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ABSTRACT: Classical models for wear accumulative indicators are univariate Gamma and compound Pois-
son processes, which both are univariate subordinators (increasing Lévy processes). Bivariate subordinators are
here proposed to model correlated couples of univariate wear indicators, namely bivariate wear indicators. A
few properties of these bivariate subordinators are pointed out, and a special simple construction is provided,
for application purpose. The use of these bivariate wear subordinors is illustrated through the study of a classi-
cal block replacement policy. The influence of the dependence between the marginal indicators on the optimal
block replacement policy is pointed out.

1 INTRODUCTION

In case of a system submitted to an accumula-
tive random damage, classical stochastic models are
compound Poisson processes and Gamma processes,
which both are increasing Lévy processes, see
(Van Noortwijk 2009), (Nakagawa 2007) or (Abdel-
Hameed 1975) e.g.. Such classical wear models typ-
ically are univariate. However, the deterioration level
of a system cannot always be synthetized into one
single indicator and several indicators may be neces-
sary, see (Mercier et al. 2011) for an industrial ex-
ample. In that case, a multivariate wear model must
be used to account for the dependence between the
different univariate indicators of the system. Another
context where multivariate wear models are required
is the case of different systems submitted to common
stresses, which make their wear indicators dependent.
Multivariate increasing stochastic models hence are
of interest in different contexts.

We here propose to use multivariate increasing
Lévy processes (or multivariate subordinators) as
wear processes. Two main arguments are the follow-
ing: first, such processes present some positive de-
pendence property (consequence of (Bäuerle et al.
2008)); secondly, thresholds reaching times may be
proved to present aging properties. Such properties
are typical of what one may expect from a multi-
variate wear model: indeed, correlation between wear
indicators reveals some common stresses or so, and
high values for one of these indicators should entail
higher values for the other ones. Roughly speaking,

this is the positive dependence property. Also, in a
reliability context, thresholds reaching times for in-
creasing wear processes typically represent times to
failure and are consequently likely to present aging
properties. Multivariate subordinators hence are good
candidate to model multivariate deterioration. All the
paper is written in the bivariate setting but might eas-
ily be translated into the multivariate one.

Considering bivariate subordinators as bivariate
wear processes, the objective of this paper is to illus-
trate their ability to optimize maintenance strategies.
With such an aim, we revisit a classical block replace-
ment policy within this new context, with the opti-
mization of a cost function as an objective. In view
of the numerical assesment of the cost function, and
also of an effective use for the applications, a spe-
cial construction of a bivariate subordinator is pro-
posed, by so-called trivariate reduction. Though valid
in the most general setting, this construction is here
proposed in the case of Gamma marginal processes,
to make it clearer.

The paper is organized as follows: in Section 2,
known and easy facts are summed up for univariate
and bivariate subordinators. The construction of a bi-
variate subordinator by trivariate reduction is given in
Section 3, in the case of Gamma marginal processes.
The block replacement policy is presented in Section
4 and the results are numerically illustrated in Section
5. Conclusive and prospective remarks end this paper
in Section 6.



2 BIVARIATE SUBORDINATORS

A univariate subordinator is a univariate non-
decreasing Lévy process, namely a process (Yt)t≥0
with range R+, starting from Y0 = 0, which is non
decreasing, right continuous with left-side limits and
with stationary independent increments. Only subor-
dinators with null drifts are here envisionned, both in
the univariate and bivariate cases. The Laplace trans-
form of a univariate subordinator (Yt) is given by:

LYt (x) = E
(
e−xYt

)
= exp

t∫
R+

(
e−xy − 1

)
µY (dy)

 (1)

for all x, t ≥ 0, where µY (dy) is a non-negative mea-
sure on R∗+ such that∫
R+

(|y| ∧ 1)µY (dy) <∞,

where symbol ∧ stands for minimum.

