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Abstract. We present a mathematical model describing the time development of a population
of tumors subject to mutual angiogenic inhibitory signaling. Based on biophysical derivations, it
describes organism-scale population dynamics under the influence of three processes: birth (dis-
semination of secondary tumors), growth and inhibition (through angiogenesis). The resulting
model is a nonlinear partial differential transport equation with nonlocal boundary condition. The
nonlinearity stands in the velocity through a nonlocal quantity of the model (the total metastatic
volume). The asymptotic behavior of the model is numerically investigated and reveals interesting
dynamics ranging from convergence to a steady state to bounded non-periodic or periodic be-
haviors, possibly with complex repeated patterns. Numerical simulations are performed with the
intent to theoretically study the relative impact of potentiation or impairment of each process of the
birth/growth/inhibition balance. Biological insights on possible implications for the phenomenon
of “cancer without disease” are also discussed.
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1. Introduction

Metastasis, the process by which secondary tumors are shed from a primary lesion to colonize
local or distant sites, is a complex process that is responsible for a very large proportion (90%)
of deaths by a cancer disease [15]. Despite significant efforts in the last decade to strengthen our
understanding of metastatic cancer biology, global mechanisms are still poorly understood [23].

Among the wide variety of topics to be addressed, we focus here on signaling interactions
within a population of tumors that impact on the global dynamics of the system, at the organism
scale. Indeed, it has been long known that several tumors simultaneously growing within the
same host influence each other, mostly in an inhibitory fashion. Most of the experimental studies
were conducted in two-tumors experimental systems where impaired growth was observed for a
second inoculum in the presence of a pre-existing tumor, a phenomenon that has been termed
concomitant resistance [30] (see [11] for a review). This distant inhibition not only occurs between
two artificially implanted tumors but also between a primary tumor and its metastases [13, 19].
Such an observation is of fundamental importance for cancer biology as it impacts on the temporal
development of the disease, but also has clinical implications in terms of metastatic dormancy [1]
and surgery [31].

Several hypotheses have been proposed to explain this phenomenon, among which athrepsia
(deprivation of nutriments for the second tumor due to monopolization of nutrients by the first
one) or immune enhancement. Indeed, it is known [23] that some tumors are immunogenic, i.e.
that they provoke a hostile reaction from the immune system. This reaction could be triggered
by the presence of a first tumor and suppress the growth of a subsequent implant. However, the
importance of this last hypothesis was tempered in the 1980’s when concomitant resistance was
shown to occur in immunodeficient mice [20].

In the 1990’s, Judah Folkman and his team put forward a novel hypothesis, based on their dis-
covery of endogenous inhibitors of tumor neo-angiogenesis [27, 28]. Angiogenesis is the process
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of creation of new blood vessels from an existing vasculature and was shown to be of fundamen-
tal importance for a tumor’s development [18] in order to ensure access to nutrients. Indeed, in
the absence of angiogenesis, a neoplastic lesion cannot grow beyond 2-3 mm in diameter [18].
Observation that a tumor not only stimulates this process (through production of growth factors)
but also regulates it by producing angiogenesis inhibitors opened the way to a new explanation
of concomitant resistance. A primary tumor could distantly inhibit a secondary tumor through
inhibitory angiogenic signaling, an hypothesis that is strengthened by the observation that angio-
genic inhibitors have significant longer half-lives than angiogenic stimulators (of the order of hours
for inhibitors such as angiostatin [27] or thrombospondin-1 [32] and of the order of minutes for
stimulating agents such as VEGF [16]). The formers are thus transferred to the central circulation
and from there systemically distributed to distant sites. Considering the large and unequivocal
body of support for the role angiogenesis inhibition plays in the maintenance of tumor dormancy
[24, 27, 28, 32, 36, 33] we will focus on systemic inhibition of angiogenesis (SIA) as the major
process for tumor-tumor interactions at the organism scale.

We present here a mathematical model for these interactions with the aim of qualitatively study
the resulting nonlinear dynamics at the organism scale. The approach we use is based on previous
work [5, 4] on modeling of metastatic development, in the framework of structured population
dynamics.

