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1 CIMFAV, Faculty of Engineering, University of Valparaiso, Valparaiso, Chile.

2 Regularity Team, INRIA Saclay-Ile-de-France & MAS Laboratory, Ecole Centrale Paris, France.

Abstract

We study a simpli�ed model for the drug concentration in the case of multiple oral
doses and in a situation of poor patient compliance. Our model is a stochastic one, which
is able to take into account an irregular drug intake schedule. This article is the second in a
series of three. It presents a multi-oral version of the results given in [11], that dealt with the
multi IV case. Under some assumptions, we study features of the drug concentration that
have practical implications, such as its variability and the regularity of its probability dis-
tribution. We consider four variants: continuous-time, with either deterministic or random
doses, and discrete-time, also with either deterministic or random doses. Our computations
allow one to assess in a precise way the effect of various signi�cant parameters such as
the mean rate of intake, the elimination rate, the absorption rate and the mean dose. They
quantify how much poor compliance will affect the regimen. To appreciate this impact,
we provide detailed comparisons with the variability of concentration in the cases of both
a fully compliant patient and a population of fully compliant patients with log-normaly
distributed pharmacokinetic parameters. Besides, the discrete-time versions of our mod-
els reveal unexpected links with possibly multifractal measures known in mathematics as
in�nite Bernoulli convolutions. Analogously to the multi-IV case, we �nd that the distri-
bution of the concentration in this model is either absolutely continuous or purely singular,
depending on a relevant parameter. Our results complement the ones in [11] and help un-
derstanding the consequences of poor compliance. They may have practical outcomes in
terms of drug dosing and scheduling.
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1 Introduction
In the seminal work [13], the authors attacked the problem of mathematically modeling
poor compliance using a probabilistic frame. They considered general distributions for
the random instants of drug intake and studied the mean and variance of the concentration
conditioned on the time elapsed since the last intake. Various related models were studied in
detail in [11]: the probability distribution of drug concentration in the context of multiple-
IV dosing and poor compliance was investigated when both the times of intakes and doses
are supposed to be random. In addition, both continuous-time and discrete-time versions
were considered.

The present work parallels the studies of [11] in the more realistic framework of mul-
tiple oral dosing. As in [11], we investigate below the probability distribution of drug
concentration in the context of poor compliance: the instants of drug intake are randoms,
with possibly random doses. We use the simplest possible law to model the random times
of drug intake,i.e. a homogeneous Poisson distribution. In other words, the times of drug
intake are supposed to follows a Poisson process. This assumption allows one to perform
explicit computations using the well-developed machinery on Poisson processes, and to
obtain precise results describing various aspects of the distribution of the concentration
that are important for assessing the ef�cacy of the regimen. We focus on two aspects of
practical relevance: thevariability of the concentration and theregularityof its probability
distribution.

Our results quantify the variability of the concentration around its mean showing the
exact role played by each parameter of the process. We measure how much poor compli-
ance increases this variability as compared to the full compliance case. We show that the
probability distribution limit of drug concentration may display irregular behaviours: in
our case this occurs when the ratio between the mean number of intakes per unit time and
the minimum between the elimination rate and the absorption rate is smaller than one half.
When the same ratio is smaller than one, it becomes singular (i.e. non differentiable) at
the origin. In practical terms, this amounts to quantifying, in a precise way, the situations
where the moments of intakes are too scarce (with respect to the elimination and absorption
rates), resulting in a high probability of having too small a concentration of drugs.

We also study a discrete-time version of the model. This setting reveals unexpected
links with multifractal measures which have been studied in the mathematical literature for
over seventy years under the name ofin�nite Bernoulli convolutions. Again, depending
on some parameters, the discretized concentration may exhibit an extremely irregular be-
haviour. This means that the probability of observing a concentrationC depends in a very
non-smooth way on the precise value ofC. This is obviously an undesirable feature which
may have strongly negative consequences.

