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Intriguing properties of extreme geometric quantiles
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Abstract. A popular way to study the tail of a distribution function is to consider its high or extreme
quantiles. While this is a standard procedure for univariate distributions, it is harder for multivariate
ones, primarily because there is no universally accepted definition of what a multivariate quantile should
be. In this paper, we focus on extreme geometric quantiles. Their asymptotics are established, both in
direction and magnitude, under suitable integrability conditions, when the norm of the associated vector
tends to one. It appears that the behavior of extreme geometric quantiles is totally disconnected from the
shape of the associated probability density function. As a consequence, geometric quantiles should not be
used as a graphical tool for analyzing multidimensional datasets. We illustrate this phenomenon on some

numerical examples.
AMS Subject Classifications: 62H05, 62G20, 62G32.
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1 Introduction

Up to now, several definitions of multivariate quantiles have been introduced in the statistical literature.
We refer to Serfling (2002) for a review of various possibilities for this notion. Here, we focus on the notion
of “spatial” or “geometric” quantiles, introduced by Chaudhuri (1996), which generalizes the characteriza-
tion of a univariate quantile shown in Koenker and Bassett (1978). For a given vector u belonging to the
unit open ball B? of R?, where d > 2, the geometric quantile related to u is a solution of the optimization
problem (P) defined by

arg min E(¢(u, X — q) — ¢(u, X)), 1)

geR4

with ¢ a loss function defined by

¢ RTXRT = Ry, (u,t) = [tl| + {u, 1),



where (-, -) is the usual scalar product on R? and ||-|| is the associated Euclidean norm. Any solution g(u) of
the problem (P) is called a u~th quantile. Note that ¢(u) € R? possesses both a direction and magnitude.
It can be seen that geometric quantiles are in fact special cases of M—quantiles introduced by Breckling and
Chambers (1988) which were further analyzed by Koltchinskii (1997). Besides, such quantiles have various
strong properties. First, the quantile related to a vector u € B¢ is unique whenever the distribution of X
is not concentrated on a single straight line in R? (see Chaudhuri, 1996, or Theorem 2.17 in Kemperman,
1987). Second, although they are not fully affine equivariant, they are invariant under any orthogonal
transformation (Chaudhuri, 1996). Third, geometric quantiles characterize the associated distribution.
Namely, if two random variables X and Y yield the same quantile function ¢, then X and Y have the
same distribution (Koltchinskii, 1997). Finally, for v = 0, the well-known geometric median is obtained,
which is the simplest example of a “central” quantile (see Small, 1990). We point out that one may

compute an estimation of the geometric median in an efficient way, see Cardot et al. (2013).

These properties make geometric quantiles reasonable candidates when trying to define multivariate quan-
tiles, which is why their estimation was studied in several papers. We refer for instance to Chakraborty
(2001), for the introduction of a transformation-retransformation procedure to obtain affine equivariant
estimates of multivariate quantiles, to Chakraborty (2003) for a generalization of this notion to a mul-
tiresponse linear model and to Dhar et al. (2013) for the definition of a multivariate quantile-quantile
plot using geometric quantiles. Conditional geometric quantiles can also be defined by substituting a
conditional expectation to the expectation in (1). We refer to Cadre and Gannoun (2000) for the esti-
mation of the conditional geometric median and to Cheng and de Gooijer (2007) for the estimation of
an arbitrary conditional geometric quantile. The estimation of a conditional median when there is an

infinite-dimensional covariate is considered in Chaouch and Laib (2013).

Our focus in this paper is rather on extreme geometric quantiles, obtained when ||u|| — 1. The theory of
univariate extreme quantiles is well established, see for instance the monograph by de Haan and Ferreira
(2006). On the contrary, the few works on extreme multivariate quantiles rely on the study of extreme
level sets of the probability density function of X when it is absolutely continuous with respect to the
Lebesgue measure. We refer for instance to Cai et al. (2011) for an application to the estimation of
extreme risk regions for financial data or to Einmahl et al. (2013) who focus on the case of bivariate
distributions with an application to insurance data. In Daouia et al. (2013), the estimation of conditional
extreme quantiles is addressed, the case of a functional covariate being considered in Gardes and Girard

(2012).