2. Model

The main idea, originally introduced by Iwata et al. [25], and further studied in [3, 12] is to
represent the population of metastatic colonies as a density p structured in tumor macroscopic
traits (such as the volume in [25]) and to derive a transport partial differential equation on p that
reflects mass conservation during the growth, endowed with a nonlocal boundary condition for
dissemination (birth) of new metastases.

A major limitation of this initial model for our purpose is that it does not take angiogenesis into
account, although this is a fundamental process of tumor development. By combining the approach
of [25] with the model of [22] for tumor growth under angiogenic control, we developed in previous
work a new model taking into account the angiogenic process in the growth of each tumor [4, 5, 7].
Combined to the fact that it is written at the level of the organism makes it an adapted framework
for modeling STA viewed as inhibiting interactions across a population of tumors.

The model we propose here adds an inhibitory component to the two main processes of the
previous model (angiogenic growth and metastatic dissemination). We add a new variable rep-
resenting the circulating concentration of an endogenous angiogenesis inhibitor standing for all
possible inhibitory molecules (examples being endostatin, angiostatin and thrombospondin-1). It
impacts on the growth of each tumor. As a general modeling principle, we want to be parsimonious
and describe the major dynamics of the system with as few parameters as possible.

Tumors are seen as individuals whose state is described by two traits: volume V' and car-
rying capacity K, the latter representing environmental limitations that constrain growth of the
tumor. This carrying capacity is here assumed to be equivalent to the vascular support. The pri-
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mary tumor state is denoted (V},(¢), K,(¢)) while the models main variable for representation of
the population of secondary tumors is denoted by p(¢,V, K) and stands for the physiologically
structured density of metastases with volume V' and carrying capacity K at time ¢t. We assume
that growth of the tumors is governed by a growth rate denoted G(V, K; V,(t), p), that spread of
new metastases is driven by an volume-dependent dissemination rate denoted 5(V') and that the
repartition of metastases at birth is given by a measure /N. The precise expressions of these coeffi-
cients shall be described below. We consider some fixed final time 7" and a physiological domain
Q =]Vp, +00[x]0, +00[ where the distribution of metastases has its support, which means that only
metastases having volume larger than some minimal volume V) and non-negative carrying capacity
are considered biologically relevant. In the formula below, v(o) stands for the external normal to
the boundary of the domain 0. The notation 92" stands for the subset of the boundary where the
flux is pointing inward, i.e. where G(o; V,(¢), p(t)) - v(c) < 0. The function p° denotes the initial
distribution of the metastatic colonies. Overall, the model writes

aup(t,V, K) + div (p <tVK>G<V K%( ), p(1))) =0 10, T[x
—G(o; V, (1), p(1)) - v(o o) { Jo, BOV)p(t, V, K)dVAK + B(V,(t))} 10, T[x00*
p(O,V,K):p()(‘/,K) Q.

2.1)

2.1. Tumor growth and systemic angiogenesis inhibition

We assume that all the tumors (primary and secondaries) share the same growth model and param-
eters. We do so in order to reduce the number of parameters and focus on the dynamical properties
of the system. Our population of tumors should thus be viewed as a population of identical entities
in mutual interactions parallel to global development. The growth velocity of each tumor is given
by a vector field G(V, K; V,(t), p(t)). Following the approach of [22] we assume

aVln (¥) )

G(V, K;Vp,p) = ( Stim(V, K) — Inhib (V, K;V,, p).

In the previous expression, the first line is the rate of change of the tumor volume V' (where a is a
constant parameter driving the proliferation kinetics) and the second line is the rate of change of
the carrying capacity /. The main idea of this tumor growth model is to start from a gompertzian
growth of the tumor volume (that could be replaced by any carrying capacity-like growth model,
see [14]) and to assume that K is a dynamical variable representing the tumor environment limita-
tions (here limited to the vascular support) changing over time. The balance between a stimulation
term Stim(V, K) and an inhibition term denoted Inhib(V, K;V,(t), p(t,)) (assumed here to de-
pend on the global state of the system represented by the density p) governs the dynamics of K.
For the stimulation term we follow [22] and assume

Stim(V, K) = bV,

where the parameter b is related to the concentration of angiogenic stimulating factors such as
VEGF or bFGF. This last quantity was derived to be constant in [22] from the consideration of
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very fast clearance of angiogenic stimulators [16]. This fact also strengthens our assumption of a
local stimulatory term, as stimulating agents don’t spread through the organism.