As mentioned above, the present article is the second in a series of three, where the
�rst work [11] dealt with the multi IV case. Since some computations here are very similar
to this case, they are omitted and the interested reader is referred to [11] for full details.
The third paper in the series, [4], extends our results by considering more realistic random
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schedules for the time instants of drug intakes: indeed, the use a homogeneous Poisson
law is mathematically handy, but somewhat restrictive: in real situations, the schedule is
probably much more complex. [4] uses the powerful mathematical framework known as
Piecewise Deterministic Markov Modelto deal with general drug intake schedules, at the
expense of a more complex theoretical apparatus.

We do not address in this work the problem of estimating the parameters of the various
models, in particular the law of the random intake times and doses. A recent article dealing
with this issue is [2].

The remaining of this work is organized as follows: for the reader's convenience, we
present an overview of our main �ndings pertaining to the various models and their practical
implications in Section 2. In particular, we compare the variabilities in our poor compliance
models to the ones in the cases of (a) full compliance of a single patient and (b) full com-
pliance in a population where one takes into account variability due to differing elimination
rates or clearances between individuals. This allows us to highlight “equivalent scenarios”
where, for instance, we �nd the parameters of a non-compliant patient that will yield the
same variance in concentration as in a whole population with given distribution of elimina-
tion rates, or, which is the same, of a single individual whose elimination rate is unknown
and is modelled as a random variable. A reader not interested in the mathematical details
may concentrate on Section 2 to get a quick summary of our work, and refer if needed to the
details in the following sections. In Section 3, we set up the basic continuous time model
for deterministic dose random time drug intake and study its variability (Section 3.1) and
regularity (Section 3.2). In Section 4, we analyse the random doses version of this model.
As before, we study its variability (Section 4.1) and regularity (Section 4.2). We present the
discrete-time version of the deterministic dose random time model in Section 5. We derive
the discrete time concentration in Section 5.1 and study its variability in Section 5.2. In Sec-
tion 5.3, we show that the discrete-time model tends to the continuous-time one when the
discretization step tends to 0. Section 5.4 describes the complex regularity behaviour of the
probability distribution of the concentration in the discrete-time model. Finally, Section 6
deals with the discrete-time random-dose case: its variability is described in Section 6.1,
and its limiting behaviour when the discretization step tends to 0 is studied in Section 6.2.

2 Overview: pharmacokinetic implication of non com-
pliance

2.1 Purely deterministic model (full compliance)

To assess the impact of poor compliance, it is useful to contrast it with situations of full
compliance. We derive in this section the variability in concentration for a single fully
compliant patient. The next section will deal with the variability in a population of fully
compliant patients.
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Let us �rst recall the basic equations. We consider in this work the case of multiples
oral administration and we suppose that kinetics of �rst order are involved. Our �rst model
is a very classical one: it assumes that the patient takes orally a constant doseD at regularly
spaced timest0; t1; : : : ; tn ; : : :, with t i = i

� , that is, the patient takes drugs every1
� units of

times for some positive� .
For completeness and future use, we brie�y recall how the equations governing the ab-

sorption and elimination processes are obtained. The oral absorption process is concerned
with the amount of drug at the absorption site remaining to be absorbed. The amount of
drug at the absorption site, denotedAoral , is characterized by the absorption coef�cient rate
ka. At each drug intake timet i , Aoral (t) increases byD. Betweent i andt i +1 , the effect of
the dose taken att i decreases exponentially fast, with exponential speedka. Formally:

d
dt

Aoral (t) =
X

i :t i � t

D� (t � t i ) � kaAoral (t); (1)

with � denoting the Dirac distribution. Thus, the rate of absorption of drug at timet is
kaFAoral (t), whereF is the absolute bioavailability;i.e. the fraction of each dose which
is absorbed when the drug is given by the oral route.

The elimination process describes by the irreversible loss of drug from the site of mea-
surement. We assume that the drug is eliminated with a constant elimination rateke. De-
notingAcentral the amount of drug in the body, one gets that the rate of elimination of drug
is keAcentral .

The model is given from mass balance considerations: at any given time, the dose is
accounted for by the amount of drug at absorption site plus the amount of drug in body plus
the amount of eliminated drug. Thus, the sum of the rates of change of the drug in these
compartments must equal zero, so that the rate of change of drug in body is equal to the
rate of absorption minus the rate of elimination. This leads to:

d
dt

Acentral (t) = kaFAoral (t) � keAcentral (t): (2)

The drug concentration at timet is de�ned by

C(t) =
Acentral (t)

Vd
; (3)

whereVd is the apparent volume of distribution of the drug with respect to its concentration
in plasma.

