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Abstract. Central properties of geometric quantiles have been well-established in the recent statistical

literature. In this study, we try to get a grasp of how extreme geometric quantiles behave. Their asymp-

totics are provided, both in direction and magnitude, under suitable moment conditions, when the norm

of the associated index vector tends to one. Some intriguing properties are highlighted: in particular, it

appears that if a random vector has a finite covariance matrix, then the magnitude of its extreme geomet-

ric quantiles grows at a fixed rate. We take profit of these results by defining a parametric estimator of

extreme geometric quantiles of such a random vector. The consistency and asymptotic normality of the

estimator are established, and contrasted with what can be obtained for univariate quantiles. Our results

are illustrated on both simulated and real data sets. As a conclusion, we deduce from our observations

some warnings which we believe should be known by practitioners who would like to use such a notion of

multivariate quantile to detect outliers or analyze extremes of a random vector.

AMS Subject Classifications: 62H05, 62G20, 62G32.
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1 Introduction

Let X be a random vector in R
d. Up to now, several definitions of multivariate quantiles of X have been

proposed in the statistical literature. We refer to Serfling (2002) for a review of various possibilities for this

notion. Here, we focus on the notion of“spatial”or“geometric”quantiles, introduced by Chaudhuri (1996),

which generalises the characterisation of a univariate quantile shown in Koenker and Bassett (1978). For

a given vector u belonging to the unit open ball Bd of Rd, where d ≥ 2, a geometric quantile with index

vector u is any solution of the optimisation problem defined by

argmin
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈u, q〉, (1)
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where 〈·, ·〉 is the usual scalar product on R
d and ‖ · ‖ is the associated Euclidean norm. Note that

q(u) ∈ R
d possesses both a direction and magnitude. It can be seen that geometric quantiles are in fact

special cases of M–quantiles introduced by Breckling and Chambers (1988) which were further analysed

by Koltchinskii (1997). Besides, such quantiles have various strong properties. First, the quantile with

index vector u ∈ Bd is unique whenever the distribution of X is not concentrated on a single straight line

in R
d (see Chaudhuri, 1996, or Theorem 2.17 in Kemperman, 1987). Second, although they are not fully

affine equivariant, they are equivariant under any orthogonal transformation (Chaudhuri, 1996). Third,

geometric quantiles characterise the associated distribution. Namely, if two random variables X and Y

yield the same quantile function q, then X and Y have the same distribution (Koltchinskii, 1997). Finally,

for u = 0, the well-known L2−geometric median is obtained, which is the simplest example of a “central”

quantile (see Small, 1990). We point out that one may compute an estimation of the geometric median

in an efficient way, see Cardot et al. (2013).

These properties make geometric quantiles reasonable candidates when trying to define multivariate quan-

tiles, which is why their estimation was studied in several papers. We refer for instance to Chaud-

huri (1996), who established a Bahadur expansion for the estimator of geometric quantiles obtained by

solving the sample counterpart of problem (1). Chakraborty (2001) then introduced a transformation-

retransformation procedure to obtain affine equivariant estimates of multivariate quantiles. This notion

was extended to a multiresponse linear model by Chakraborty (2003). Recently, Dhar et al. (2014) defined

a multivariate quantile-quantile plot using geometric quantiles. Conditional geometric quantiles can also

be defined by substituting a conditional expectation to the expectation in (1). We refer to Cadre and

Gannoun (2000) for the estimation of the conditional geometric median and to Cheng and de Gooijer

(2007) for the estimation of an arbitrary conditional geometric quantile. The estimation of a conditional

median when there is an infinite-dimensional covariate is considered in Chaouch and Läıb (2013).

Let us note though that the previous papers focus on central properties of geometric quantiles and of

their sample versions. While some of them label geometric quantiles as “extreme” when ‖u‖ is close to 1

(Chaudhuri, 1996, Cheng and De Gooijer, 2007) and use it in real applications (see e.g. Chaouch and

Goga, 2010 for an application to outlier detection), the specific properties of these extreme geometric

quantiles have not been investigated yet. In this study, we provide the asymptotics of the direction and

magnitude of the extreme geometric quantile q(u) when ‖u‖ → 1, under suitable moment conditions.

There are well-known analogue results for univariate extreme quantiles in the right tail of a distribution,

see e.g. de Haan and Ferreira (2006). A particular corollary of our results is that the magnitude of the

extreme geometric quantiles of a random vector X having a finite covariance matrix grows at a fixed rate.

Moreover, in this case, the magnitude of the extreme geometric quantiles is asymptotically characterised

by the covariance matrix of X. This is an intriguing property, which opens the door to a parametric

estimation of extreme quantiles whose asymptotic properties are studied in this work.
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The outline of the paper is as follows. Asymptotic properties of geometric quantiles are stated in Section 2.

An illustrative application to the estimation of extreme geometric quantiles is given in Section 3. Some

examples and numerical illustrations of our results, including a study of a real data set, are presented

in Section 4. Section 5 offers a couple of concluding remarks, in which some warnings are given to

practitioners who would like to use such a geometric quantiles to detect outliers or analyze extremes of a

random vector. Proofs are deferred to Section 6.

2 Asymptotic behaviour of extreme geometric quantiles

From now on, we assume that the distribution of X is not concentrated on a single straight line in R
d and

non-atomic. Chaudhuri (1996) proved that, in this context, the solution q(u) of (1), namely the geometric

quantile with index vector u, exists and is unique for every u ∈ Bd. Let ψ : Rd × R
d → R be defined as

ψ(u, q) = E(‖X − q‖ − ‖X‖) − 〈u, q〉 and assume further that t/‖t‖ = 0 if t = 0. If u ∈ R
d is such that

there is a solution q(u) ∈ R
d to problem (1), then the gradient of q 7→ ψ(u, q) must be zero at q(u), that is

u+ E

(
X − q(u)

‖X − q(u)‖

)
= 0. (2)

This condition immediately entails that if u ∈ R
d is such that problem (1) has a solution q(u), then

‖u‖ ≤ 1. In fact, we can prove a stronger result:

Proposition 1. The optimisation problem (1) has a solution if and only if u ∈ Bd.

Moreover, remarking that the function ψ(u, ·) is strictly convex, Chaudhuri (1996) proved the following

characterisation of a geometric quantile: for every u ∈ Bd, q(u) is the solution of problem (1) if and only

if it satisfies equation (2). In particular, this entails that the function G : Rd → Bd defined by

∀q ∈ R
d, G(q) = −E

(
X − q

‖X − q‖

)

is a continuous bijection. Proposition 2.6(iii) in Koltchinskii (1997) shows that the inverse of the function

G, i.e. the geometric quantile function u 7→ q(u), is also continuous on Bd.