This measure µY (dy) is the so-called Lévy mea-
sure of the process (Yt)t≥0. The Laplace transform
and the distribution of the process are characterized
by its Lévy measure µY (dy). An alternate character-
ization is provided by the tail integral function UY ,
with

UY (y) =

∫
[y,+∞[

µY (dx)

for y ∈ R∗+, UY (0) = +∞ and UY (+∞) = 0.

A well-known example of a univariate subordina-
tor is the Gamma process. Its Lévy measure is equal to
µY (dy) = α

y
exp(−βy) dy, where α,β > 0. A great in-

terest of the Gamma process is the explicit knowledge
of the probability distribution of Yt (Gamma distribu-
tions). For other subordinators, a close form is gener-
ally not available. Nevertheless, recent researches in
statistics provide tools for estimating the Lévy mea-
sure of general (univariate) subordinators, see (Comte
and Genon-Catalot 2010) e.g..

Just as in the univariate case, a bivariate
subordinator is a bivariate non-decreasing Lévy
process (here with null drift), namely a process(
Xt =

(
X
(1)
t ,X

(2)
t

))
t≥0

with range R2+, starting

from X0 = (0,0), which is component-wise non-
decreasing, right continuous with left-side limits and
with stationary independent increments. To avoid triv-

ialities, P
(
X
(1)
t > 0,X

(2)
t > 0

)
is assumed to be non

zero.

The Laplace transform of Xt is

LXt (x1, x2)

= E
(
e
−
(
x1X

(1)
t +x2X

(2)
t

))

= exp

t∫∫
R2+

(
e−(x1y1+x2y2) − 1

)
µX(dy1, dy2)


(2)

for all x = (x1, x2) ∈ R2+ and all t ≥ 0.
Here again the Laplace transform and the distribu-

tion of the process are characterized by the Lévy mea-
sure µX which fulfills:∫∫
R2+

(‖y‖ ∧ 1)µX(dy) <∞,

where ‖...‖ stands for any standard norm on R2+.
The Lévy measure can be characterized by the bi-

variate tail integral functionUX : [0,+∞]2→ [0,+∞]
provided by:

UX (x1, x2) =

∫
[x1,+∞[

∫
[x2,+∞[

µX (dy) (3)

for all (x1, x2) ∈ R2+\{(0,0)}, UX (x1,∞) =
UX (∞, x2) = 0 and UX (0,0) = +∞.

The bivariate tail integral function measure the de-
pendence between the two marginal processes in the

sense that ifX and X̃ are bivariate subordinators with
the same marginal processes and respective tail inte-
gral functions UX(x) and UX̃(x) such that UX(x) ≤
UX̃(x) for all x in R2+, then the components X

(1)
t and

X
(2)
t are "more dependent" than the components X̃

(1)
t

and X̃
(2)
t (with clear notations). As an illustration, it

is easy to check that

UX (x1, x2) ≤ UX‖ (x1, x2) (4)

for all (x1, x2) ∈ [0,+∞]2, where

UX‖ (x1, x2) = U1(x1)∧U2(x2)

stands for the tail integral function in the case where
the components are completely dependent (case of
maximal dependence). The maximal dependence is
hence reached for the maximal tail integral function.

Given a bivariate subordinator
(
X
(1)
t ,X

(2)
t

)
t≥0

, for

each i= 1,2, the marginal process
(
X
(i)
t

)
t≥0

is a uni-

variate subordinator with associated Lévy measure µi
where µ1 (dx1) = µX (dx1 ×R+) (the same for µ2)
and (univariate) tail integral function denoted by Ui.



The linear correlation coefficient ρXt of Xt is a

measure of the dependence between X
(1)
t and X

(2)
t .

Under technical assumptions ensuring its existence, a
direct calculation of covariance and standard devia-
tions with the help of Laplace transforms (1) and (2)
gives:

ρXt =

∫∫
R2+

UX(u1, u2) du1 du2

√
v1 v2

(5)

with

vi = var
(
X
(i)
1

)
= 2

∫
R+
u Ui (u) du

for i= 1,2. Expression (5) shows that ρXt is indepen-
dent of t (just as for any Lévy process). It is denoted
by ρX in the following.