The solution of equation (1) is

Aoral (t) = D
X

i

e� ka (t � t i )1l(t � t i ) ; (4)

where1l(t � t i ) denotes the indicator function of the setf t 2 R : t � t i )g, which equals 1 if
t � t i and 0 otherwise.
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Applying the parameter-variation method to equation (2) one obtains, from equations
(3) and (4), the following expression for the deterministic drug concentration processCd:

Cd(t) =
FD
Vd

ka

ka � ke

X

i

�
e� ke(t � t i ) � e� ka (t � t i )

�
1l(t � t i ) : (5)

We will wish to compare the values of the expectation and the variance in various
stochastic models to the one in the case of full compliance. Of course, in the frame of
full compliance, there is no randomness involved, and one cannot de�ne proper mean and
variance. However, since the concentration varies in time, it makes sense to de�ne the mean
as the average of concentration over all values oft, and to de�ne the variance correspond-
ingly. In other words, we denote:

Ed = lim
T !1

1
T

Z T

0
Cd(t)dt; (6)

V ard = lim
T !1

1
T

Z T

0
(Cd(t) � Ed)2 dt (7)

for the mean and variance with respect to time ofCd(t). Note thatEd is closely related
to the usual PK metricAUC. V ard represent the time-average square deviation from the
long term averageEd. Simple computations lead to:

Ed = � e
FD
Vd

; (8)

V ard =
� e

2

�
FD
Vd

� 2 �
1

1 + r
+ G(r )

�
: (9)

where

G(r ) =
2

1 � r 2

�
1

e1=� e � 1
�

r
e1=r� e � 1

�
� 2� e; (10)

� e := �
ke

, � a := �
ka

andr := ke
ka

= � a
� e

. These quantities are related to ones considered in
[14].

For comparison with the random models below, we note the following facts:

� When� a ! 0, we are in the case of instantaneous absorption, which is equivalent to
the multi-IV case. In this frame, we recover the results of [11].

� In Formula (9), the termG(r ), given by Formula (10), is always negative, as may
easily be checked.

� The termG(r ), seen as a function ofr , is increasing. It is thus minimum whenr
equals0, and it tends to0 whenr tends to in�nity.

� When� e tends to0, the variance tends to0 at rate� 2
e when� a 6= 0 and at rate� e

when� a = 0 .
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� For a �xed meanEd = 1 , and when� e tends to in�nity,V ard tends to0 at speed1
� 2

e
.

When� e tend to0, the variance tends to1
2� a

when� a 6= 0 , and to in�nity at speed
1

� e
when� a = 0 .

� P(jCd � E(Cd)j � 
E (Cd)) � 1
� � 2 
 2 for 
 large enough, where� � = max f � e; � ag

(see Formula (25) for a more precise expression). Assume� a, � e tend to in�nity at
the same rate. Then, the bound is1� � 4 
 2 .

These formulas quantify the obvious fact that the variability of concentration is a de-
creasing function of the number of takes per unit time. As we show below, non compliance
ampli�es the variability of the concentration in a way we will precisely measure.

2.2 Full compliance with population parameter variability

In the previous section, we have characterized the variability for a deterministic PK model
de�ned by a unique set of PK parameters,i.e. the case of a single compliant subject with
perfectly known pharmacokinetic parameters. We now investigate variability in a Pop-PK
model for the case of a whole population. A Pop-PK involve randomly distributed PK
parameter to re�ect the peculiarity of each patient and other unexplained variability. A
typical assumption is to consider that individual parameters are log-normally distributed in
the population. The log-normal distribution is a common modelling for positive continuous
quantities, and seems to �t well with the �nding of large scale Pop-PK studies [8, 18]. We
also assume that each subject in the population is fully compliant and that their drug intake
frequency� is the same.