In most cases however, computing explicitly the function G is a hopeless task, which makes it impossible

to obtain a closed-form expression for the geometric quantile function. It is thus of interest to prove

general results about the geometric quantile q(u), especially regarding its direction and magnitude. Our

first main result focuses on the special case of spherically symmetric distributions.

Proposition 2. If X has a spherically symmetric distribution then:

(i) The map u 7→ q(u) commutes with every linear isometry of Rd. Especially, the norm of a geometric

quantile q(u) only depends on the norm of u.

(ii) For all u ∈ Bd, the geometric quantile q(u) has direction u if u 6= 0 and q(0) = 0 otherwise.
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(iii) The function ‖u‖ 7→ ‖q(u)‖ is a continuous strictly increasing function on [0, 1).

(iv) It holds that ‖q(u)‖ → ∞ as ‖u‖ → 1.

Although Proposition 2(i,iii) cannot be expected to hold true for a random variable which is not spherically

symmetric, one may wonder if (ii,iv), namely that a geometric quantile shares the direction of its index

vector and that the norm of the geometric quantile function tends to infinity on the unit sphere, can be

extended to the general case. The next result, which examines the behaviour of the geometric quantile

function near the boundary of the open ball Bd, provides an answer to this question.

Theorem 1. Let Sd−1 be the unit sphere of Rd.

(i) It holds that ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Moreover, if v → u with u ∈ Sd−1 and v ∈ Bd then q(v)/‖q(v)‖ → u.

Theorem 1 shows two properties of geometric quantiles: first, the norm of the geometric quantile q(v)

with index vector v diverges to infinity as ‖v‖ ↑ 1. In other words, Proposition 2(iv) still holds for

any distribution. This is a rather intriguing property of geometric quantiles, since it holds even if the

distribution of X has a compact support (for instance, when X is uniformly distributed on a square).

A related point is the fact that sample geometric quantiles do not necessarily lie within the convex hull

of the sample, see Breckling et al. (2001) for a counter-example. Second, if v → u ∈ Sd−1, then the

geometric quantile q(v) has asymptotic direction u. Proposition 2(ii) thus remains true asymptotically for

any distribution.

It is possible to specify the convergences obtained in Theorem 1 under moment assumptions. Theorem 2

provides a first-order expansion of both the direction and the magnitude of an extreme geometric quantile

q(αu) in the direction u, where u is a unit vector and α tends to 1.

Theorem 2. Let u ∈ Sd−1.

(i) If E‖X‖ <∞ then q(αu)− {‖q(αu)‖u+ E(X − 〈X,u〉u)} → 0 as α ↑ 1.

(ii) If E‖X‖2 <∞ and Σ denotes the covariance matrix of X then

‖q(αu)‖2(1− α) → 1

2
(trΣ− u′Σu) > 0 as α ↑ 1.

Let us note that the integrability conditions of Theorem 2 exclude any random vector ‖X‖ whose dis-

tribution possesses a right tail which is too heavy. For instance, condition E‖X‖ < ∞ in (i) excludes

for instance the multivariate Student distribution with less than one degree of freedom, while condition

E‖X‖2 <∞ in (ii) excludes the multivariate Student distribution with less than two degrees of freedom.
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Consequence 1. It appears that, if X has a finite covariance matrix Σ, then the magnitude of an

extreme geometric quantile is determined (in the asymptotic sense) by Σ. In other words, since the

asymptotic direction of an extreme geometric quantile in the direction u is exactly u by Theorem 1, it

follows that the extreme geometric quantiles of two probability distributions which admit the same finite

covariance matrix are asymptotically equivalent. This phenomenon is illustrated on simulated data in

Section 4 below. This is surprising from the extreme value perspective: one could expect the behaviour

of extreme geometric quantiles not to be driven by a central parameter such as the covariance matrix, as

happens in the univariate context where the value of an extreme quantile depends on the tail heaviness of

the probability density function of X.

Consequence 2. The map λ 7→ ‖q((1 − λ−1)u)‖ is a regularly varying function with index 1/2 (see

Bingham et al., 1987) and therefore:

‖q(βu)‖
‖q(αu)‖ =

(
1− α

1− β

)1/2

(1 + o(1))

when α → 1 and β → 1. In other words, given an arbitrary extreme geometric quantile, one can deduce

the asymptotic behaviour of every other extreme geometric quantile sharing its direction, independently of

the distribution. Again, this is fundamentally different from the univariate case when deducing the value

of an extreme quantile from another one then requires the knowledge (or an estimate) of the extreme-value

index of the distribution, see de Haan and Ferreira (2006), Chapter 4. A further, perhaps unexpected,

consequence is that our results can actually be used to define a consistent and asymptotically Gaussian

estimator of extreme geometric quantiles by using the standard empirical estimator of the covariance

matrix of X, see Section 3 below.

Consequence 3. Finally, Theorem 2 provides some information on the shape of an extreme quantile

contour. It is readily seen that the global maximum of the function h1(u) := trΣ − u′Σu on Sd−1 is

reached at a unit eigenvector umin of Σ associated with its smallest eigenvalue λmin > 0. Thus, the norm

of an extreme geometric quantile is asymptotically the largest in the direction where the variance is the

smallest. Similarly, the global minimum of h1 is reached at a unit eigenvector umax of Σ associated with

its largest eigenvalue λmax > 0. In particular, if f is the probability density function associated with an

elliptically contoured distribution (Cambanis et al., 1981), the level sets of f coincide with the level sets

of the function h2(u) := u′Σu. The global maximum of h2 is reached at the eigenvector umax while the

global minimum is reached at umin. The extreme geometric quantile is therefore furthest from the origin

in the direction where the density level set is closest to the origin, see Section 4 for an illustration on real

data. In such a case, the extreme geometric quantile contour plot and the density level plots are in some

sense orthogonal (even though they agree when the distribution of X is spherically symmetric). Of course,

one should not expect a direct geometric match between quantile contours and density contours, but this

phenomenon should be kept in mind when designing outlier detection procedures. In our view, this can
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be seen as a consequence of the lack of affine-equivariance of geometric quantiles. To tackle this issue,

one may apply a transformation-retransformation procedure, see Serfling (2010). Such procedures admit

sample analogues, see for instance Chakraborty et al. (1998) and Chakraborty (2001), at the possible loss

of geometric interpretation, see Serfling (2004).