In this study, we provide an equivalent of the direction and magnitude of the extreme geometric quantile
q(u), ||u]| = 1 under suitable integrability conditions. As a corollary of our results, it appears that extreme
geometric quantiles and extreme level sets (of the probability density function) are two fundamentally

different notions: the respective shapes of the extreme quantile contour g(u), i.e. when |jul| is constant



and close to 1, and of the extreme level sets are not at all similar. In the case of elliptically contoured
distributions (Cambanis et al. (1981)), these shapes are even orthogonal, in some sense. Moreover, we
show that the magnitude of an extreme geometric quantile does not take into account the tail heaviness
of the probability density function. As a conclusion, the behavior of high geometric quantiles is totally
disconnected from the shape of the associated probability density function. Consequently, geometric
quantiles should not be used as a graphical tool for analyzing multidimensional datasets, particularly

when trying to detect outliers of a data cloud (Chaouch and Goga, 2010).

The outline of the paper is as follows. The main results are stated in Section 2. Some examples and
illustrations on the asymptotic behavior of extreme geometric quantiles are presented in Section 3. Proofs

are deferred to Section 4.

2 Main results

From now on, we assume that X has a probability density function f on R?, d > 2. In this case, the
optimization problem (P) is equivalent to
arg min v(u, g)
geR?

where

Y :RYX R S R, (u,q) — » [p(u, x — q) — d(u, 2)] f(x)dz.

From Chaudhuri (1996), since the distribution of X is not concentrated on a straight line in R? the

solution g(u) of (P) is unique for every u € B%:

Lemma 1. For every u belonging to the unit open ball B of R¢, the optimization problem

arg min ¢ (u, q),
geR?

denoted by (P), has a unique solution q(u) in RY.

The vector g(u) is the geometric quantile of X associated with w. Introducing the convention ¢/||¢|| = 0
if t = 0 and remarking that p(u,-) is a strictly convex function, Chaudhuri (1996) proved the following

characterization of a geometric quantile: for every u € R?, g(u) is the solution of problem (P) if and only

if
X —q(u) \
“+EQw>nwm>‘Q ®

This property makes it possible to prove that the sufficient condition v € B? for the existence of q(u)

established in Lemma 1 is also necessary:

Proposition 1. The optimization problem (P) has a solution if and only if u € BY.



In particular, this entails that the function G : R? — B? defined by
X—q
Vg €R?Y G(q) =E (7>
X — 4l
is a continuous bijection. Inverting the function G, we obtain that the geometric quantile function u — q(u)
is continuous on B?. Its behavior on the boundary of the unit open ball is somewhat specified in the next

result.

Proposition 2. For every sequence (u,) C B? such that ||u,|| — 1, one has ||q(u,)| — oo as n — oc.

If moreover (u,) converges to some vector u belonging to the unit sphere S%=% of RY, then

M%u as n — oQ.

llaCun)ll

Proposition 2 shows two properties of geometric quantiles:

(i) The norm of the geometric quantile g(u) associated with u diverges to infinity as ||u| — 1. This
is a rather disturbing property of geometric quantiles, since it holds even if the density f of X is

compactly supported.

(ii) If (u,) is a sequence of vectors contained in B? converging to some unit vector u, then the geometric

quantile g(uy,) is asymptotically collinear with u,, (and u).

Our first main result examines the behavior of geometric quantiles when the random vector X has an

isotropic distribution. In this case, Proposition 2 can be considerably strengthened:

Proposition 3. If X has an isotropic distribution, i.e. there exists a measurable function g : Ry — R,

such that for all x € R, f(x) = g(||z||), then:

(i) The map u+— q(u) commutes with every linear isometry of R%. Especially, the norm of a geometric
quantile q(u) of an isotropic distribution only depends on the norm of w.
(ii) For all u € B?, the geometric quantile q(u) and u are collinear:

q(w) _ u_
gl full

if u#0 and q(0) = 0 otherwise.

Coming back to the general case, it is possible to specify the convergences obtained in Proposition 2 under
integrability assumptions. When X has a finite expectation, Theorem 1 provides a first-order expansion

of the direction of an extreme geometric quantile.

Theorem 1. Assume that (u,) C B? is a sequence such that u, — u € S ' and (u,) C Ru. If
E||X| < oo then
q(un) — {lg(un)ju + E(X — (X, u)u)} =0 as n — .