Let us �rst consider the case where the elimination rate is random and the other param-
eters such asD, Vd, F , ka are constants. This amounts to replacingke by keUke in the
preceding computations, whereke is the typical parameter value of the population andUke

is a dimensionless random variable that represent the variability among subject, which is
assumed to follows a log-normal distribution with parametersmke = 0 and� 2

ke
. The choice

mke = 0 ensures that the reference valueke is the median of the distribution. We wish to
examine the impact of this variability on the long-term average concentrationEd, given by
equations (6) and (8). The variability ofEd is solely due to the variation ofkeUke . In other
words, we consider the variableEd(keUK e ) with Uke following a log-normal distribution,
and measure its variability. Thus, the mean and variance ofEd across the population are
given by:

Epop(Ed) =
�
ke

FD
Vd

Epop

�
1

Uke

�
=

�
ke

FD
Vd

e� 2
k e

=2;

Varpop(Ed) =
�

�
ke

FD
Vd

� 2

Varpop

�
1

Uke

�
=

�
�
ke

FD
Vd

� 2

e� 2
k e

�
e� 2

k e � 1
�

:

Let us rewrite these formulas in terms� e and the coef�cient of variation of the elimi-
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nation rateCVke =
q

e� 2
k e � 1:

Epop(Ed) = � e
FD
Vd

q
1 + CV 2

ke
;

Varpop(Ed) =
�

� e
FD
Vd

� 2

CV 2
ke

�
1 + CV 2

ke

�
:

The same approach applies if one wishes to take into account in addition the variability
of Vd andF across the population. In this case,ka is assumed constant and one simulta-
neously replaceske by keUke , Vd by VdUVd andF by FUF , whereUke , UVd andUF are
random variables log-normally distributed with median parametersmke = 0 , mVd = 0 ,
mF = 0 and variability parameters� 2

ke
, � 2

Vd
, � 2

F respectively. To perform the computa-
tions, the knowledge of the joint distribution ofUke andUVd , or at least that ofUke UVd is
needed. Joint distributions are not usually reported in Pop-PK studies, but since the product
keVd is nothing but the clearanceCl, we can see that in this case we have:

Cl = keUke VdUVd = Cl0UCl ;

whereCl0 = keVd andUCl = Uke UVd represent the variability of clearance, whose dis-
tribution is more frequently reported in Pop-PK studies. Note that the log-normality of
clearance typically reported in the literature is compatible with the joint log-normality of
(Uke ; UVd ). Thus, if we assume thatUCl and UF are log-normally distributed random
variables with parametersmCl = 0 , mF = 0 and variability parameters� 2

Cl , � 2
F re-

spectively, and we assume that the variablesUCl andUF are correlated with correlation
� = cov(log(Uke ); log(UVd ))=� Cl � F 2 [� 1; 1], computations similar to the ones above
lead to:

Epop(Ed) = � e
FD
Vd

p
1 + CV 2; (11)

Varpop(Ed) =
�

� e
FD
Vd

� 2

CV 2 �
1 + CV 2�

; (12)

whereCV =
p

e� 2
Cl + � 2

F +2 �� Cl � F � 1 is the coef�cient of total variation. Note that indi-
vidual variations ofF are dif�cult to distinguish from ones ofCl. We have therefore chosen
to control the variability through the coef�cient of total variationCV, which encompasses
the variability ofke, Vd andF .

For consistency, we will always use in the sequel the following PK parameters similar
to those of imatinib, see [2, 3, 19]. They are given in Table 1.
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Parameter Unit TV SD CV (%)

D mg 150 0 0%
ka h� 1 0.61 0 0%
F 1 0.2462 25%
Cl lh � 1 14.3 0.3491 36%
Vd l 347 0.5781 63%

Table 1: PK parameters of imatinib. TV: Typical Value; SD: Standard Deviation; CV: Coef�cient of variation.