For the inhibition term, Hahnfeldt et al. [22] only considered a local inhibition coming from the
tumor itself. Our main modeling novelty is to consider in addition a global inhibition coming from
the release in the circulation of angiogenic inhibitors by the total (primary + secondary) population
of tumors. The following is an extension of the biophysical analysis performed in [22]. Let us
consider a spherical tumor of radius R inside the host body. The host is represented, for simplicity,
by a single compartment of volume V; in which concentrations are assumed spatially uniform.
Let n(r) be the inhibitor concentration inside the tumor at radial distance r. Let the intra-tumor
clearance be zero [22]. At quasi steady state, n(r) solves the following diffusion equation:

2n/(r
n"(r) + (r) + %
where p is the inhibitor production rate and D? is the inhibitor diffusion coefficient. This equation
is endowed with the boundary condition n(R) = i(t; V,(t), p(t)), i(t; V,, p) being the systemic
concentration of the inhibitor resulting from a primary tumor volume V,, and secondary tumors
density p at time ¢. Solving this equation (using that n(0) < +00) we obtain

=0,

n(r) =i+ %(32 — ).

From this expression we compute the mean inhibitor concentration in the tumor to obtain

2/3
) . p 9 A - p 3 2/3

I V.K;V,, )= <+ )K—— + —1 — V2 K,

nhib( P )=l 15D2R ¢ (Z 15D?2 (47r> )

where € is a sensitivity coefficient. For i(¢; V,,(t), p(t)), considering that the total flux of inhibitors
produced by a tumor with volume V' is pV' and assuming that the inhibitor production rate is the
same in all the tumors, we have

Vagr = pV(t) + / pVp(t,V, K)dVdK — kVyi,
Q

where £ is an elimination constant from the blood circulation. Defining I(¢; V,,(t), p(t)) = Vai(t; V,(2), p(t)),

we get

dl
i pVy(t) + / pVp(t,V, K)dVdK — kI, (2.2)
Q

endowed with zero initial condition (1(0) = 0).
Overall, the explicit expression of the metastases growth rate is given by

. B aV In (%)
GV, K3V, p) = ( BV — dVBK —el(V,, p)K ) (2.3)
where ¢ := Vid and
2/3
.f p (3
d:=eVigis (M) . 2.4)

5



S. Benzekry et al. Modeling of systemic inhibition of angiogenesis

Note that we retrieve here the local term dV?/3 from the analysis of [22]. Our analysis results in
addition of a global term e/ for the effect of systemic inhibition of angiogenesis.

For the primary tumor, we assume the growth velocity, hence the dynamics of (V,(¢), K,(t)),
to be given by

-
d ( K]; ) = G(Vp, Kp; Vp(t), p(t)) (2.5)
V,(0) =V, K,(0) = Ko,

where V} is the initial volume of a tumor and K|, its initial carrying capacity.

2.2. Metastatic spreading

There is no clear consensus in the biological literature about metastases being able to metastasize
or not [35, 9, 34]. However, we argue here that cancer cells that acquired the ability to metastasize
should conserve it when establishing in a new site. Moreover, since metastasis is a long process
before being detectable [35, 9, 34] (in particular because tumors could remain dormant during
large time periods), the absence of clear proof in favor of metastases from metastases could be due
to the short duration of the experiments compared to the time required for a secondary generation
of tumors to reach a visible size. Here we are interested in long time behaviors and, although
metastases from metastases could be neglected in first approximation, we think this second order
term is relevant in our setting and chose to include it in our modeling, following clinical evidences
of second-generation metastases [2].