It appears that the difference between the direction of an extreme geometric quantile and its asymptotic

direction u
aw) 1 !
llq(un) |l llq(un)l llq(un)ll

essentially depends on the behavior of X in the orthogonal complement of Ru. In particular, since the

E(X—(X,u)u)—i—o( ) as n — 0o,

first-order term on the right-hand side of this equality is the orthogonal projection of E(X) onto the
orthogonal complement of Ru, its magnitude is minimum when u and E(X) are collinear and maximum

when they are orthogonal.

Theorem 2 provides an equivalent of the norm of an extreme geometric quantile when X has a finite

covariance matrix.

Theorem 2. Assume that (u,) C B? is a sequence such that u, — u € S ! and (u,) C Ru. If

E| X||* < oo then, letting X be the covariance matriz of X, it holds that
2 1 l
lg(un)|I* (1 = |lun]l) — 3 (tr¥ —u'Su) as n— .

As a consequence of Theorem 2, we can remark that if X has a finite covariance matrix then the magnitude
of an extreme geometric quantile g(u,,) is essentially a function of the norm of w,, and of the behavior of

X in the orthogonal complement of Ru. Besides, Theorem 2 entails

la@Guw)ll _ [T,
g ()] _\/;<1+ (1)

when (@), (Brn) C (0,1) are two arbitrary sequences tending to 1. Therefore, the way the density f

behaves far from the origin is not captured by extreme geometric quantiles when X is square integrable.
Moreover, in this case, given an arbitrary extreme geometric quantile, one can deduce the asymptotic
behavior of every other extreme geometric quantile sharing its direction, independently of the probability
density function f. This is fundamentally different from the univariate case when deducing the value of an
extreme quantile from another one requires the knowledge of the extreme-value index of the distribution,

see de Haan and Ferreira (2006), Chapter 4.

Finally, Theorem 2 provides some information on the shape of an extreme quantile contour. It is read-
ily seen that the global maximum of the function h;(u) := tr ¥ — «/Yu on S?! is reached at the unit
eigenvector upi, of ¥ associated with its smallest eigenvalue Apin > 0. Thus, the norm of an extreme
geometric quantile is asymptotically the largest in the direction where the variance is the smallest. Sim-
ilarly, the global minimum of h; is reached at the unit eigenvector uyax of 3 associated with its largest
eigenvalue A\pax > 0. This is a very counterintuitive property. In particular, if f is the density associated
with an elliptically contoured distribution, the level sets of f coincide with the levels sets of the function
ha(u) := v'Xu. The global maximum of hs is reached at the eigenvector umax while the global minimum
is reached at umi,. In such a case, the extreme geometric quantile contour plot and the density level plots

have opposite behaviors. For instance, the extreme geometric quantile is furthest from the origin in the



direction where the density level is closest to the origin. This phenomenon is directly related to the fact
that the behavior of extreme geometric quantiles in a given direction u only depends on the distribution of
X in the orthogonal complement of Ru, both in direction and magnitude. For more on specific examples

to illustrate this peculiar behavior, we refer to the next section.

3 Examples and illustrations

3.1 About our theoretical results

Our goal in this paragraph is to illustrate our results and especially Theorem 2. To this end, let us note

that this result can be rewritten in the following way: for all u € R? such that ||Ju| = 1,

1Y — 'S\
e E) T L u(1+o(1)) 3)

as a T 1, which is referred to as the equivalent of an extreme geometric quantile. To make matters easier,
we shall focus on the case d = 2. In this case, u € S* can be represented by an angle and we may
write u = ug = (cos8,sind)’, § € [0,27). The iso-quantile curves Cq, = {q(auy), 6 € [0,27)} are then

considered in order to get a grasp of the behavior of extreme quantiles in every direction.

We start by considering two different cases for the distribution of X: the first one is the uniform distribution
on the square [—1, 1] while the second one is the centered bivariate Gaussian distribution with the same
covariance matrix ¥ = diag(1/3,1/3). Note that, in the first case, X is compactly supported. In Figure 1,
the iso-quantile curves are computed by either a numerical minimization of the function v or using the
equivalent (3). It appears that the equivalent of g(cu) is very close to the true g(au) for « > 0.99.
Besides, the iso-quantile curves associated with the uniform and Gaussian distributions are very close:
high geometric quantiles do not bring any information on the associated probability density function. In
particular, as predicted by Proposition 2, the iso-quantile curves associated with the uniform distribution
are not necessarily included in the support of the distribution. The latter remark suggests that in a large

number of cases, the iso-quantile curve Cq, and the iso-density curve of level «, defined as