3 An estimator of extreme geometric quantiles

In this paragraph, our focus is to illustrate Consequence 2 of Theorem 2 at the sample level. LetX1, . . . , Xn

be independent random copies of a random vector X having a finite covariance matrix Σ. It follows from

Theorem 2 that any extreme geometric quantile q(αu) of X, with α ↑ 1 and u ∈ Sd−1 can be approximated

by:

qeq(αu) := (1− α)−1/2

[
1

2
(trΣ− u′Σu)

]1/2
u. (3)

This can be used to define an estimator of the extreme geometric quantiles of X: let Xn = n−1
∑n

k=1Xk

be the sample mean and

Σ̂n =
1

n

n∑

k=1

(Xk −Xn)(Xk −Xn)
′

be the empirical estimator of the covariance matrix Σ of X. Let further (αn) be an increasing sequence

of positive real numbers tending to 1. Our estimator q̂n(αnu) of q(αnu) is then

q̂n(αnu) = (1− αn)
−1/2

[
1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2
u.

The consistency of q̂n(αnu) is examined in the next result.

Theorem 3. Let u ∈ Sd−1 and assume that αn ↑ 1. If E‖X‖2 <∞ then

√
1− αn (q̂n(αnu)− q(αnu)) → 0 almost surely as n→ ∞.

This result actually means that the extreme geometric quantile estimator is relatively consistent in the

sense that
q̂n(αnu)− q(αnu)

‖q(αnu)‖
→ 0 almost surely as n→ ∞,

since ‖q(αnu)‖−1 = O(
√
1− αn), see Theorem 2(ii). This normalisation could be expected since the

quantity to be estimated diverges in magnitude. Under the additional assumption that X has a finite

fourth moment, an asymptotic normality result can be established for this estimator:

Theorem 4. Let u ∈ Sd−1 and assume that αn ↑ 1 is such that n(1− αn) → 0. If E‖X‖4 <∞ then

√
n(1− αn) (q̂n(αnu)− q(αnu))

d−→ Z as n→ ∞

where Z is a Gaussian centred random vector.
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Let us highlight that the covariance matrix of the Gaussian limit in Theorem 4 essentially depends on the

covariance matrix M of the Gaussian limit of
√
n(Σ̂n −Σ), see the proof in Section 6. Although M has a

complicated expression (see e.g. Neudecker and Wesselman, 1990), it can be estimated when E‖X‖4 <∞,

which makes it possible to construct asymptotic confidence regions for extreme geometric quantiles.

Extreme geometric quantiles can thus be consistently estimated by q̂n(αnu), whatever the “order” αn,

and an asymptotic normality result is obtained when αn ↑ 1 quickly enough. The proposed estimator

is therefore able to extrapolate arbitrarily far from the original sample. This is very different from the

univariate case, where the empirical quantile q̂n(αn) = inf{t ∈ R | F̂n(t) ≥ αn}, deduced from the empirical

cumulative distribution function F̂n, estimates the true quantile q(αn) consistently only if αn converges

to 1 slowly enough. The extrapolation with faster rates αn is then handled assuming that the underlying

distribution function is heavy-tailed and by using adapted estimators, see e.g. Weissman (1978) and the

monograph by de Haan and Ferreira (2006).

4 Numerical illustrations

4.1 Simulation study

In this section, our main results are illustrated, particularly Theorems 2, 3 and 4 in the bivariate case

d = 2 to make the display easier. In this framework, u ∈ S1 can be represented by an angle: u =

uθ = (cos θ, sin θ), θ ∈ [0, 2π). The iso-quantile curves Cq(α) = {q(αuθ), θ ∈ [0, 2π)} and their estimates

Cq̂n(α) = {q̂n(αuθ), θ ∈ [0, 2π)} can then be considered in order to get a grasp of the behaviour of extreme

quantiles in every direction. The following two distributions are considered for the random vector X:

• the centred Gaussian multivariate distribution N (0, vX , vY , vXY ), with probability density function:

∀x, y ∈ R, f(x, y) =
1

2π
√
detΣ

exp


−1

2


 x

y




′

Σ−1


 x

y




 with Σ =


 vX vXY

vXY vY


 .

• a double exponential distribution E(λ−, µ−, λ+, µ+), with λ−, µ−, λ+, µ+ > 0, whose probability

density function is:

∀x, y ∈ R, f(x, y) =
1

4





λ+µ+e
−λ+|x|−µ+|y| if xy > 0,

λ−µ−e
−λ

−
|x|−µ

−
|y| if xy ≤ 0.

In this case, X is centred and has covariance matrix

Σ =




1

λ2−
+

1

λ2+

1

2

[
1

λ+µ+
− 1

λ−µ−

]

1

2

[
1

λ+µ+
− 1

λ−µ−

]
1

µ2
−

+
1

µ2
+


 .
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Three different sets of parameters were used for each distribution, in order that the related covariance

matrices coincide:

• N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherical covariance matrices;

• N (0, 1/8, 3/4, 0) and E(4, 2
√

2/3, 4, 2
√

2/3) with diagonal covariance matrices;

• N (0, 1/2, 1/2, 1/6) and E(2
√
3, 2

√
3, 2
√

3/5, 2
√

3/5) with full covariance matrices.

In each case, we carry out the following computations:

• for each α ∈ {0.99, 0.995, 0.999}, the true quantile curves Cq(α) obtained by solving problem (1) nu-

merically, as well as their analogues Cqeq(α) using approximation (3) are computed. The normalised

squared approximation error

e(α) = (1− α)

∫ 2π

0

‖qeq(αuθ)− q(αuθ)‖2 dθ

is then recorded.

• for each value of α, we draw N = 1000 replications of an n−sample (X1, . . . , Xn) of independent

copies of X, with n ∈ {100, 200, 500}. The estimated quantile curves Cq̂(j)n (α) corresponding to the

j−th replication and the associated normalised squared error

E(j)
n (α) = (1− α)

∫ 2π

0

∥∥∥q̂(j)n (αuθ)− q(αuθ)
∥∥∥
2

dθ

are computed as well as the mean squared error En(α) = N−1
∑N

j=1E
(j)
n (α).

The true quantile curves, as well as the approximated and the estimated ones are displayed on Figures 1–6

in the case n = 200 and α = 0.995. The true quantile curves look very similar in Figures 1 and 4,

in Figures 2 and 5 and Figures 3 and 6 (in which the words “best”, “median” and “worst” are to be

understood with respect to the L2 error). This is in accordance with Theorem 2: eventually, extreme

geometric quantiles only depend on the covariance matrix of the underlying distribution. Moreover, the

approximated quantiles curves are close to the true ones in all cases, and the estimated quantile curves

are satisfying in all situations with a moderate variability. Similar results were observed for n = 100, 500

and α = 0.99, 0.999. We do not report the graphs here for the sake of brevity; we do however display

the approximation and estimation errors in Table 1. Unsurprisingly, the estimation error En(α) decreases

as the sample size n increases. Both approximation and estimation errors e(α) and En(α) have a stable

behaviour with respect to α.