Successful metastatic seeding results from one malignant cell being able to overcome various
adverse events including: detachment from the tumor, migration in the local micro-environment,
intravasation in local blood (or lymphatic) vessels, survival in the circulation, escape from immune
surveillance, extravasation, survival in a new environment and eventually establishment of a new
colony at the distant site (see [21] for more details). We regroup here all these events into one
emission rate 5(V') quantifying the number of successfully created metastases per unit of time,
and neglect intricate description of all these processes. We assume that very small metastases do
not metastasize arguing that they do not have access to the blood circulation and hence include
a threshold V;,, below which tumors do not spread new individuals. Apart from addition of this
threshold, the expression of /3 is the one from [25] and is given by

B(V) =mV*lysy,, (2.6)

where m and « are coefficients quantifying the overall metastatic aggressiveness of the cancer
disease. The parameter m represents an intrinsic metastatic potential of the cancer cells. On the
other hand, parameter « represents the micro-environment dimension of metastatic dissemination.
It lies between O and 1 and is the third of the fractal dimension of the vasculature of the tumor
under consideration. For instance, if vasculature develops superficially then o = 2/3, whereas a
fully penetrating vasculature would give a value of & = 1. We chose here to take a dissemination
rate only depending on the volume because simulations showed that adding a monotonous depen-
dence on K did not improve the flexibility of the model in simulations while adding at least one
parameter, in opposition to our parsimony principle.

6
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Stating a balance law for the number of metastases when growing in size gives the first equation
of (2.1). The boundary condition, i.e. the second equation of (2.1), states that the entering flux of
tumors equals the newly disseminated ones. These result from two sources: spreading from the
primary tumor, represented by the term /5(V,,(¢)) and second generation tumors coming from the
metastases themselves, described by the term [, 5(V)p(t,V, K)dVdK. The map o — N(0),0 =
(V, K) € 09 stands for the volume and carrying capacity distribution of metastases at birth. We
assume that newly created tumors have all the size V|, and some initial carrying capacity K, and
thus take

N(0> = 50:(V0,K0)7 (27)

i.e. the Dirac distribution centered in (Vj, Ky) and refer to [6] for more detailed considerations
on going from an absolutely continuous density /N to the Dirac mass considered here. We allow
metastases to exit the domain by imposing the boundary condition only where the flux points
inward. In view of expression (2.3), the growth velocity pushes tumors out of the domain when K
is less than V4. This can happen when global inhibition is strong enough such that tumors can cross
the line K’ = Vg, i.e. when Go(Vp, Vy) = bV — dV05/3 —elVy < 0. These tumors are then removed
from the population, corresponding to the death of metastases caused by nutrient deprivation.

From the solution p of the model, relevant macroscopic quantities can be defined such as the
total number of metastases: N(t) = [, p(t,V, K)dVdK or the total metastatic burden: M (t) =
Jo Vot V,K)dVdK.

Overall, the model (2.1-2.7) is a nonlinear transport equation endowed with a nonlocal bound-
ary condition. The nonlinearity appears in the growth velocity G through an indirect dependence
on the total metastatic burden.

2.3. Model nondimensionalization

We are not interested here in calibrating the model parameters or outputs to relevant biological
values (see [8] for such a purpose) but will rather focus our interest on theoretical exploration of
possible dynamics emerging from the model. Consequently, we rescale parameters and variables

in order to essentialize characteristic properties of the system. Performing the following transfor-

mations - where V* := (9)3/ ? is the maximal reachable volume under the Hahnfeldt model [14] -

d
on variables

~ ~ Vo - K S~ 9 . a
t=at, V= K=—, pt,V,K)=V"p(t,V,K), I(t) = I(t
ot V = g K= o o0V, K) = V20l VLK), (D) = —51(0),
and on coefficients
~ b _ epV* - kK _ m ~ 9 ~ Vo -~ K,
b=—,e= k=— = — (V™ pO(V,K) =V " (V.K), Vo = —, Ky = —
aae a aam CL( )7p( ) ) p( ) )7 0 Vv 0 Vv
gives equation (2.1) in the new variables, with new velocity given by
A Vin (%)
G(V, KV, p) = , 2.8)

qv_vwk)_ak
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and new differential equation on I

ar - T

yri Vi(t) + / Vp(t,V,K)dVdK — kI, (2.9)
9)

where f/p = % and Q) Z]f/o’ +00[x]0, +00[. Note that this nondimensionalization made parame-

ters a, d and p disappear from the equations. We will consider the resulting model in the following
but drop the tildes to simplify the notations.