Co={r € B! f(x) = (1 = )l fl} where |l =sup .

for any bounded density function f, have very different shapes. As seen before, this fact is clearly true
in the case of a compactly supported distribution. The next example provides an illustration of this
property in a case where X is unbounded: we consider the case when X is a centered bivariate Gaussian
random pair having covariance matrix ¥ = diag(o?,035) where 0? = 2 and 03 = 1. In this setting, it is
straightforward to show that the iso-density curve C f,, is an ellipse with radii o;+/—2log(1 — «), i € {1, 2}.
In Figure 2, both the iso-quantile and iso-density curves are represented for a couple of values of . One
may see that the shape of an extremal iso-quantile curve is very different from that of the corresponding

iso-density curve. The orientations of both shapes are orthogonal, as already mentioned as a consequence



of Theorem 2. Moreover, the volumes bounded by these respective curves turn out to be very different.
Indeed, the volume within the iso-density ellipse is given by —27o102log(1 — «) while the volume within

the iso-quantile curve is

1 2 1 2
5/ ||q(ozue)||2d9 = m/ (O'% Sln29+0'§ C082 9)d9(1 +O(1))
0 - 0
(o +03) 1
4 1-a

(1+ o(1)).

Therefore, as o 1 1, the volume within the iso-quantile curve grows at a polynomial rate, while the volume
within the iso-density ellipse increases at a logarithmic rate. As a conclusion, in view of Figures 1 and 2,
high geometric quantiles do not appear as a convenient tool for analyzing the tail behavior of multivariate

distributions.

3.2 Estimating an extreme geometric quantile

In this paragraph, we show that basing on a small sample, extreme geometric quantiles may be estimated
in an unexpectedly accurate way. To this end, equation (3) is used to suggest the following estimator of

an extreme geometric quantile g(anu), ay T 1:

oS, —wSa\” 1
~ rY, —u'Su
q(apu) = < 5 > Ao U (4)

where f]n is the empirical estimator of the covariance matrix: if (X1,...,X,,) is a sample of independent

copies of the random vector X, then

The estimator g(ayu) is illustrated in the case where X is a centered bivariate Gaussian random pair
with covariance matrix ¥ = diag(c?,03) where 02 = 2 and 053 = 1. The sample size is n = 100 and
an, = 0.995. The estimator is computed on N = 100 replications of the sample. For each replication,
the mean-squared error between the true iso-quantile curve and the estimated one is evaluated, and the
results corresponding to the first, fifth (median) and ninth decile of the error are displayed in Figure 3. It
appears that the estimated curve fits the true iso-quantile curve reasonably well, although the sample size
is moderate. This may be seen as a consequence of both the fact that the true iso-quantile curve is well
approximated by the one computed with the equivalent (3) and that the estimator in is y/n—consistent.

Note that this is very different from the univariate case, when the sample size needed to estimate extreme

quantiles has to be much larger.



4 Proofs

Proof of Proposition 1. Let us assume that « € R? is such that problem (P) has a solution g(u) € R%.

s (s -

Besides, using the Cauchy-Schwarz inequality together with the fact that f is a probability density function

Equation (2) entails

yields

ot = = (e =aer)

Furthermore, equality holds if and only if for all i € {1,..., d}, there exists (\;, i;) € R?\ {0} such that

2 E(Adf;iq?(fu d““’) <Z/d o a @

(2

for almost every z € R?, which leads to

— QZ( )
i +ui=0
IM—M)H '
for every i € {1,..., d} almost everywhere on the support S of f. In particular, since S is not contained

in an affine hyperplane of R%, one must have \;, j; # 0. Hence, since d > 2, this implies that there exists
a nonzero linear form 6 on R such that 8(z — q(u)) = 0 almost everywhere on S, which is clearly not true

since the set H = {x € R?|0(z — q(u)) = 0} is precisely an affine hyperplane of R?. It follows that