4.2 Real data illustration

The finite sample behaviour of extreme geometric quantiles is illustrated on a two-dimensional dataset

extracted from the Pima Indians Diabetes Database. This data set, which is available at the web-

page ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes, was already con-

sidered by Cheng and De Gooijer (2007) and Chaouch and Goga (2010), among others. In the latter
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study, geometric iso-quantile curves with a high α are used to detect outliers in the data set. Using ex-

treme quantiles for outlier detection was advocated in e.g. Burridge and Robert Taylor (2006), Huberta

et al. (2012) in the univariate case and He and Einmahl (2014) using depth-based quantile regions in the

multivariate case; see also the monograph by Aggarwal (2013).

After working on the data set so as to eliminate missing values, the data set consists of n = 392 pairs

(Xi, Yi), where Xi is the body mass index (BMI) of the ith individual and Yi is its diastolic blood pressure.

The centered data cloud is represented in Figure 7 with blue crosses, along with the geometric iso-quantile

curve with α = 0.95. While geometric quantiles with a moderate α tend to give a fair idea of the shape

of the data cloud (see e.g. Chaouch and Goga, 2010), the same cannot be said for extreme geometric

quantiles on this example. This is an illustration of the phenomenon described in Consequence 3 in

Section 2: the norm of an extreme geometric quantile is the largest in the direction where the variance

is the smallest. We are thus led to think that here, outlier detection would be dangerous without a

preliminary transformation-retransformation procedure (Chakraborty, 2001).

5 Concluding remarks

In this paper, we established the asymptotics of extreme geometric quantiles. A particular consequence of

our results is that, if the underlying distribution possesses a finite covariance matrix Σ, then an extreme

geometric quantile may be estimated accurately, no matter how extreme it is, with the help of the standard

empirical estimator of Σ. This result is supported by our numerical study. The situation is very different

from the univariate case, in which the asymptotic decay of a survival function can be linked to the

asymptotic behaviour of an extreme quantile.

An additional issue, illustrated on a real data set, is that although central geometric quantile contours

may roughly match the shape of the data cloud, this does not necessarily stay true for extreme iso-quantile

curves. This is why we would advise practitioners to be cautious when using such a notion of multivariate

quantile to detect outliers or analyze the extremes of a random vector. We believe that one can tackle this

problem by applying a transformation-retransformation procedure, see Serfling (2010) at the population

level, and Chakraborty et al. (1998) and Chakraborty (2001) at the sample level. Future work on extreme

geometric quantiles thus includes building and studying their analogues for transformed-retransformed

data.

Finally, let us underline again that this work was carried out under moment conditions such as the existence

of finite first and second-order moments for ‖X‖. It would definitely be interesting to see if our conclusions

carry over, to some extent, to the case when these assumptions are violated.
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6 Proofs

Some preliminary results are collected in Paragraph 6.1, their proofs are postponed to Paragraph 6.3. The

proofs of the main results are provided in Paragraph 6.2.

6.1 Preliminary results

The first lemma provides some technical tools necessary to show Theorem 2(ii).

Lemma 1. Let ϕ : Rd × R+ × Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.

Then, for all v ∈ Sd−1, ϕ(·, ·, v) is nonnegative and

∀x ∈ R
d, ∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 and ∀r > ‖x‖, ϕ(x, r, v) ≤ ‖x‖2.

In particular, ϕ(x, r, v) ≤ 2‖x‖2 for every (x, r, v) ∈ R
d × R+ × Sd−1.

The next lemma is the first step to prove Theorem 2(i).

Lemma 2. Let u ∈ Sd−1. If E‖X‖ <∞ then, for all v ∈ R
d,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , v
〉

→ −E〈X − 〈X, u〉u, v〉 as α ↑ 1.

Lemma 3 below is a result which is similar to Lemma 2.

Lemma 3. Let u ∈ Sd−1. If E‖X‖2 <∞ then

‖q(αu)‖2
〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
→ −1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1.

Lemma 4 is the first step to prove Theorem 4. It is essentially a refinement of Lemma 2.

Lemma 4. Let u ∈ Sd−1. If E‖X‖2 <∞ then, for all v ∈ R
d,

‖q(αu)‖
[
‖q(αu)‖

〈
αu− q(αu)

‖q(αu)‖ , v
〉
+ E〈X − 〈X, u〉u, v〉

]

→ 〈u, v〉Var〈X, u〉 − 1

2
〈u, v〉E‖X − 〈X, u〉u‖2 + 〈u, v〉‖E(X − 〈X, u〉u)‖2 − Cov(〈X, u〉, 〈X, v〉)

as α ↑ 1.

Lemma 5 below is a refinement of Lemma 3. It is the second step to prove Theorem 4.

Lemma 5. Let u ∈ Sd−1. If E‖X‖3 <∞ then

‖q(αu)‖
(
‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+

1

2
E‖X − 〈X, u〉u‖2

)

→ E
(
〈X, u〉

[
〈X, E(X − 〈X, u〉u)〉 − ‖X − 〈X, u〉u‖2

])
as α ↑ 1.
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6.2 Proofs of the main results

Proof of Proposition 1. From Chaudhuri (1996), it is known that if u ∈ Bd then problem (1) has a unique

solution q(u) ∈ R
d. To prove the converse part of this result, use equation (2) to get

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥ = ‖u‖.

Introduce the coordinate representations X = (X1, . . . , Xd) and q(u) = (q1(u), . . . , qd(u)). The Cauchy-

Schwarz inequality yields

‖u‖2 =

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥
2

=
d∑

i=1

[
E

(
Xi − qi(u)

‖X − q(u)‖

)]2
≤

d∑

i=1

E

(
(Xi − qi(u))

2

‖X − q(u)‖2
)

= 1.

Furthermore, equality holds if and only if for all i ∈ {1, . . . , d}, there exists µi ∈ R such that

Xi − qi(u)

‖X − q(u)‖ = µi

almost surely. In particular, if w = (µ1, . . . , µd), this entails X ∈ D = q(u) + Rw almost surely, which

cannot hold since the distribution of X is not concentrated in a single straight line in R
d. It follows that

necessarily ‖u‖2 < 1, which is the result.

Proof of Proposition 2. (i) Note that (2) implies that, for any linear isometry h of Rd and every u ∈ Bd,

h(u) + E

(
h(X)− h ◦ q(u)
‖X − q(u)‖

)
= 0.

Since h is a linear isometry, the random vectors X and h(X) have the same distribution and the equality

‖X − q(u)‖ = ‖h(X)− h ◦ q(u)‖ holds almost surely. It follows that

h(u) + E

(
X − h ◦ q(u)
‖X − h ◦ q(u)‖

)
= 0.