Suppose that the correlation parameter� is 0. Then the coef�cient of total variation is
CV = 44:74%, which correspond to a standard deviation of0:4272. Assuming that doses
are taken every1� = 12h, one obtains for the mean and variance:

Epop(Ed) = 0 :9576mg=l; and Varpop(Ed) = 0 :1836mg2=l2;

where we have assumed for simplicity thatVd is constant,i.e. Cl = keVdUke , whereUke is
log-normal with parametersmke = 0 and� 2

ke
= � 2

Cl .
Note that the coef�cient of total variationCV is an increasing function of� , that reaches

its maximumCVmax = 65:22% when� = 1 and its minimumCVmin = 10:31% when
� = � 1.
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Figure 1: Eight sample paths of the concentration taking into account variability of clearance and bioavailability,
graphed for the �rst fourteen days. The black solid line is the population mean� pop , the dotted-dashed lines
correspond to the con�dence bands� pop � � pop and the dashed lines to the con�dence bands� pop � 2� pop .

We display on Figure 1 eight sample evolutions of the concentration for the �rst 14 days
in this scenario. The simulations show that a steady state is quickly reached. In addition, all
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but one samples lie within one standard deviation� pop =
p

Varpop(Ed) of the population
mean� pop = Epop(Ed).

In the following sections, we return to the case of a single subject with perfectly known
PK parameters, but with poorly compliant behaviour, and we will compare the variability
in the various cases.

2.3 Continuous model with random intake instants and deter-
ministic doses

In the context of poor compliance thet i are not �xed, but are rather modelled as random
variables. We denote these stochastic time instants as(Ti )2 N and we assume that the inter-
valsSi = Ti � Ti � 1 between two doses are i.i.d. with exponential distribution of parameter
� . In other words, the sequence(Ti ) i 2 N is supposed to be a homogeneous Poisson process,
and the mean duration between two drug intakes is equal to1

� . The stochastic concentration
at timet reads :

C(t) =
FD
Vd

ka

ka � ke

X

i

�
e� ke(t � Ti ) � e� ka (t � Ti )

�
1l(t � Ti ) : (13)

We illustrate this model on Figure 2, where we display eight sample paths of the evolu-
tion of C(t), simulated using the parameters given in Table 1 and� � 1 = 12h.
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Figure 2: Eight sample paths of the concentration with Poisson distributed instant of intakes, for the �rst 14 days.
The black solid line is the limit concentration meanE(C), the dotted-dashed lines delineate the con�dence bands
E(C) �

p
Var( C) and the dashed lines to the con�dence bandsE(C) � 2

p
Var( C).

We will show in Section 3 thatC(t) has a well de�ned limit whent tends to in�nity. We
are interested in the variability and regularity properties of this steady state, or asymptotic
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concentration, which is denotedC. The following equations are established in Section 3.1:

E(C) = � e
FD
Vd

; (14)

Var( C) =
� e

2

�
FD
Vd

� 2 1
1 + r

: (15)

In view of (14) and (15), we remark that:

� As expected, the means are the same in the deterministic and random models.

� As is intuitively obvious, the variance in the case of full compliance is always smaller
than the one in the random situation. This can be observed from the fact that the
term G(r ) = 2

1� r 2

�
1

e1=� e � 1
� r

e1=r� e � 1

�
� 2� e in Formula (9) is always negative.

Formulas (9) and (15) quantify in a precise way how much variability is increased as
an effect of poor compliance.

� When� e tends to0, the variance tend to0, with the same speed as in the deterministic
model.

� For a �xed mean equal to 1, when� e tends to in�nity, the variance tends to0 at
speed 1

� e
. This is to be compared to the faster speed of convergence of1

� 2
e

in the

deterministic case. When� e tend to0, the variance tends to1
2� a

for � a 6= 0 , which
is strictly larger than the corresponding limit in the deterministic case. Finally, when
� a = 0 , the variance tends to in�nity at same rate as in the deterministic model (1

� e
).

� P(jC � E(C)j � 
E (C)) � 1
2� � 
 2 for 
 enough large and for all� � (recall that

� � = max f � e; � ag). This is a slower speed of convergence than in the deterministic
case, which is 1

� � 2 .

� The probability that the long-term concentration exceeds a given level
 decays as
1


 2 . More precisely,P(C � 
 ) � 7
6
 2

�
F D
Vd

� 2
� 2

e

�
1 + 1

2(� e � � a )

�
. If E(C) = � e

F D
Vd

is assumed to be constant, one sees that this probability decays at the same speed for
all values of� e, � a.

