E. Allgower and &. K. Georg, Introduction to numerical continuation methods, Classics in Applied Mathematics, Soc. for Industrial and Applied Math, vol.45, issue.18, pp.388-407, 2003.
DOI : 10.1137/1.9780898719154

P. R. Amestoy, I. S. Duff, J. Koster, and &. Excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

M. S. Aronna, F. J. Bonnans, and &. P. Martinon, A Shooting Algorithm for Optimal Control Problems with Singular Arcs, J. Optim. Theory. Appl, vol.16, p.17, 2013.
URL : https://hal.archives-ouvertes.fr/inria-00631332

F. J. Bonnans, P. Martinon, and &. V. Grélard, Bocop -A collection of examples, pp.2012-8053
URL : https://hal.archives-ouvertes.fr/hal-00726992

B. Bonnard, J. Caillau, and &. E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM: Control, Optimisation and Calculus of Variations, vol.13, issue.2, pp.207-236, 2007.
DOI : 10.1051/cocv:2007012

URL : https://hal.archives-ouvertes.fr/hal-00086380

B. Bonnard, J. Caillau, and &. E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin, Dyn. Syst. Ser. B, vol.5, issue.7, pp.929-956, 2005.

B. Bonnard and &. M. Chyba, Singular trajectories and their role in control theory, of Mathematics & Applications, pp.357-360, 2003.

B. Bonnard, M. Chyba, A. Jacquemard, and &. J. Marriott, Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, Mathematical Control and Related Fields, vol.3, issue.4, 2013.
DOI : 10.3934/mcrf.2013.3.397

URL : https://hal.archives-ouvertes.fr/hal-00939495

B. Bonnard, M. Chyba, and &. J. Marriott, Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic resonance, submitted, p.6

B. Bonnard and &. O. Cots, Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance, Math. Models Methods Appl. Sci, vol.3, issue.30, pp.19-26, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01136896

B. Bonnard, O. Cots, S. Glaser, M. Lapert, D. Sugny et al., Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, IEEE Transactions on Automatic Control, vol.57, issue.8, pp.1957-1969, 2012.
DOI : 10.1109/TAC.2012.2195859

URL : https://hal.archives-ouvertes.fr/hal-00750032

B. Bonnard and &. I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoiressingulì eres dans leprobì eme du temps minimal, Forum Math, vol.5, issue.2, pp.111-159, 1993.

R. Bulirsch and J. Stoer, Introduction to numerical analysis, of Texts in Applied Mathematics, pp.744-760, 1993.

J. Caillau, O. Cots, and &. J. Gergaud, Differential continuation for regular optimal control problems, Optimization Methods and Software, vol.41, issue.6, pp.177-196, 2012.
DOI : 10.1145/279232.279235

J. Caillau and &. B. Daoud, Minimum Time Control of the Restricted Three-Body Problem, SIAM Journal on Control and Optimization, vol.50, issue.6, pp.3178-3202, 2011.
DOI : 10.1137/110847299

URL : https://hal.archives-ouvertes.fr/hal-00599216

Y. Chitour, F. Jean, and &. E. Trélat, Genericity results for singular curves, Journal of Differential Geometry, vol.73, issue.1, pp.45-73, 2006.
DOI : 10.4310/jdg/1146680512

URL : https://hal.archives-ouvertes.fr/hal-00086357

O. Cots, Contrôle optimal géométrique : méthodes homotopiques et applications, pp.2012-2027

A. Gebremedhin, A. Pothen, and &. A. Walther, Exploiting Sparsity in Jacobian Computation via Coloring and Automatic Differentiation: A Case Study in a Simulated Moving Bed Process, Proceedings of the Fifth International Conference on Automatic Differentiation, pp.327-338, 2008.
DOI : 10.1007/978-3-540-68942-3_29

L. Hascoët and &. V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, p.18, 2012.
DOI : 10.1145/2450153.2450158

D. Henrion, J. Daafouz, and &. M. Claeys, Optimal switching control design for polynomial systems: an LMI approach, 52nd IEEE Conference on Decision and Control
DOI : 10.1109/CDC.2013.6760070

URL : https://hal.archives-ouvertes.fr/hal-00798196

D. Henrion, J. B. Lasserre, and &. J. Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optimization Methods and Software, vol.24, issue.4-5, pp.4-5, 2009.
DOI : 10.1080/10556780802699201

URL : https://hal.archives-ouvertes.fr/hal-00172442

A. J. Krener, The High Order Maximal Principle and Its Application to Singular Extremals, SIAM Journal on Control and Optimization, vol.15, issue.2, pp.256-293, 1977.
DOI : 10.1137/0315019

I. Kupka, Geometric theory of extremals in optimal control problems. i. the fold and maxwell case, Trans. Amer. Math. Soc, vol.299, issue.1, pp.225-243, 1987.

M. Lapert, Y. Zhang, S. J. Glaser, and &. Sugny, Towards the time-optimal control of dissipative spin-1/2 particles in nuclear magnetic resonance, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.44, issue.15, p.44, 2011.
DOI : 10.1088/0953-4075/44/15/154014

URL : https://hal.archives-ouvertes.fr/hal-00642391

M. Lapert, Y. Zhang, M. Janich, S. J. Glaser, and &. D. Sugny, Exploring the physical limits of saturation contrast in Magnetic Resonance Imaging Sci, Rep, vol.2, issue.2, pp.589-592, 2012.

J. B. Lasserre, Positive polynomials and their applications, p.23, 2009.
DOI : 10.1142/p665

J. B. Lasserre, D. Henrion, C. Prieur, and &. E. Trélat, Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations, SIAM Journal on Control and Optimization, vol.47, issue.4, pp.1643-1666, 2008.
DOI : 10.1137/070685051

URL : https://hal.archives-ouvertes.fr/hal-00136032

M. H. Levitt, Spin dynamics : basics of nuclear magnetic resonance, 2001.

S. Jr and . Li, Control of inhomogeneous ensembles, Phd dissertation, p.40, 2006.

H. Maurer, Numerical solution of singular control problems using multiple shooting techniques, Journal of Optimization Theory and Applications, vol.8, issue.2, pp.235257-235273, 1976.
DOI : 10.1007/BF00935706

J. J. Moré, B. S. Garbow, and &. K. Hillstrom, User Guide for MINPACK-1, ANL-80-74, p.17, 1980.

L. S. Pontryagin, V. G. Boltyanski?-i, R. V. Gamkrelidze, and &. E. Mishchenko, Matematicheskaya teoriya optimalnykh protsessov, 1983.

M. J. Powell, A hybrid method for nonlinear equations, Numerical Methods for Nonlinear Algebraic Equations, p.17, 1970.

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, pp.11-12, 1999.

A. Wächter and &. L. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming, Mathematical Programming, pp.25-57, 2006.

A. Walther and &. A. Griewank, Getting Started with ADOL-C, Combinatorial Scientific Computing. Chapman-Hall CRC Computational Science, p.15, 2012.
DOI : 10.1201/b11644-8