Since h(u) ∈ Bd, it follows that h ◦ q(u) = q ◦ h(u), which completes the proof of the first statement.

(ii) To prove the second part of Proposition 2, start by noting that since X and −X have the same

distribution, it holds that E (X/‖X‖) = 0. The case u = 0 is then obtained via (2). If u 6= 0, up to using

the first part of the result with a suitable linear isometry, we shall assume without loss of generality that

u = (u1, 0, . . . , 0) for some constant u1 ∈ (0, 1). It is then enough to prove that there exists some constant

q1(u) > 0 such that q(u) = (q1(u), 0, . . . , 0). To this end, let us remark that, on the one hand, if v1 ∈ R

and w = (1, 0, . . . , 0) then

∀j ∈ {2, . . . , d}, E
(

Xj

‖X − v1w‖

)
= 0, (4)

since, for every j ∈ {2, . . . , d}, the random vectors X and (X1, . . . , Xj−1,−Xj , Xj+1, . . . , Xd) have the

same distribution. On the other hand, the dominated convergence theorem entails that the function

v1 7→ E

(
X1 − v1

‖X − v1w‖

)

11



is continuous, converges to 1 at −∞, is equal to 0 at 0 and converges to −1 at +∞. Thus, the intermediate

value theorem yields that there exists some constant q1(u) > 0 such that

u1 + E

(
X1 − q1(u)

‖X − q1(u)w‖

)
= 0. (5)

Consequently, collecting (4) and (5) yields

u+ E

(
X − q1(u)w

‖X − q1(u)w‖

)
= 0

and it only remains to apply (2) to finish the proof of the second statement.

(iii) To show the third statement, use the first result to obtain that the function g : ‖u‖ 7→ ‖q(u)‖ is indeed

well-defined; since the geometric quantile function is continuous, so is g. Assume that g is not strictly

increasing: namely, there exist u1, u2 ∈ Bd such that ‖u1‖ < ‖u2‖ and ‖q(u1)‖ ≥ ‖q(u2)‖. Since q(0) = 0,

it is a consequence of the intermediate value theorem that one may find u, v ∈ Bd such that ‖u‖ < ‖v‖
and ‖q(u)‖ = ‖q(v)‖. Let h be an isometry such that h(u/‖u‖) = h(v/‖v‖); then

‖q(h(u))‖ = ‖q(u)‖ = ‖q(v)‖ = ‖q(h(v))‖ and
q(h(u))

‖q(h(u))‖ =
h(u)

‖h(u)‖ =
h(v)

‖h(v)‖ =
q(h(v))

‖q(h(v))‖ .

In other words, q(h(u)) and q(h(v)) have the same direction and magnitude, so that they are necessarily

equal, which entails that h(u) = h(v) because the geometric quantile function is one-to-one. This is a

contradiction because ‖h(u)‖ = ‖u‖ < ‖v‖ = ‖h(v)‖, and the third statement is proven.

(iv) Assume that ‖q(u)‖ does not tend to infinity as ‖u‖ → 1; since g is increasing, it tends to a finite

positive limit r. In other words, ‖q(u)‖ ≤ r for every u ∈ Bd, which is a contradiction since the geometric

quantile function maps Bd onto R
d, and the proof is complete.

Proof of Theorem 1. (i) If the first statement were false, then one could find a sequence (vn) contained in

Bd such that ‖vn‖ → 1 and such that (‖q(vn)‖) does not tend to infinity. Up to extracting a subsequence,

one can assume that (‖q(vn)‖) is bounded. Again, up to extraction, one can assume that (vn) converges

to some v∞ ∈ Sd−1 and that (q(vn)) converges to some q∞ ∈ R
d. Moreover, it is straightforward to show

that for every u1, u2, q1, q2 ∈ R
d

|ψ(u1, q1)− ψ(u2, q2)| ≤ {1 + ‖u2‖} ‖q2 − q1‖+ ‖q1‖‖u2 − u1‖

so that the function ψ is continuous on R
d × R

d. Recall then that the definition of q(vn) implies that for

every q ∈ R
d, ψ(vn, q(vn)) ≤ ψ(vn, q) and let n tend to infinity to obtain

q∞ = argmin
q∈Rd

ψ(v∞, q).

Because v ∈ Sd−1, this contradicts Proposition 1, and the proof of the first statement is complete:

‖q(v)‖ → ∞ as ‖v‖ → 1.
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(ii) Pick a sequence (vn) of elements of Bd converging to u and remark that from (2),

vn + E

(
X − q(vn)

‖X − q(vn)‖

)
= 0

for every integer n. Hence, for n large enough, the following equality holds:

vn + E

(∥∥∥∥
X

‖q(vn)‖
− q(vn)

‖q(vn)‖

∥∥∥∥
−1 [

X

‖q(vn)‖
− q(vn)

‖q(vn)‖

])
= 0. (6)

Since the sequence (q(vn)/‖q(vn)‖) is bounded it is enough to show that its only accumulation point is

u. Let then u∗ be an accumulation point of this sequence. Since ‖q(vn)‖ → ∞, we may let n→ ∞ in (6)

and use the dominated convergence theorem to obtain u− u∗ = 0, which completes the proof.

Proof of Theorem 2. (i) Let (u,w1, . . . , wd−1) be an orthonormal basis of Rd and consider the following

expansion:

q(αu)

‖q(αu)‖ = b(α)u+

d−1∑

k=1

βk(α)wk (7)

where b(α), β1(α), . . . , βd−1(α) are real numbers. It immediately follows that

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖ {E(X)− 〈E(X), u〉u} = (b(α)− 1)u+

d−1∑

k=1

‖q(αu)‖βk(α)− E〈X,wk〉
‖q(αu)‖ wk. (8)

Lemma 2 implies that

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
= −‖q(αu)‖βk(α) → −E〈X,wk〉 as α ↑ 1 (9)

for all k ∈ {1, . . . , d− 1}. Besides, let us note that q(αu)/‖q(αu)‖ ∈ Sd−1 entails

b2(α) +
d−1∑

k=1

β2
k(α) = 1. (10)

Theorem 1 shows that b(α) → 1 as α ↑ 1 and thus (9) yields:

‖q(αu)‖(1− b(α)) =
1

2
‖q(αu)‖(1− b2(α))(1 + o(1)) =

1

2
‖q(αu)‖

d−1∑

k=1

β2
k(α)(1 + o(1)) → 0 as α ↑ 1. (11)

Collecting (8), (9) and (11), we obtain

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖ {E(X)− 〈E(X), u〉u} = o

(
1

‖q(αu)‖

)
as α ↑ 1

which is the first result.