The coef�cient of variation of the limit concentrationC is 1=
p

2(� e + � a); as a conse-
quence, variability is larger for smaller values of� � , i.e. when the absorption process or the
elimination process is fast compared to the mean frequency of drug intake. In Section 3.2,
we will show that� � also controls the regularity of the limit concentration distribution.

The difference between the varianceV ard and Var( C), given by equations (9) and
(15) respectively, is largest whenr is small, and vanishes whenr tends to in�nity. The
interpretation of this fact is straightforward: for a �xedke, a larger means a smallka and
thus a slow absorption. In this case, the effect of a drug intake on the system takes a very
long time to appear, and thus a random delay in the intake has almost no effect. On the
contrary, a smallr translates into fast absorption, and any irregularity in the schedule has
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a noticeable impact. We also remark that, because of the “damping” introduced byka in
the oral model, the increase of variance due to random intakes is smaller here than in the
intravenous model studied in [11]. Whenr tends to0, we recover the results of [11] since
the damping vanishes. Again, the formulas above quantify precisely these effects.

In a way similar to what was observed in the deterministic model, the variability of
concentration is a decreasing function of the expected number of takes per unit time� � 1:
as is intuitively clear, increasing the mean frequency of intakes while keeping constant the
average quantity of administrated drug diminishes the negative impact of poor compliance
in terms of the probability of departing signi�cantly from the mean concentration. In order
to compare the variances in the deterministic (9) and non compliant cases (15), we plot their
evolutions as a function of� e and� a in two situations. First, in Figure 3, we let� e and
� a vary and keep the other parameters,i.e. D; F andV d, constants. This corresponds for
instance to the case where the number of doses per unit time (or average number of doses
per unit time in the stochastic case) evolves, while maintaining everything else unchanged.
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(a) Deterministic case
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(b) Random case

Figure 3: Evolution of the variance as a function of� e and� a , when all other parameters are kept constant.

As can be seen on Figure 3, when� e tends to in�nity, the variance in the deterministic
case reaches a plateau, while the random situation leads to an unbounded variance. Hence
non-compliance has here a dramatic effect. When� e tends to0, both variances tend to0,
at rate� 2

e when� a 6= 0 and at rate� e when� a = 0 .
The conclusions in this frame are however somewhat unrealistic, since they lead to an

unbounded increase of the mean when� e tends to in�nity. This is why, in Figure 4, we
consider the more reasonable situation where� e and� a vary but the mean is kept constant.
From equations (9) and (15), one sees that this simply translates into ensuring that� e

F D
V d is

constant. Thus we are in the case where, for instance, one increases the frequency of drug
intake while decreasing accordingly the unit dose. Here, we take� e

F D
V d = 0 :8743, which

corresponds to the parameters given in Table 1, and� � 1 = 12h. Figure 4 indicates that
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both variances tend to0 when� e tends to in�nity. The speed of convergence is however
faster, as expected, in the deterministic case (1

� 2
e
) than in the random one (1� e

). Consider
now the case where� e tend to0: when� a 6= 0 , the variance in the random frame tends to

1
2� a

and to a strictly smaller value in the deterministic case. When� a = 0 , both variances
tend to in�nity at same rate (1� e

).
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Figure 4: Evolution of the variance as a function of� e and� a when mean is kept constant.

An interesting comparison is to plot the values of� in the random model as a function
of the ones of� in the deterministic one that yield the same variance, as shown in Figure 5.
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Figure 5: Average number of doses per hour in the non-compliant case as a function of the number of doses per hour
in the fully compliant one yielding same variance for the concentration.
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For instance, the point(1=24; 0:079) in the graph on Figure 5 means that a compliant
patient taking a dose every day will have same concentration variability as a non compliant
one taking in average a dose every12:66 = 1=0:079h, when the mean concentration, mean
dose per day and all other parameters are the same in both situations.