3. Simulation results

We present now simulations of the nondimensionalized model (2.1, 2.5-2.9). For simulations based
on comparison to experimental data we refer to [8] and focus here on the theoretical dynamical be-
havior of the model. It results from the balance between three processes: dissemination (governed
by the function ) growth (controlled by the growth rate ) and systemic inhibition of angiogene-
sis (represented by the inhibitor quantity /). For the sake of simplicity we will reduce our analysis
to one parameter per process: dissemination will be represented by parameter m, growth by pa-
rameter b and inhibition by parameter e. Throughout the study we fixed most parameters to 1 (see
Table 1), on the notable exception of «, fixed to 2/3 hence assuming superficial development of the
vasculature. We use this parameter set as a basis point for exploration of the parameter space. Nu-
merical simulations were performed adapting a previously developed discretization scheme based
on the straightening of the characteristics [4].

b Vo K,
Growth 1 01 02
k e
SIA 11
) .. m o«
Dissemination 1 213

Table 1: Base parameter values.

3.1. Linear versus nonlinear dynamics

When SIA is not considered in the model (e = 0), the velocity of the transport equation does
not depend on p and the model is linear. It falls then in the range of classical renewal equations
from structured population dynamics (see [29] for general theory) that exhibit asynchronous ex-
ponential growth governed by the first eigenvalue )\ of the underlying operator. This means that
asymptotically

plt, V, K) ~ IV, K),

where convergence occurs in L' norm with weight ¥, the dual normalized first eigenvector, and II
is a particular first eigenvector of the linear operator (these eigenspaces have dimension 1). The

8
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eigenvalue )\ is the unique solution of the following spectral equation

+o0
B(X, Vi, Ko))e M7dr =1,
0

where X, (Vp, Kj) is the flow associated to the vector field G(V, K). We refer to [5] for detailed
statements and proofs of results on the asymptotic behavior of the linear model and only illustrate
here in Figure 1 the result and depict an example of the shape of the first eigenvector (projected on
the V' axis).

20 X 1017

Tumor Burden

0 26 46 66 86 100 3 0.2 0.3 04 05 06 07 08 1
Time Volume
Metastatic burden Final volume distribution

Figure 1: Asymptotic behavior of the linear model (no SIA). Parameters are from Table 1, except
=0.

When considering the nonlinear model that we introduce here, non-trivial asymptotic behavior
is observed with oscillations of the system (Figure 2). First, under the impulsion of the primary
tumor dissemination, metastases appear and start to grow until reaching a substantial metastatic
burden that in turn yields growth suppression of both primary and secondary tumors. At some
point, inhibition is strong enough to push metastases out of the domain, inducing a decrease in
total number of metastases and metastatic burden that translates then into lower inhibitory pressure
(due to clearance of the inhibitor) allowing the metastases to regrow and restart the process.
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Tumor Burden
Met number

0 26 46 60 80 100 0 26 46 66 Bb 100
Time Time
Metastatic burden Number of metastases
1 14
i 1.2¢
08 ','
W
o6l | = nal
% i —SIA 2 08
3 oa i = no SIA € os}
04
02
0.2H
0 ‘ : : ‘ 0 : : : :
o] 20 40 60 80 100 0 20 40 60 80 100
Time Time
Primary tumor volume Systemic inhibitor

Figure 2: Dynamics of the non linear model (with SIA)

3.2. Exploration of the growth/dissemination/inhibition balance

We explore now the parameter space for possible different qualitative dynamics, by varying 10 fold
above and below the base values of the parameters respectively controlling growth (), dissemina-
tion (m) and inhibition (e). The oscillations that were observed with the base parameter, although
recovered in most of the situations, are not the only possible situation as more complex dynamics
are found.

Simulation results of individual increase of each parameter are reported in Figure 3. As appears,
disruption of the base regime of parameters from Table 1 (where all the forces in presence are in
relative equilibrium) towards more pronounced impact of either of the constitutive processes of our
model generates more complex dynamics. Moreover, different parameters have different impact
on the global behavior.