(ii) Recall (7) and use Lemma 2 to obtain

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
→ −E〈X, wk〉 as α ↑ 1,

for all k ∈ {1, . . . , d− 1}, leading to

‖q(αu)‖2β2
k(α) → [E〈X, wk〉]2 as α ↑ 1 (12)
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for all k ∈ {1, . . . , d− 1}. Recall (10) and use Lemma 3 to get

‖q(αu)‖2 [αb(α)− 1] → −1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1. (13)

Since (u, w1, . . . , wd−1) is an orthonormal basis of Rd, one has the identity

‖X − 〈X, u〉u‖2 =

d−1∑

k=1

〈X, wk〉2. (14)

Collecting (12), (13) and (14) leads to

‖q(αu)‖2
[
1− αb(α)− 1

2

d−1∑

k=1

β2
k(α)

]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1.

Therefore,

‖q(αu)‖2
[
1− αb(α)− 1

2

(
1− b2(α)

)]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1, (15)

and easy calculations show that

1− αb(α)− 1

2

(
1− b2(α)

)
=

1

2

[
(1− α)(1 + α) + (α− b(α))2

]
. (16)

Finally, in view of Lemma 2,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , u
〉

→ 0 as α ↑ 1

which is equivalent to

‖q(αu)‖2 (α− b(α))
2 → 0 as α ↑ 1. (17)

Collecting (15), (16) and (17), we obtain

‖q(αu)‖2(1− α) → 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1.

Remarking that, for every orthonormal basis (e1, . . . , ed) of R
d,

d∑

k=1

Var〈X, ek〉 =
d∑

k=1

e′kΣek = trΣ (18)

proves that

‖q(αu)‖2(1− α) → 1

2
(tr Σ− u′Σu) ≥ 0 as α ↑ 1.

Finally, note that if we had trΣ − u′Σu = 0 then by (18) we would have that Var〈X, wk〉 = 0 for all

k ∈ {1, . . . , d − 1}. Thus the projection of X onto the orthogonal complement of Ru would be almost

surely constant and X would be contained in a single straight line in R
d, which is a contradiction. This

completes the proof of Theorem 2.

Proof of Theorem 3. Note that

√
1− αn q̂n(αnu) →

[
1

2
(trΣ− u′Σu)

]1/2
u (19)
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almost surely as n→ ∞. Moreover, by Theorems 1 and 2

√
1− αn q(αnu) =

√
1− αn‖q(αnu)‖

q(αnu)

‖q(αnu)‖
→
[
1

2
(trΣ− u′Σu)

]1/2
u (20)

almost surely as n→ ∞. Combining (19) and (20) completes the proof.

Proof of Theorem 4. Consider the following representation:

√
n(1− αn) (q̂n(αnu)− q(αnu)) = T1,n + T2,n + T3,n

with T1,n =
√
n

([
1

2
{tr Σ̂n − u′Σ̂nu}

]1/2
−
[
1

2
{tr Σ− u′Σu}

]1/2)
q(αnu)

‖q(αnu)‖
,

T2,n =
√
n

([
1

2
{tr Σ− u′Σu}

]1/2
−
√
1− αn‖q(αnu)‖

)
q(αnu)

‖q(αnu)‖

and T3,n = −
√
n(1− αn)‖q̂n(αnu)‖

(
q(αnu)

‖q(αnu)‖
− u

)
.

We start by examining the convergence of T1,n. Observe first that

T1,n =
√
n

1√
2

{tr Σ̂n − u′Σ̂nu} − {tr Σ− u′Σu}
{tr Σ̂n − u′Σ̂nu}1/2 + {tr Σ− u′Σu}1/2

q(αnu)

‖q(αnu)‖

=
√
n
{tr Σ̂n − u′Σ̂nu} − {tr Σ− u′Σu}

2
√
2{tr Σ− u′Σu}1/2

u(1 + oP(1)) as n→ ∞

in view of Theorem 1(i) and from the consistency of Σ̂n. Denote by M the Gaussian centred limit of
√
n(Σ̂n − Σ) (see e.g. Neudecker and Wesselman, 1990). Since the map A 7→ trA − u′Au is linear, it

follows that
√
n
{tr Σ̂n − u′Σ̂nu} − {tr Σ− u′Σu}

2
√
2{tr Σ− u′Σu}1/2

d−→ Y as n→ ∞

where Y is a centred Gaussian random variable. Now, clearly Z := Y u is a Gaussian centred random

vector and we have

T1,n
d−→ Z as n→ ∞. (21)

The sequence T2,n is controlled in the following way: using Lemmas 4 and 5 and following the steps of the

proof of Theorem 2(ii), we obtain

‖q(αnu)‖2(1− αn) =
1

2
(trΣ− u′Σu) + O(‖q(αnu)‖−1) =

1

2
(trΣ− u′Σu) + O(

√
1− αn) as n→ ∞.

As a consequence

‖T2,n‖ = O
(√

n(1− αn)
)
= o(1) as n→ ∞. (22)

We conclude by controlling T3,n. Theorem 2 entails

‖T3,n‖ = OP

(√
n(1− αn)

‖q̂n(αnu)‖
‖q(αnu)‖

)

= OP


√n(1− αn)

[
tr Σ̂n − u′Σ̂nu

tr Σ− u′Σu

]1/2
 = OP

(√
n(1− αn)

)
= oP(1) as n→ ∞ (23)

by the consistency of Σ̂n. Combining (21), (22) and (23) completes the proof.
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6.3 Proofs of the preliminary results

Proof of Lemma 1. The fact that ϕ is nonnegative and the inequality

∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 (24)

are straightforward consequences of the Cauchy-Schwarz inequality. Furthermore, ϕ can be rewritten as

ϕ(x, r, v) = r2
[ ‖x− 〈x, v〉v‖2
‖x− rv‖ [‖x− rv‖ − 〈x− rv, v〉]

]
.

Let us now remark that, if ‖x‖ < r, then, by the Cauchy-Schwarz inequality, 〈x− rv, v〉 = 〈x, v〉 − r < 0

which makes it clear that

ϕ(x, r, v)1l{‖x‖<r} ≤ r2
‖x− 〈x, v〉v‖2

‖x− rv‖2
1l{‖x‖<r} =: ψ(x, r, v)1l{‖x‖<r}. (25)

Since ‖x− rv‖2 = ‖x‖2 − 2r〈x, v〉 + r2, the function ψ(x, ·, v) is differentiable on (‖x‖, +∞) and some

easy computations yield

∂ψ

∂r
(x, r, v) = 2r

[
‖x‖2 − r〈x, v〉

] ‖x− 〈x, v〉v‖2
‖x− rv‖4

.