Jul <Z/ e ||2f(:v)d:v= [ fa)da =

Lemma 1 then proves the converse part of the result. [ |

Proof of Proposition 2. Let (u,) be a sequence contained in B¢ such that |Ju,| — 1. Assume that
the sequence (||q(uy)||) does not tend to infinity. Up to extracting a subsequence, one can assume that
(llg(un)||) is bounded. Again, up to extraction, one can assume that (u,) converges to some o, such that
|luoo|| = 1 and that (g(u,)) converges to some g, € RY. For every ¢ € RY, the definition of g(u,,) implies
that ¥ (un, q(un)) < ¥(un,q). Letting n tend to infinity and using the continuity of ¢ entails
(oo = argmin ¥ (uwy, q).
qeRd
This contradicts Proposition 1, and the proof of the first statement is complete: ||q(u,)|| = 0o as n — co.
To show the second part of Proposition 2, remark that from equation (2),
X—ﬁ%))zo
[ X = q(un)|

for every integer n. Hence, for n large enough, the following equality holds:

X qun) - X qun) _
u”E(Hllq(un)n fau {nq(un)u ||q<un>||D ' )

un—l—IE(




Since the sequence (g(un)/||q(ur)]]) is bounded it is enough to show that its only accumulation point is
u. Let then u* be an accumulation point of this sequence. By letting n — oo in (5) and applying the

dominated convergence theorem, we get u — u* = 0, which completes the proof. [ |

Proof of Proposition 3. Equation (2) implies that, for every linear isometry h of R? and every u € B9,
h(X) — hoq(u)
hw) + E (— 0.
X = q(u)]|
Since h is a linear isometry, the random vectors X and h(X) have the same distribution and the equality

IX = q(w)]] = |h(X) — hoq(u)| holds almost surely. It follows that

X —hogq(u) \
M”+E<m¥—mme>‘

Applying together Lemma 1 and equation (2) completes the proof of the first statement. To prove the

second part of Proposition 3, let us consider the following coordinate representation:

= (x7) = (L ot ae, o [ patiatpar).

For every j € {1, ..., d}, the function
g(ll=l)
|| ||

is an odd integrable function, so that E(X/||X||) = 0 and the case u = 0 of the second statement is

obtained via equation (2). If u # 0, up to using the first part of the result with a suitable linear isometry,

we shall assume without loss of generality that v = (uy, 0, ..., 0) for some constant u; € (0, 1). It is then
enough to prove that there exists some constant ¢i(u) > 0 such that g(u) = (¢1(u), 0, ..., 0). To this
end, let us remark that, on the one hand, if v; € R and v = v;w € R? where w = (1, 0, ..., 0) then
vVie{2,...,d dx =0, 6
jend) [ (el - ©
since, for every j € {2, ..., d}, the function
Tj = g(ll])

IIw v wll
is an odd integrable function, On the other hand, the dominated convergence theorem entails that the
function
I — U1
vl > / — —q(||x||)dx
[ re(lel)
is continuous, converges to 1 at —oo, is equal to 0 at 0 and converges to —1 at +o0o. Thus, the intermediate
value theorem yields that there exists some constant ¢;(u) > 0 such that
wt [ Il = o, @)
re |7 — qu(u)w

Consequently, collecting (6) and (7) yields

and it only remains to apply equation (2) to finish the proof. [ |



Lemma 2 is the first step to prove Theorem 1.

Lemma 2. Let (u,) C BY be a sequence such that u, — u € S?~ 1. IfE||X|| < oo then, for all v € R?,

—M v — - w)u, v as n 0
o)l (= T ) = X = X, ) a0 o,

Proof of Lemma 2. Let v € RY and W, (-,v) : R — R be the function defined by
< z  qlun) v>
laCun)ll llg(un)l’

—7q(un) v v 71 V) =
<“” Tatanll’ >+E(W"(X’ D gty 0 =0

It is therefore enough to show that

qun

W (x,v) H
Hq un ”q

For n large enough, equation (2) entails

lg(un) |E (Wi (X, v)) = —(u, v)E(X, u) as n — oo. (8)
Since, for every = € R,
_ q(un) ’ 1 2 r q(un) el
H laCun)ll - llaCun)ll] ! llg(un)ll < ’ ||q(un)||>jL lla(un)l?” )

it follows from a Taylor expansion and Proposition 2 that

la(un) [ Wi (X, 0) — —(u, 0)(X, u) almost surely as n — oc. (10)
Besides,

}H laCun)| Tl

H llg(un)| ||un”; {1+ H ||Q(zn)|| ||q n)l H] la( Un)|| <$’ ||ZEZ:§||> - ||q|(|zv|j)”2 ’

and the Cauchy-Schwarz inequality yields

Q(Un)
<||q @l ™ Talam)l > < Il

Thus, using the triangular inequality and the Cauchy-Schwarz inequality, it follows that