Using 0 ≤ UX (x1, x2) and (4), we derive the fol-
lowing bounds for ρX :

0 ≤ ρX ≤ ρmax
with

ρmax :=

∫∫
R2+

(U1(u1)∧U2(u2)) du1 du2
√
v1 v2

(6)

The lower bound ρX = 0 corresponds to the case of in-
dependent indicators. The upper bound ρmax is reach-
able and corresponds to the case of complete (maxi-
mal) dependence. We have ρmax = 1 in case U1 = U2,
but in general ρmax < 1, see Figure 1 later on. This
result shows that, in case of non equal marginal sub-
ordinators, high dependence between the marginal
processes cannot always be modeled by a bivariate
subordinator.

We finally recall a comparison result from (Bäuerle
et al. 2008), to be used later on. This result roughly
says that a bivariate subordinator is "increasing"

with dependence. More specifically, if X and X̃
are bivariate subordinators with the same marginal
processes and respective tail integral functions UX(x)
and UX̃(x) such that UX(x) ≤ UX̃(x) for all x in R2+,

then X is smaller than X̃ in the sense of the concor-
dance order. This means that:

P
(
X
(1)
t > s1,X

(2)
t > s2

)
≤ P

(
X̃
(1)
t > s1, X̃

(2)
t > s2

)
,

P
(
X
(1)
t ≤ s1,X

(2)
t ≤ s2

)
≤ P

(
X̃
(1)
t ≤ s1, X̃

(2)
t ≤ s2

)
,

(7)

for all t, s1, s2 ≥ 0.
As already told, there is a special interest for bivari-

ate subordinators with Gamma marginal processes,
because the marginal probability distributions are ex-
plicitly known (Gamma distributions). However, no
closed form is generally available for the process
bivariate distribution. Nevertheless the construction
given in the next section provides a special case where
such a distribution can be obtained.

3 CONSTRUCTION BY TRIVARIATE
REDUCTION

We here propose a model of bivariate subordinators
constructed by trivariate reduction (TR subordinator),
in the special case of Gamma marginal processes.
This method has already been introduced in (Buijs
et al. 2005) or Ebrahimi, and used in (Mercier et al.
2009). Results on bivariate Gamma distributions con-
structed by trivariate reduction may also be found in
Devroye (Devroye 1986, section XI.3).

Let us first recall that the probability distribution
function (p.d.f.) of a Gamma distribution Γ (a, b) is

fa,b (u) =
ba

Γ (a)
ua−1e−bu1R+ (u)

and that the distribution at time t of a univariate
Gamma process with parameters (a, b) is Γ (at, b).
The tail integral function of a Gamma process with
parameters (a, b) is:

U (x) =

∫ +∞

x

a
e−bu

u
du = aE1 (bx)

whereE1 (x) =
∫ +∞
x

e−y

y
dy is the exponential integral

function.
For a general subordinator with univariate Gamma

processes as margins and marginal parameters (a1, b1)
and (a2, b2), the upper bound (6) is then provided by:

ρmax (α)

=

∫∫
R2+

min

(√
αE1 (u1) ,

1√
α
E1 (u2)

)
du1 du2 (8)

where α = a1
a2

.

Let us now describe the trivariate construction:
starting from three independent univariate Gamma

processes
(
Y
(i)
t

)
t≥0

with parameters (αi,1) for i ∈
{1,2,3} and from b1, b2 > 0, we set: X

(1)
t =

(
Y
(1)
t + Y

(3)
t

)
/b1

X
(2)
t =

(
Y
(2)
t + Y

(3)
t

)
/b2

(9)

The interest of such a construction is clear for the ap-

plications to reliability, where the term Y
(3)
t will cor-

respond to some common damage accumulation com-

ing from some common wear source, whereas Y
(1)
t

and Y
(2)
t will correspond to some damage accumula-

tions coming from independent wear sources.