If 〈x, v〉 ≤ 0 then ψ(x, ·, v) is increasing on (‖x‖, +∞) and thus

∀r > ‖x‖, ψ(x, r, v) ≤ lim
r→+∞

ψ(x, r, v) = ‖x− 〈x, v〉v‖2 ≤ ‖x‖2. (26)

Otherwise, if 〈x, v〉 > 0 then ψ(x, ·, v) reaches its global maximum over [‖x‖, +∞) at ‖x‖2/〈x, v〉 and

therefore,

∀r > ‖x‖, ψ(x, r, v) ≤ ψ

(
x,

‖x‖2
〈x, v〉 , v

)
= ‖x‖2. (27)

Collecting (25), (26) and (27) yields

ϕ(x, r, v)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (28)

Combining (24) and (28) shows that ϕ(x, r, v) ≤ 2‖x‖2 for every r > 0 and every v ∈ Sd−1 and completes

the proof of the result.

Proof of Lemma 2. Let v ∈ R
d and Wα(·, v) : Rd → R be the function defined by

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉
.

For α close enough to 1, (2) entails

〈
αu− q(αu)

‖q(αu)‖ , v
〉
+ E (Wα(X, v)) +

1

‖q(αu)‖E〈X, v〉 = 0. (29)

It is therefore enough to show that

‖q(αu)‖E (Wα(X, v)) → −〈u, v〉E〈X, u〉 as α ↑ 1. (30)
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Since, for every x ∈ R
d,

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
2

= 1− 2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
+

‖x‖2
‖q(αu)‖2 , (31)

it follows from a Taylor expansion and Theorem 1 that

‖q(αu)‖Wα(X, v) → −〈u, v〉〈X, u〉 almost surely as α ↑ 1. (32)

Besides,

∣∣∣∣∣

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

∣∣∣∣∣

=

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1 ∣∣∣∣

2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
− ‖x‖2

‖q(αu)‖2
∣∣∣∣ ,

and the Cauchy-Schwarz inequality yields

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1〈

x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

≤ ‖v‖.

Thus, using the triangular inequality and the Cauchy-Schwarz inequality, it follows that

|Wα(x, v)| ≤ ‖v‖
[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1 ‖x‖

‖q(αu)‖

[
2 +

‖x‖
‖q(αu)‖

]
.

Consequently, one has

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖≤‖q(αu)‖} ≤ 3‖v‖‖x‖1l{‖x‖≤‖q(αu)‖}.

Furthermore, the reverse triangle inequality entails, for x ∈ R
d such that ‖x‖ > ‖q(αu)‖:

[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1

≤ ‖q(αu)‖
‖x‖ ,

and therefore,

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖>‖q(αu)‖} ≤ 3‖v‖‖x‖1l{‖x‖>‖q(αu)‖}.

Finally,

‖q(αu)‖ |Wα(X, v)| ≤ 3‖v‖‖X‖

so that the integrand in (30) is bounded from above by an integrable random variable. One can now

recall (32) and apply the dominated convergence theorem to obtain (30). The proof is complete.

Proof of Lemma 3. Let Zα : Rd → R be the function defined by

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

For α close enough to 1, (2) yields

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+ E (Zα(X)) = 0 (33)
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and it thus remains to prove that

‖q(αu)‖2E (Zα(X)) → 1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1.

To this end, rewrite Zα as

Zα(x) = 1−
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1− 1

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉]
. (34)

It thus follows from equation (31), Theorem 1 and a Taylor expansion that

Zα(x) =
1

2‖q(αu)‖2
〈
x−

〈
x,

q(αu)

‖q(αu)‖

〉
q(αu)

‖q(αu)‖ , x
〉
(1 + o(1))

for all x ∈ R
d. Using Theorem 1 again, we then get

‖q(αu)‖2Zα(X) → ‖X‖2 − 〈X, u〉2 = ‖X − 〈X, u〉u‖2 almost surely as α ↑ 1. (35)

To conclude the proof, let ϕ : Rd × R+ × Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.

Note that ‖q(αu)‖2Zα(x) = ϕ(x, ‖q(αu)‖, q(αu)/‖q(αu)‖). By Lemma 1:

‖q(αu)‖2Zα(X) = ϕ(X, ‖q(αu)‖, q(αu)/‖q(αu)‖) ≤ 2‖X‖2

and the right-hand side is an integrable random variable. Use then (35) and the dominated convergence

theorem to complete the proof.

Proof of Lemma 4. Let v ∈ R
d and recall the notation

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

from the proof of Lemma 2. From (29) there, it is enough to show that

‖q(αu)‖E (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉) → 1

2
〈u, v〉E‖X − 〈X, u〉u‖2 − 〈u, v〉Var〈X, u〉

+ Cov(〈X, u〉, 〈X, v〉)− 〈u, v〉‖E(X − 〈X, u〉u)‖2 (36)

as α ↑ 1. Use now (31) in the proof of Lemma 2, Theorem 2(i) and a Taylor expansion to obtain after

some cumbersome computations that

‖q(αu)‖ (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉)

=
1

2
〈u, v〉‖X − 〈X, u〉u‖2 − 〈u, v〉〈X, u〉 (〈X, u〉 − E〈X, u〉)

+ 〈X, u〉 (〈X, v〉 − E〈X, v〉)− 〈u, v〉〈X, E(X − 〈X, u〉u)〉+
2∑

j=0

‖X‖jεj(α,X, q(αu))
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with probability 1, where for all j ∈ {0, 1, 2}, εj(α, y, z) → 0 as max(1− α, ‖y‖/‖z‖) ↓ 0. In particular

‖q(αu)‖ (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉)

→ 1

2
〈u, v〉‖X − 〈X, u〉u‖2 − 〈u, v〉〈X, u〉 (〈X, u〉 − E〈X, u〉)− 〈u, v〉〈X, E(X − 〈X, u〉u)〉

+ 〈X, u〉 (〈X, v〉 − E〈X, v〉) almost surely as α ↑ 1. (37)

The proof shall be complete provided we can apply the dominated convergence theorem to the left-hand

side of (37). To this end, let δ ∈ (0, 1) be such that

α ∈ (1− δ, 1) and
‖X‖

‖q(αu)‖ < δ ⇒ max
0≤j≤2

|εj(α,X, q(αu))| ≤ 1.

Equality (37) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉

∣∣∣1l{‖X‖<δ‖q(αu)‖} ≤ P1(‖X‖)1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 2. Besides, it is a consequence of the definition of Wα(X, v) and

the Cauchy-Schwarz inequality that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉

∣∣∣1l{‖X‖≥δ‖q(αu)‖} ≤ 2(1 + δ)‖v‖
δ2

‖X‖21l{‖X‖≥δ‖q(αu)‖}.

