . . . , d− 1}. Besides, let us note that q(un)/‖q(un)‖ ∈ Sd−1 entails

α2
n +

d−1∑

k=1

β2
k,n = 1.Proposition 2 shows that αn → 1 and thus (12) yields:

‖q(un)‖(1− αn) =
1

2
‖q(un)‖(1− α2

n)(1 + o(1)) =
1

2
‖q(un)‖

d−1∑

k=1

β2
k,n(1 + o(1)) → 0 as n→ ∞. (13)Colle
ting (11), (12) and (13), we obtain

q(un)

‖q(un)‖
− u− 1

‖q(un)‖
{E(X)− 〈E(X), u〉u} = o

(
1

‖q(un)‖

)whi
h 
ompletes the proof.Lemma 3 below is a te
hni
al tool ne
essary to show Theorem 2.Lemma 3. Let (un) ⊂ Bd be a sequen
e su
h that un → u ∈ Sd−1. If E‖X‖2 <∞ then
‖q(un)‖2

〈
un − q(un)

‖q(un)‖
,
q(un)

‖q(un)‖

〉
→ −1

2
E〈X − 〈X, u〉u, X〉 as n→ ∞.Proof of Lemma 3. Let Zn : Rd → R be the fun
tion de�ned by

Zn(x) = 1 + ‖x− q(un)‖−1

〈
x− q(un),

q(un)

‖q(un)‖

〉
.11



For n large enough, equation (2) yields
〈
un − q(un)

‖q(un)‖
,
q(un)

‖q(un)‖

〉
+ E (Zn(X)) = 0and it thus remains to prove that

‖q(un)‖2E (Zn(X)) → 1

2
E〈X − 〈X, u〉u, X〉 as n→ ∞. (14)To this end, rewrite Zn as

Zn(x) = 1−
∥∥∥∥

x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1 [

1− 1

‖q(un)‖

〈
x,

q(un)

‖q(un)‖

〉]
.Re
all from (9) that for every x 6= q(un),

∥∥∥∥
x

‖q(un)‖
− q(un)

‖q(un)‖

∥∥∥∥
−1

=

[
1− 2

‖q(un)‖

〈
x,

q(un)

‖q(un)‖

〉
+

‖x‖2
‖q(un)‖2

]−1/2

.It follows from this equality, Proposition 2 and a Taylor expansion that
Zn(x) =

1

2‖q(un)‖2
〈
x−

〈
x,

q(un)

‖q(un)‖

〉
q(un)

‖q(un)‖
, x

〉
(1 + o(1))for all x ∈ R

d. Using Proposition 2 again, we then get
‖q(un)‖2Zn(X) → 〈X − 〈X, u〉u, X〉 almost surely as n→ ∞. (15)To 
on
lude the proof, let ϕ : Rd × R+ × Sd−1 → R be the nonnegative fun
tion de�ned by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.Note that ‖q(un)‖2Zn(x) = ϕ(x, ‖q(un)‖, q(un)/‖q(un)‖). Besides, the Cau
hy-S
hwarz inequality yields

ϕ(x, r, v)1l{‖x‖≥r} ≤ 2r21l{‖x‖≥r} ≤ 2‖x‖21l{‖x‖≥r}. (16)Furthermore, ϕ 
an be rewritten as
ϕ(x, r, v) = r2

[ 〈x− 〈x, v〉v, x〉
‖x− rv‖ [‖x− rv‖ − 〈x− rv, v〉]

]
.Let us now remark that, if ‖x‖ < r, then, by the Cau
hy-S
hwarz inequality,

〈x− rv, v〉 = 〈x, v〉 − r < 0whi
h makes it 
lear that
ϕ(x, r, v)1l{‖x‖<r} ≤ r2

〈x− 〈x, v〉v, x〉
‖x− rv‖2

1l{‖x‖<r} =: ψ(x, r, v)1l{‖x‖<r}. (17)Sin
e ‖x− rv‖2 = ‖x‖2 − 2r〈x, v〉 + r2, the fun
tion ψ(x, ·, v) is derivable on (‖x‖, +∞) and some easy
omputations yield
∂ψ

∂r
(x, r, v) = 2r

[
‖x‖2 − r〈x, v〉

] 〈x− 〈x, v〉v, x〉2

‖x− rv‖4
.12



If 〈x, v〉 ≤ 0 then ψ(x, ·, v) is in
reasing on (‖x‖, +∞) and thus
∀ r > ‖x‖, ψ(x, r, v) ≤ lim

r→+∞
ψ(x, r, v) = 〈x− 〈x, v〉v, x〉 ≤ ‖x‖2. (18)Otherwise, if 〈x, v〉 > 0 then ψ(x, ·, v) rea
hes its global maximum over [‖x‖, +∞) at ‖x‖2/〈x, v〉 andtherefore,