The process (Xt)t≥0 =
(
X
(1)
t ,X

(2)
t

)
t≥0

con-

structed in (9) is a bivariate subordinator with uni-
variate Gamma processes as margins. Its marginal pa-
rameters (ai, bi) are provided by:{
a1 = α1 + α3
a2 = α2 + α3
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Figure 1: ρmax(α) and ρmax, TR(α) with respect of α.

A direct computation provides:

ρX =
α3√
a1a2

and setting ρ = ρX :{
α1 = a1 − ρ

√
a1a2

α2 = a2 − ρ
√
a1a2

α3 = ρ
√
a1a2

(10)

Two equivalent alternate parametrizations hence
are available for TR subordinators with Gamma
marginal processes: either (α1, α2, α3, b1, b2) or
(a1, a2, ρ, b1, b2). This entails that all the dependence
of a TR subordinator with Gamma marginal processes
is contained in the linear correlation coefficient ρ.
Equations (10) also entail that:

ρ ≤ min (a1, a2)√
a1a2

= min

(√
α,

1√
α

)
:= ρmax,TR (α)

(11)

where α := a1
a2

.

In case a1 = a2, we get ρmax, TR = ρmax = 1. In
the general case, we however get ρmax, TR < ρmax, as
shows Figure 1 where the functions α 7−→ ρmax (α)
and α 7−→ ρmax, TR (α) are plotted. This proves that a
trivariate construction cannot model as high a depen-
dence as general subordinators, in case of different
marginal processes.

For the practical use of TR subordinators in Section
5, we now provide the joint p.d.f. fXt(u1, u2) of Xt:
when α3 6= 0, it is equal to:

∫ min(u1,u2)

0

fα1t,1(u1−u3)fα2t,1(u2−u3)fα3t,1(u3)du3

(12)

When α3 = 0 (or ρ = 0), both X
(1)
t and X

(2)
t are inde-

pendent and fXt(u1, u2) = fa1t(u1)fa2t(u2).

4 BLOCK REPLACEMENT POLICY

In this section we illustrate the ability of using bi-
variate subordinator to optimize maintenance strategy
with a block replacement policy: a system is consid-
ered, with degradation measured by a bivariate subor-
dinator (Xt)t≥0 (with null drift). For each univariate

subordinator
(
X
(i)
t

)
t≥0

, there is a threshold si above

which the deterioration level is considered as too high
and we set:

σ(i)si = inf
(
t ≥ 0 such that X

(i)
t ≥ si

)
to be the corresponding univariate reaching time (i =
1,2). The random variable σ(i) hence stands for a uni-

variate time to failure, only taking indicator X
(i)
t into

consideration. As for the bivariate case, we envision
two possibilities for the system failure: either the sys-
tem is failed as soon as one (univariate) indicator is
too high or when both indicators are. If we interpret

X
(1)
t andX

(2)
t as the wear indicators of two dependent

components, the first case corresponds to a series-
system and the second one to a parallel system. The
respective times to failure are:

σ = inf
(
t ≥ 0|X(1)

t ≥ s1 or X
(2)
t ≥ s2

)
= min

(
σ(1)s1 , σ

(2)
s2

)
and

σ = inf
(
t ≥ 0|X(1)

t ≥ s1 and X
(2)
t ≥ s2

)
= max

(
σ(1)s1 , σ

(2)
s2

)
.

The block replacement policy is then applied: the
system is not continuously observed. It is perfectly
and instantaneously repaired each T time unit (peri-
odically) with a cost cr. If the system is down at repair
time, a unitary cost cu is induced per unit time for the
down period just before the repair. After a repair, the
future evolution of the system is similar as from the
beginning and is independent of its past. We are in-
terested in the asymptotic unitary cost (per unit time)
denoted by C (T ). We first recall classical results for
sake of completeness, see (Nakagawa 2005) e.g..

Using standard renewal theory, the asymptotic uni-
tary cost C (T ) is provided by:

C (T ) =
E (C ([0, T ]))

T

where E (C ([0, T ])) is the mean cost on a generic cy-
cle [0, T ].