One can conclude that there exists a real polynomial P2 of degree 2 such that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉

∣∣∣ ≤ P2(‖X‖)

so that the integrand in (36) is bounded by an integrable random variable. Recall (37) and apply the

dominated convergence theorem to complete the proof.

Proof of Lemma 5. The proof is similar to that of Lemma 4. Recall from the proof of Lemma 3 the

notation

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

From (33) there, it is enough to show that

‖q(αu)‖E
(
‖q(αu)‖2Zα(X)− 1

2
E‖X − 〈X, u〉u‖2

)

→ E
(
〈X, u〉

[
‖X − 〈X, u〉u‖2 − 〈X, E(X − 〈X, u〉u)〉

])
(38)

as α ↑ 1. We first use (31) in the proof of Lemma 2, equation (34) in the proof of Lemma 3, Theorem 2(i)

and a Taylor expansion to obtain after some burdensome computations that

q(αu)‖
(
‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

)

= 〈X, u〉
(
‖X − 〈X, u〉u‖2 − 〈X, E(X − 〈X, u〉u)〉

)
+

3∑

j=0

‖X‖jεj(α,X, q(αu)) (39)

19



with probability 1, where for j ∈ {0, 1, 2, 3}, εj(α, y, z) → 0 as max(1− α, ‖y‖/‖z‖) ↓ 0. Especially

‖q(αu)‖
(
‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

)

→ 〈X, u〉
(
‖X − 〈X, u〉u‖2 − 〈X, E(X − 〈X, u〉u)〉

)
(40)

as α ↑ 1. Our aim is now to apply the dominated convergence theorem to the left-hand side of (38). To

this end, pick δ ∈ (0, 1) such that

α ∈ (1− δ, 1) and
‖X‖

‖q(αu)‖ < δ ⇒ max
0≤j≤3

|εj(α,X, q(αu))| ≤ 1.

Equality (39) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣1l{‖X‖<δ‖q(αu)‖} ≤ P1(‖X‖)1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 3. Moreover, the Cauchy-Schwarz inequality yields

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣1l{‖X‖≥δ‖q(αu)‖} ≤ 4 + δ2

2δ3
‖X‖31l{‖X‖≥δ‖q(αu)‖}.

Consequently, there exists a real polynomial P2 of degree 3 such that

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣ ≤ P2(‖X‖).

We conclude that the integrand in (38) is bounded by an integrable random variable. Recall (40) and

apply the dominated convergence theorem to complete the proof.
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Distribution Value of α Error e(α)
Error En(α)

n = 100 n = 200 n = 500

Centred Gaussian N (0, 1/2, 1/2, 0)

0.990 2.55 · 10−5 1.29 · 10−3 6.50 · 10−4 2.93 · 10−4

0.995 2.43 · 10−5 1.28 · 10−3 6.44 · 10−4 2.88 · 10−4

0.999 5.75 · 10−5 1.30 · 10−3 6.70 · 10−4 3.16 · 10−4

Centred Gaussian N (0, 1/2, 1/2, 1/6)

0.990 1.05 · 10−4 1.45 · 10−3 7.32 · 10−4 3.57 · 10−4

0.995 4.34 · 10−5 1.37 · 10−3 6.65 · 10−4 2.89 · 10−4

0.999 6.34 · 10−5 1.38 · 10−3 6.83 · 10−4 3.05 · 10−4

Centred Gaussian N (0, 1/8, 3/4, 0)

0.990 6.05 · 10−4 1.79 · 10−3 1.17 · 10−3 8.23 · 10−4

0.995 1.77 · 10−4 1.34 · 10−3 7.31 · 10−4 3.91 · 10−4

0.999 5.96 · 10−5 1.20 · 10−3 6.02 · 10−4 2.70 · 10−4

Double exponential E(2, 2, 2, 2)
0.990 9.30 · 10−5 2.69 · 10−3 1.47 · 10−3 6.37 · 10−4

0.995 5.46 · 10−5 2.63 · 10−3 1.41 · 10−3 5.93 · 10−4

0.999 6.32 · 10−5 2.63 · 10−3 1.39 · 10−3 5.97 · 10−4

Double exponential E(2
√
3, 2

√
3, 2
√

3/5, 2
√

3/5)

0.990 6.17 · 10−4 4.37 · 10−3 2.71 · 10−3 1.42 · 10−3

0.995 2.24 · 10−4 3.89 · 10−3 2.26 · 10−3 9.96 · 10−4

0.999 2.27 · 10−4 3.77 · 10−3 2.16 · 10−3 9.62 · 10−4

Double exponential E(4, 2
√

2/3, 4, 2
√

2/3)

0.990 1.64 · 10−3 4.13 · 10−3 2.81 · 10−3 2.16 · 10−3

0.995 8.13 · 10−4 3.27 · 10−3 1.98 · 10−3 1.33 · 10−3

0.999 6.62 · 10−5 2.40 · 10−3 1.23 · 10−3 5.62 · 10−4

Table 1: Errors e(α) and En(α) in all cases.
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Figure 1: Spherical Gaussian distribution N (0, 1/2, 1/2, 0) for α = 0.995. Top left: comparison between a numerical method and the use of the

equivalent (3) for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom left and

bottom right: best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 2: Diagonal Gaussian distribution N (0, 1/8, 3/4, 0) for α = 0.995. Top left: comparison between a numerical method and the use of the

equivalent (3) for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom left and

bottom right: best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 3: Full Gaussian distribution N (0, 1/2, 1/2, 1/6) for α = 0.995. Top left: comparison between a numerical method and the use of the equivalent (3)

for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom left and bottom right:

best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 4: Spherical double exponential distribution E(2, 2, 2, 2) for α = 0.995. Top left: comparison between a numerical method and the use of the

equivalent (3) for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom left and

bottom right: best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 5: Diagonal double exponential distribution E(4, 2
√

2/3, 4, 2
√

2/3) for α = 0.995. Top left: comparison between a numerical method and the use

of the equivalent (3) for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom

left and bottom right: best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator

q̂n.
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Figure 6: Full double exponential distribution E(2
√
3, 2

√
3, 2
√

3/5, 2
√

3/5) for α = 0.995. Top left: comparison between a numerical method and the use

of the equivalent (3) for the computation of the iso-quantile curve, full line: numerical method, dashed line: asymptotic equivalent. Top right, bottom

left and bottom right: best, median and worst estimates of the iso-quantile curve for n = 200, full line: numerical method, dashed-dotted line: estimator

q̂n.
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Figure 7: Pima Indians Diabetes data set. Black dashed line: estimate of the iso-quantile curve for

α = 0.95, with the estimator q̂n.
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