'W"(I’””S{”anum o ||H]l||q”zﬂ>|| 2+ gy el

Consequently, one has

lg(ua)ll [Wa (@, 0)| Lizy<iignt < 3Ivllel g e)< gy

Furthermore, the reverse triangle inequality entails, for z € R? such that ||z|| > |lq(un)]|

I e e |

10




and therefore,

g (un) | W (2, 0)[ Lgjia)>fauny < SIVIIZILg 2> qtun) 13-

Finally,
llg(wn) || Wi (X, v)| < 3Jv[|[| X

so that the integrand in (8) is bounded from above by an integrable random variable. One can now

recall (10) and apply the dominated convergence theorem to obtain (8). The proof is complete. ]
Proof of Theorem 1. Let (u, w1, ..., wg_1) be an orthonormal basis of R? and consider the following
expansion :
q(un) =
e = anpu + ﬂk,nwk
o) 2
where o, Bin, ..., Bi—1,n are real numbers. It straightforwardly follows that
a(un) 1 S () 1B — ECX, wi)
e {E(X) — (E(X), w)u} = (an — 1) + P . (11)
llg(un)ll llg(un) |l kz;: llg(un)ll
Lemma 2 implies that
Q(un) _
llg(un)l| { un — TaCaml ) = —lla(un)||Br.n = —E(X,wg) as n— oo (12)
for all k € {1, ..., d — 1}. Besides, let us note that g(u,)/||q(u,)|| € S?! entails
d—1
azl+> B, =1
k=1
Proposition 2 shows that «,, — 1 and thus (12) yields:
1 1 d—1
la(un)ll(1 = n) = Fllg(un)lI(1 ~ ap)(1+o(1) = 2 laCun)] D Biall+0(1)) =0 as n—oo. (13)
k=1
Collecting (11), (12) and (13), we obtain
) o B0~ B0, o ()
—u— - , WUt = —_
llq(uan)| llg(uan) llg(uan)l
which completes the proof. [ |

Lemma 3 below is a technical tool necessary to show Theorem 2.

Lemma 3. Let (u,) C B? be a sequence such that u, — u € S 1. IfE||X|> < oo then

u 2 Uy — q(un) q(un> —l — u)u as n 0
laun)l < ||q<un>||’||q<un>||>% & = (X wju, X)) as = oo

Proof of Lemma 3. Let Z, : R — R be the function defined by

Zn(x) =1+ |l = g(un)]| ™" <”” = q(un), _Z(un) | > .

11



For n large enough, equation (2) yields

<u _ q(un) q(un)
" laCua) I lla(un) |

) +E(Z,(0) =0
and it thus remains to prove that
1
llg(un)|I’E (Z, (X)) — §IE<X — (X, wyu, X) as n — oc. (14)

To this end, rewrite Z,, as

Zn(x)

‘1‘Hn«i»n‘n§3ﬁﬂ1@‘»méun<%|§83nﬂ'
Recall from (9) that for every x # q(uy),

H ||Q(zn)|| - IIZEZ:;II ‘ - [1 - ||Q(zn)|| <I IIZEZ:;II>+ ||q|(|zﬂjllzyl/2'

It follows from this equality, Proposition 2 and a Taylor expansion that

) e\ alw) N
Z"(I)‘2||q<un>||2< <’||q<un>||>||q<un>||’ >(” )

for all z € R%. Using Proposition 2 again, we then get

lg(u)|>Zn(X) = (X — (X, u)u, X) almost surely as n — oco. (15)

To conclude the proof, let ¢ : R? x Ry x S~ — R be the nonnegative function defined by

(& — ro, U>]

| = rof

pla,rv) =1 [1 +
Note that |q(u,)||?Zn(x) = @(z, |g(un)], ¢(un)/||q(un)|]). Besides, the Cauchy-Schwarz inequality yields
o, ) a2y < 2 Wagzry < 2l Uy (16)

Furthermore, ¢ can be rewritten as

(x — (x, v)v, x)

o(z,r,v) = r?
[z —ro|l [llz — rvf| = (z —rv, v)]

Let us now remark that, if ||z|| < r, then, by the Cauchy-Schwarz inequality,
(x —rv, v) =(z,v) —r <0

which makes it clear that

<$ - <Ia ’U>1), I>
(@, 7,0) Lz <y < P2 <t = (2,7, 0) D0 <y (17)

lz —ro)®

Since ||z — rv||* = ||#]|2 — 2r(x, v) 4 r2, the function ¥(z,-,v) is derivable on (||z||, 400) and some easy

computations yield
2

>] (x — (z, v)v, x) .