The asymptotic unitary cost then is:

C (T ) =
cr + cu

∫ T
0
Fσ (t)dt

T
(13)



where Fσ (t) is the cumulative distribution function
(c.d.f.) of the failure time σ.

A finite optimal T optexists if and only if E (σ)> cr
cu

.

In that case, this optimal point is characterized by∫ T opt

0

t fσ (t)dt =
cr
cu

and the optimal cost is:

C
(
T opt

)
= cuFσ

(
T opt

)
. (14)

In case, E (σ) ≤ cr
cu

, the cost function C (T ) is non

increasing with T and the best is not to ever repair the
system (T opt = +∞).

We now complete such results in the present
context and we first consider the case where σ =
min

(
σ
(1)
s1 , σ

(2)
s2

)
.

In that case, we have:

Fσ (t) = P (σ ≤ t)

= 1− P
(
X
(1)
t ≤ s1,X

(2)
t ≤ s2

)
for all t ≥ 0 and

E (σ) =

∫ +∞

0

P (σ > t)dt

=

∫ +∞

0

P
(
X
(1)
t ≤ s1,X

(2)
t ≤ s2

)
dt

As a consequence, it can be seen from (7) that Fσ (t),
C (T ) and C (T opt) are non increasing with depen-
dence (see (13) and (14)), whereas E (σ) is non de-
creasing with dependence. This entails that

E
(
σ⊥
)
≤ E (σ) ≤ E

(
σ‖
)

where E
(
σ⊥
)

and E
(
σ‖
)

stand for the mean times
to failure in case of independent and completely de-
pendent wear indicators, respectively (with fixed mar-
gins).

In case E
(
σ⊥
)
> cr

cu
, we hence have E (σ)> cr

cu
and

a finite T opt exists for any kind of dependence.
If E

(
σ‖
)
≤ cr

cu
, a finite T opt never exists.

If E
(
σ⊥
)
≤ cr

cu
< E

(
σ‖
)
, a finite T opt exists for

high dependence but does not exist for low depen-
dence.

This shows the clear influence of the dependence
on the optimal maintenance policy.

Similar results are valid in case σ =
max

(
σ
(1)
s1 , σ

(2)
s2

)
. In that case, we get:

Fσ (t) = P
(
X
(1)
t > s1,X

(2)
t > s2

)
,

E (σ) =

∫ +∞

0

(
1− P

(
X
(1)
t > s1,X

(2)
t > s2

))
dt

and all conclusions are reversed. In this way, Fσ (t),
C (T ) and C (T opt) are non decreasing with depen-
dence, whereas E (σ) is non increasing with depen-

dence. In case E
(
σ‖
)
≤ cr

cu
< E

(
σ⊥
)
, a finite T opt

exists for low dependence but does not exist for high
dependence.

5 NUMERICAL EXPERIMENTS

This section illustrates the previous results for a bi-
variate subordinator with Gamma marginal processes,
constructed by trivariate reduction (see Section 3).

5.1 Numerical computations

Based on the explicit form (12) of the p.d.f. of(
X
(1)
t ,X

(2)
t

)
, it is possible to compute all the quanti-

ties analytically provided in Section 4.

As an example, in case σ = min
(
σ
(1)
s1 , σ

(2)
s2

)
and

ρ > 0, we have:

Fσ (t) = 1−
∫ s1

0

∫ s2

0

fXt (u1, u2)du1 du2

= 1−
∫ min(s1,s2)

0

Fα1t,1 (s1 − u3)

× Fα2t,1 (s2 − u3)fα3t,1 (u3)du3

where Fa,b is the cumulative distributive function of
the Gamma distribution with parameters a and b.