Potentiation of the growth velocity (as well as resistance to the inhibition pressure) through
increase of parameter b results in an asymptotic behavior of the global metastatic burden which,
while still being periodic, repeats a much more complex pattern, revealing interesting underlying
dynamics. In particular, observation that same value of metastatic burden does not always yield

10
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same future evolution implies that no autonomous ordinary differential equation can be derived for
the dynamics of M (t), since same initial condition potentially leads to different future evolution.
Indeed, when M (t) re-reaches a previous value, the state of the global dynamical system is dif-
ferent because the composition of the tumors population (represented by p) is. Interestingly, this
happens despite the fact that the growth rate depends on p only through M (equations (2.8, 2.9)).

Increase of the metastatic aggressiveness of the system (parameter m) results in densification
of the oscillations and amplitude increase, yielding sharp repeated peaks of metastatic growth.
Violent increases of the total metastatic burden are followed by similarly violent decreases that
make the system reach almost-zero values.

Stronger inhibition pressure delays the stabilization of the system to an oscillatory regimen,
intensifies the oscillations frequency and lowers their amplitude. Note that in this situation, as
well as in the base situation, the total metastatic volume remains away from zero, suggesting a
non-negligible amount of long-lasting residual disease.

Turning our interest to the opposite situation, i.e. 10 fold decrease of the individual parameters,
shows yet other interesting behaviors. Small value of b generates an oscillatory asymptotic behav-
ior with very low amplitude of the oscillations. From a biological point of view, this suggests the
possibility of an homeostatic state of the system where all the forces in presence equilibrate to give
a stable state where metastases don’t grow while still remaining present in the organism, possibly
with small volumes that would make the micro-metastases undetectable. Here, this homeostatic
state stabilizes around the third of the maximal reachable size with a stable underlying distribution
of metastases where volume of the largest metastasis is lower than 0.15. This result could suggest
a possible explanation of reported cases of population of asymptomatic occult metastases with no
evidence of primary lesion [37, 17, 26, 10] as resulting from mutual inhibitory interactions be-
tween tumors. This observation is substantiated by the simulation of the model with lower initial
volume and carrying capacity (see Figure 5).

Small value of coefficient m significantly delays emergence of the oscillations, since it takes
more time to reach a sufficient amount of total tumor burden to trigger the dynamics. Lowering
the value of e has no clear impact on the frequency of oscillations but consistently increases their
amplitude. Indeed, lower power of inhibitory pressure allows the metastases to grow to larger
volumes.

In Figure 5 we report a few other examples of interesting dynamics arising from simulation of
the model. In the case of large intrinsic metastatic potential (m = 10) and inhibitor clearance set to
0.1, after an initial sharp peak of metastatic burden, we observe firing episodes of metastatic disease
of increasing intensity but delayed appearance, while rest periods are characterized by almost-
zero amount of cancer mass. Although not completely relevant because of the non-biological
values of the parameters, biological analogy would suggest possible violent bursts of metastatic
development separated by possibly long periods of minimal (and occult) residual disease that could
even lead to endogenous elimination of the cancer. Indeed, under the hypothesis of strong emission
of metastases and non-negligible individual inhibitory power, it is to be expected fast exponential
increase of the metastatic number of individuals, which in turn generates strong inhibition of the
total population growth. However, what happens in this situation is not just acceleration of the
dynamics and it remains intriguing that subsequent burst relapse with higher intensity than previous