lz —ro]*

a—w(:t,r, v) =2r [||9c||2 —r{z, v

or

12



If (x, v) <0 then ¥ (z,-,v) is increasing on (||z||, +o0) and thus
Vr > |zl ¢(z,ro) < lirf Y(x,r,v) = (x — (x, v)v, 2) < || (18)
T—+00

Otherwise, if (z, v) > 0 then (x,-,v) reaches its global maximum over [||z||, +o0) at ||z|?/(x, v) and

therefore,
l? 2
< = . 1
vr > ol vl <6 (o 12 o) = (19)
Collecting (17), (18) and (19) yields
o, 7, 0) Mgz <ry < 2] Ugjjz<ry- (20)

Recall now (16) to get o(z,7,v) < 2||z||? for every r > 0 and every v € S~ 1. Hence,

lg(un) 2 Z0n(X) = o(X, llg(ua)ll, a(un)/Na(un)l)) < 211X

where the right-hand side is an integrable random variable. Use then (15) and the dominated convergence

theorem to complete the proof. [ |

Proof of Theorem 2. As in the proof of Theorem 1, we start by introducing an orthonormal basis

(u, wy, ..., wg—1) of R? to write
q(un) -
Up = ||up||lu and M — qapu+ Bren Wi
o)l 2
where ay,, Bin, - -, Bi—1.n are real numbers. Lemma 2 implies, for all k € {1, ..., d—1},
Q(un)
Jatwa) (o~ 80 ) B ) s o
llq(un)ll
leading to
lq(un)|?B7,, = [E(X, wi)]® as n — oo (21)

for all k € {1, ..., d — 1}. Besides, recall that q(u,)/||q(un)| € S¢~! entails
d—1
az+> B, =1
k=1

Hence, Lemma 3 yields

1

la(un)I? [on[funll = 1] = =5EX = (X, u)u, X) as n — oo. (22)
Since (u, wy, ..., wg_1) is an orthonormal basis of RY, one has the identity
d—1
(X — (X, wyu, X) =) (X, wi)?. (23)
k=1
Collecting (21), (22) and (23) leads to
= =
laCun)l? | 1= anllnl = 5 3 R | 5 32 Var(X, wn) as 0 - oo

13



Therefore,

d-1
1 1
2 2
lg(ua)]|? |1 = anllun| — 3 (1 — an)] — 3 ;Var<X, wg) as n — oo,

and easy calculations show that

1~ anllunl| - = (1—a2) =

5 n [(1 - HunH)(l + ”un”) + (Hun” - an)Q] .

N~

Finally, in view of Lemma 2,

) (e = oG2S 4) 0 55 2

which is equivalent to

2
llg(un)|I? (lun]l = @)™ = 0 as n — oc.

Recalling that ||u,|| — 1 and collecting (24), (25) and (26) yield

d—1

1
llg(u) |21 = |Junl]) — 3 ZV&r(X, wg) as n — o0.
k=1
Remarking that, for every orthonormal basis (ey, ..., eq) of R%,
d d
ZV&r(X, er) = Z epYer =try
k=1 k=1

completes the proof of Theorem 2.
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Figure 1: Comparison between a numerical method and the use of the equivalent (3) for the computation of
extreme geometric quantiles. Top: uniform distribution, bottom: Gaussian distribution. Left: numerical
procedure, right: equivalent (3). Full line: iso-quantile curve of level a; blue: o = 0.9, green: a = 0.99,

red: a = 0.995. Density levels are represented with shades of grey.
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Figure 2: Comparison between the iso-quantile and the iso-density curves. Iso-quantile curves are com-
puted using either a numerical procedure (left) or the equivalent (3) (right). Full line: iso-quantile curve
of level «, dashed line: iso-density curve of level «; blue: o = 0.9, green: a = 0.99, red: a = 0.995. Other

density levels are represented with shades of grey.
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Figure 3: Estimation of the iso-quantile curves. Blue line: true iso-quantile curve of level «,, = 0.995, red
line: estimated iso-quantile curve of level o, = 0.995. Top left: 10% best result, top right: median result,

bottom: 10% worst result.
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