This provides:

∫ T

0

Fσ (t)dt

= T −
∫ T

0

∫ min(s1,s2)

0

Fα1t,1 (s1 − u3)Fα2t,1 (s2 − u3)

× fα3t,1 (u3)du3dt

Due to numerical difficulties, we actually prefer



write:∫ T

0

Fσ (t)dt

= T −
∫ T

0

∫ min(s1,s2)

0

(
1− F̄α1t,1 (s1 − u3)

)
×
(
1− F̄α2t,1 (s2 − u3)

)
fα3t,1 (u3)du3dt

=

∫ T

0

F̄α3t,1 (min (s1, s2))dt

+

∫ T

0

∫ min(s1,s2)

0

F̄α1t,1 (s1 − u3)fα3t,1 (u3)du3dt

+

∫ T

0

∫ min(s1,s2)

0

F̄α2t,1 (s2 − u3)fα3t,1 (u3)du3dt

−
∫ T

0

∫ min(s1,s2)

0

F̄α1t,1 (s1 − u3) F̄α2t,1 (s2 − u3)

× fα3t,1 (u3)du3dt

and compute the four involved quantities, which pro-
vides more accurate results.

When ρ = 0, the components are independent and,

in case σ = min
(
σ
(1)
s1 , σ

(2)
s2

)
, we get:

Fσ(t) = 1− Fα1t,1(s1)Fα2t,1(s2).

Different numerical experiments are next presented
in order to illustrate the behaviour of C(T ), T opt and
C(T opt) with respect of T and/or ρ. As for the influ-
ence of the other parameters, C (T ) is clearly increas-
ing with respect of cr, cu, a1, a2, b1 and b2, and de-
creasing with respect of s1 and s2, so that no further
study is required.

Examples 1 to 3 correspond to the case where σ =

min
(
σ
(1)
s1 , σ

(2)
s2

)
.

5.2 Example 1

The parameters of the process are a1 = 50, a2 = 70,
b1 = b2 = 1, ρ = 0.7. The failure levels are s1 = 50
and s2 = 40. The costs are cr = 1 and cu = 50. Fig-
ure 2 gives C (T ) with respect to T and the asymp-

totic unitary costs C(i) (T ) for each univariate indica-
tor (i = 1,2). Such unitary costs are computed taking

into account one single componentX
(i)
t , which means

that the time to failure is considered to be σ(i). The
induced costs are assumed to be the same as for the
bivariate case. Both components are renewed at the
same time when the system is renewed and this in-
duces the same renewal cost for the bivariate and uni-
variate cases. In Figure 2, one can observe that C (T )

and C(2) (T ) are nearly superimposed and are clearly

higher than C(1) (T ). This comes from the fact that

the different parameters are such that E
(
σ
(1)
s1

)
' 1.01

and E
(
σ
(2)
s2

)
' 0.58. As a consequence, the second

componentX
(2)
t will fail before the first oneX

(1)
t with

a high probability and in that case, it is useless to use

both components X
(1)
t and X

(2)
t . In case of very dif-

ferent components, the bivariate model consequently
does not bring much and one can simply consider the
"worse" one.
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Figure 2: C (T ) with respect of T .

5.3 Example 2

The parameters of the marginal processes are a1 = 50,
a2 = 74, b1 = b2 = 1. The failure levels are s1 = 20
and s2 = 30. The costs are cr = 10 and cu = 500.
In this case a1 < a2, s1 < s2 but the mean univari-

ate times to failures are close: E
(
σ
(1)
s1

)
' E

(
σ
(2)
s2

)
'

0.41. The function C (T ) is computed for ρ = 0, and
ρ = ρTRmax. The results are presented in Figure 3, as

well as C(i)(T ) for i= 1,2. In that case, the univariate

costs C(i) (T ) are very close one from each other. The
bivariate cost C (T ) is observed to be higher. In that
case, not taking into account both components may
lead to an under-estimated cost fonction.