11
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Figure 3: Dynamics of the metastatic burden under 10 fold increase of representative parameters.
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Figure 4: Dynamics of the metastatic burden under 10 fold decrease of representative parameters.
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ones. A heuristic description of what happens is the following. The first burst is particular as it
results from the initial condition of the primary tumor that concentrates most of the metastatic
mass when it is small. This mass is eliminated all at once during the evacuation phase of the first
burst that ends with smaller metastatic burden than at initiation (about 107> in our simulation).
By the time that metastatic mass recovers significative value (say 1 for instance), production of
inhibitors has occurred that changes the condition compared to the starting point and results in
lower amplitude of the second burst. At the end of this second burst, much deeper metastatic
burden has been reached (of the order of 10~8) despite smaller zenith as in the first burst, because
now metastases continuously outflew. With this smaller initial metastatic burden, the system had
time to eliminate the inhibitor and when M (¢) crosses 1 again, it does so with smaller value of
I(t), hence producing a higher amplitude of the relapse, which in turn provokes a smaller post-
relapse burden. Repeating the same mechanism explains the following bursts. It should be noted
that simulating this same situation for larger times and plotting the result in log-scale (Figure 5)
reveals globally bounded behavior with seemingly non-periodic orbit, thus adding another feature
to the diversity of the system’s dynamics.

Yet another interesting dynamics is observed for m = 0.1, £ = 0.1 and e = 0.02. Tormented
patterns occur while still generating a periodic behavior, underlining the complexity of the dy-
namics of the density. On the opposite to this widely varying behavior, the model numerically
exhibits convergence to a steady state for the total metastatic burden when initial conditions (for
both primary tumor and metastases) are set to (V, Ky) = (107%,1073). Same apparent conver-
gence also occurs for the number of metastases N (¢) and the amount of inhibitor /(¢) (simulations
not shown). Looking closer to the volume distribution of metastases at the end of the simulation
reveals concentration of the density to the smallest possible volume, suggesting convergence to a
Dirac mass located in (V4 Kj).
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Figure 5: Examples of other interesting dynamics

4. Conclusion

We have presented a mathematical model for systemic inhibition of angiogenesis designed to theo-
retically study the relative balance of three important biological processes happening in the devel-
opment of a population of metastases, namely dissemination, local growth and global (systemic)
inhibition.

Simulations of this nonlinear model revealed interesting dynamics that underline the complex-
ity. These results illustrate the interest of mathematical and computational models as useful tools
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for simulating the global result of a complex biology. Indeed, despite the apparent simplicity of
our model that reduced here metastatic development to only three essential dynamical processes
(birth, growth and inhibition), it would not be possible to guess a priori the result of the combi-
nation of the three since, in some situations, this combination even appears as very tormented and
unpredictable (see Figure 5) while in others convergence to a steady state is numerically observed.

From a mathematical point of view, the numerical study we performed suggests a wide array
of possible asymptotical behavior of the nonlinear model. During the exploration of the parameter
space, we observed periodical behaviors with various underlying patterns, from simple oscillations
to complex shapes of repeated patterns. In this context, an interesting problem would be to quantify
amplitude and frequency of the oscillations in terms of the parameters of the model.

Periodicity was not always the rule since we also observed non-periodic patterns or conver-
gence to a steady state. These observations suggest possible bifurcations in the parameter space of
the infinite-dimensional dynamical system. Mathematical study of these dynamical properties, in
particular how to go from a stable steady-state to a limit cycle could be interesting perspectives of
our work.

From a biological viewpoint, the existence of bounded solutions of the system suggests the
possibility of a stable homeostatic burden of metastases that remain in equilibrium due to mutual
inhibitory interactions. In our simulations, this happens in situations where growth is substantially
altered, either by a reduced growth velocity (parameter b) or smaller initial volume and carrying
capacity of a newborn tumor with respect to what was considered here as base values (it should
be noted however that within this base parameter set, 1} is the tenth of the maximal reachable
volume, which represents an unrealistically large initial tumor volume, making thus smaller values
more biologically relevant). This modeling result could shed light on the reported observations
(from forensic autopsy studies) of multiple small metastatic foci present in the organism of healthy
individuals [37, 26], with a prevalence rate of up to 99% (in the case of thyroid cancer) of the
population, that yielded J. Folkman to use the term of “cancer without disease” [17]. However, as
shown in [8] from calibration of the model to experimental data, elucidation of this phenomenon
from systemic inhibition of angiogenesis only would require a very high production rate p (or,
equivalently, efficacy parameter e) of the systemic inhibitor. It is more likely that SIA contributes
to generate such a situation in combination with other biological players (such as the immune
system for instance).
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