∀ r > ‖x‖, ψ(x, r, v) ≤ ψ

(
x,

‖x‖2
〈x, v〉 , v

)
= ‖x‖2. (19)Colle
ting (17), (18) and (19) yields

ϕ(x, r, v)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (20)Re
all now (16) to get ϕ(x, r, v) ≤ 2‖x‖2 for every r > 0 and every v ∈ Sd−1. Hen
e,
‖q(un)‖2Zn(X) = ϕ(X, ‖q(un)‖, q(un)/‖q(un)‖) ≤ 2‖X‖2where the right-hand side is an integrable random variable. Use then (15) and the dominated 
onvergen
etheorem to 
omplete the proof.Proof of Theorem 2. As in the proof of Theorem 1, we start by introdu
ing an orthonormal basis

(u, w1, . . . , wd−1) of Rd to write
un = ‖un‖u and q(un)

‖q(un)‖
= αnu+

d−1∑

k=1

βk,nwkwhere αn, β1,n, . . . , βd−1,n are real numbers. Lemma 2 implies, for all k ∈ {1, . . . , d− 1} ,
‖q(un)‖

〈
un − q(un)

‖q(un)‖
, wk

〉
→ −E〈X, wk〉 as n→ ∞leading to

‖q(un)‖2β2
k,n → [E〈X, wk〉]2 as n→ ∞ (21)for all k ∈ {1, . . . , d− 1}. Besides, re
all that q(un)/‖q(un)‖ ∈ Sd−1 entails
α2
n +

d−1∑

k=1

β2
k,n = 1.Hen
e, Lemma 3 yields

‖q(un)‖2 [αn‖un‖ − 1] → −1

2
E〈X − 〈X, u〉u, X〉 as n→ ∞. (22)Sin
e (u, w1, . . . , wd−1) is an orthonormal basis of Rd, one has the identity

〈X − 〈X, u〉u, X〉 =
d−1∑

k=1

〈X, wk〉2. (23)Colle
ting (21), (22) and (23) leads to
‖q(un)‖2

[
1− αn‖un‖ −

1

2

d−1∑

k=1

β2
k,n

]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as n→ ∞.13



Therefore,
‖q(un)‖2

[
1− αn‖un‖ −

1

2

(
1− α2

n

)]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as n→ ∞, (24)and easy 
al
ulations show that
1− αn‖un‖ −

1

2

(
1− α2

n

)
=

1

2

[
(1 − ‖un‖)(1 + ‖un‖) + (‖un‖ − αn)

2
]
. (25)Finally, in view of Lemma 2,

‖q(un)‖
〈
un − q(un)

‖q(un)‖
, u

〉
→ 0 as n→ ∞whi
h is equivalent to

‖q(un)‖2 (‖un‖ − αn)
2 → 0 as n→ ∞. (26)Re
alling that ‖un‖ → 1 and 
olle
ting (24), (25) and (26) yield

‖q(un)‖2(1− ‖un‖) →
1

2

d−1∑

k=1

Var〈X, wk〉 as n→ ∞.Remarking that, for every orthonormal basis (e1, . . . , ed) of Rd,
d∑

k=1

Var〈X, ek〉 =
d∑

k=1

e′kΣek = trΣ
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Figure 1: Comparison between a numeri
al method and the use of the equivalent (3) for the 
omputation ofextreme geometri
 quantiles. Top: uniform distribution, bottom: Gaussian distribution. Left: numeri
alpro
edure, right: equivalent (3). Full line: iso-quantile 
urve of level α; blue: α = 0.9, green: α = 0.99,red: α = 0.995. Density levels are represented with shades of grey.
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Figure 2: Comparison between the iso-quantile and the iso-density 
urves. Iso-quantile 
urves are 
om-puted using either a numeri
al pro
edure (left) or the equivalent (3) (right). Full line: iso-quantile 
urveof level α, dashed line: iso-density 
urve of level α; blue: α = 0.9, green: α = 0.99, red: α = 0.995. Otherdensity levels are represented with shades of grey.
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Figure 3: Estimation of the iso-quantile 
urves. Blue line: true iso-quantile 
urve of level αn = 0.995, redline: estimated iso-quantile 
urve of level αn = 0.995. Top left: 10% best result, top right: median result,bottom: 10% worst result.
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