5.4 Example 3

The parameters of the marginal processes are a1 =
a2 = 50, b1 = b2 = 1. The failure levels are s1 = s2 =
30. The costs are cr = 10 and cu = 500. The two com-
ponents have the same distribution and the same fail-
ure level, so that the marginal times to failure are iden-
tical. The cost function C (T ) is computed for differ-
ent values of ρ and the results are presented in Figure
4. As expected, C (T ) is observed to be decreasing
with dependence. In case of an unknown correlation,
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Figure 3: C (T ) with respect of T for ρ = ρTRmax, ρ = 0 and

C(i) (T ) for i = 1,2.

the most conservative attitude hence is to take into ac-
count both components and to consider them as inde-
pendent. Also, the univariate costsC(i) (T ) for i= 1,2
coïncides with the bivariate cost function C (T ) in
case ρ = 1. Taking into consideration one single indi-
cator hence lead to an under-estimated cost fonction.
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Figure 4: C (T ) with resp. of T for ρ = 0, 0.25, 0.5, 0.75 and 1.

The optimal cost C(T opt) and period T opt are next
plotted against the linear correlation coefficient ρ
in Figures 5 and 6. As expected, C(T opt) is non-
increasing with dependence. The optimal period T opt

is observed to be non-decreasing with dependence.
That point has not been proved from a theoretical
point of view.

5.5 Example 4

The numerical parameters are the same as for example

3, but the time to failure now is σ = max
(
σ
(1)
s1 , σ

(2)
s2

)
.

The results are provided in Figures 7 and 8. As ex-
pected, the monotony of C(T opt) and T opt with de-
pendence is reversed. The optimal cost is here a little

lower than in case σ = min
(
σ
(1)
s1 , σ

(2)
s2

)
, and the opti-

mal period a little higher. This is conform to what is
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Figure 5: Copt (ρ) with respect of ρ.
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Figure 6: T opt (ρ) with respect of ρ.

expected, because a parallel-system is more reliable
than a series-system.
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Figure 7: Copt (ρ) with respect of ρ.

5.6 Conclusion, Prospective remarks

A block replacement policy has been studied in the
new context of a bivariate deterioration modelled by
a bivariate subordinator. The influence of the depen-
dence between the marginal wear indicators on the
optimal policy has been pointed out. In the case where
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Figure 8: T opt (ρ) with respect of ρ.

the system time to failure is the minimum or the maxi-
mum of the two univariate times to failure, the optimal
cost function has been proved to be monotone with re-
spect to the dependence, with opposite monotonicities
for the two cases. When the correlation is unknown,
the safest attitude hence is to consider the correlation
which leads to the highest cost, namely consider the
components as independent in the first case (mini-
mum) and completely dependent in the second case
(maximum).

As for the optimal period, it has been numerically
observed to be monotone with dependence for all the
examples provided here, as well as for all the other
examples we may have looked at. It may then be con-
jectured that this property is always true in the stud-
ied context. However, we have not been able to prove
it theoretically. This consequently remains on open
question.

In the present paper, the choice has been made to
consider a simplified model where the system time to
failure is the minimum or the maximum of the two
univariate times to failure. Thinking of the two com-

ponents X
(1)
t and X

(2)
t as the width and heigth of a

girder for instance, one may think that a more ade-
quate criterion for high deterioration might be linked

to the grid section X
(1)
t .X

(2)
t e.g.. The time to failure

might then has the following shape:

σ = inf
(
t ≥ 0 : X

(1)
t .X

(2)
t ≥ s

)
= inf

(
t ≥ 0 :

(
X
(1)
t ,X

(2)
t

)
∈ S

)
where s is some fixed threshold and
S =

{
(x1, x2) ∈ R2+ : x1x2 ≥ s

}
. More generally,

failure times may correspond to reaching times of
failure zones, which may be quite general (S should
be an upper set namely such that if (x1, x2) ∈ S and
(x1, x2) ≤ (y1, y2), then (y1, y2) ∈ S). Further studies
should then be performed for such general failure
zones.

Also, the choice has here been made to renew both
indicators at each maintenance time. In case of indi-

cators linked to two different components, a wiser at-
titude might be to renew a component only if it is too

deteriorated (X
(i)
t ≥ Mi, where Mi is some mainte-

nance threshold). Such a maintenance policy also re-
quires further investigation.
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