Let us now compare the variabilities induced by non compliance in the random instants
model and by differing PK-parameters in a fully compliant population as studied in Sec-
tion 2.2. We consider the case whereka andVd are constant andke, F are replaced by
keUke andFUF , with Uke andUF log-normally distributed random variables with median
parametersmke = 0 , mF = 0 and variability parameters� 2

ke
, � 2

F respectively. As in Fig-
ure 5, we plot on Figure 6 the values of� in the random model as a function of� 2

ke
and

� 2
F that yield the same variance of concentration when the mean of concentration, the mean

dose per day and the other parameters are the same in both situations. From equations (11),
(12), (14) and (15), one sees that this amounts to setting:

� =
ke

2(1 + r )
�

e� 2
k e

+ � 2
F � 1

� ;

where� is the mean number of doses per hours of the non compliant patient,ke is both
his elimination rate and the mean elimination rate in the population,� 2

ke
and� 2

F are the
variances of the elimination rate and the bioavailability in the population respectively.
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Figure 6: Average number of doses per hour in the non-compliant case as a function of the variance of the elimination
rate and variance of bioavailability, in a fully compliant population yielding same variance for the concentration.

For example, the point(0:12; 0:06; 0:1) in the graph on Figure 6 has the following
meaning: the variance of the concentration for a population of compliant patients with
� 2

ke
= 0 :12 and� 2

F = 0 :06 is the same as the one of a single non compliant patient taking
in average a dose every10(= 1=0:1) hours. Likewise, a single non compliant patient taking
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in average a dose every day displays the same variance in concentration as a population of
fully compliant individuals with� 2

ke
+ � 2

F = 0 :38, i.e. a coef�cient of total variation
equal to68%. Note that the same conclusions hold if one consider a population where the
clearance instead of the elimination rate follows a lognormal distribution.

Let us now consider the regularity of the distribution ofC. It is shown in Section 3.2 that
the smoothness of the distribution of the concentration is governed by� � = max f � e; � ag.
We prove that, in the long term, the cumulative probability distribution of drug concentra-
tion may display two types of behaviours: when� � is larger than one, the distribution is
regular, while, when it is smaller than one, it is singular only at the origin. Thus,� � = 1
is the critical value below which the moments of intakes are too scarce with respect to
the elimination and absorption rates, resulting in a high probability of having too small a
concentration of drugs.

To illustrate this fact, we plot on Figure 7 histograms representing the empirical proba-
bility distribution ofC(T), for a �xed timeT, in two particular cases:� � = 2 and� � = 0 :5.
The value ofD in each case was adjusted accordingly in order to keep a constant mean.
These histograms were obtained by simulating50; 000 independent sample paths of con-
centration in each scenario until timeT and distributing the outcomes into100 evenly
spaced bins. The timeT was chosen large enough so that the steady state has been reached
(we have setT = 100 maxf 1=�; 1=keg). The singularity of the distribution ofC at the
origin in the case� � < 1 (second histogram) manifests itself through the sharp spike in the
�rst bin.
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Figure 7: Histogram of the distribution of C

The reader is referred to Section 3 for more details on this model.
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2.4 Continuous model with random intake instants and random
doses

In this section, we sum up the results obtained in Section 4, where we generalize the con-
tinuous model of Section 2.3 to allow for random doses. The idea is that the careless patient
that has an irregular schedule is likely to also mess with the doses. For instance, he might
take a double dose to make up for a missing one. Formally, this translates into the fact that
the quantityD in (5) is now a random variable that may vary at each take rather than being
a constant. In other words, the concentration, denotedCrd (t), is now given by:

Crd (t) =
FD
Vd

ka

ka � ke

X

i

D i

�
e� ke(t � Ti ) � e� ka (t � Ti )

�
1l(t � Ti ) ; (16)

whereD , F andVd are constants, the(Ti ) i 2 N again form a homogeneous Poisson process,
and the(D i ) i 2 N are random variables. The dose taken at timeTi is DD i . It thus seems
natural to assume thatE(D i ) = 1 (i.e on average, the patient takes the required dose),
that D i is supported onR+ , and that it has compact support,i.e. the patient cannot take
arbitrarily large doses (although we shall need only weaker assumptions).

We illustrate this model by showing on Figures 8 and 9 simulated sample paths of the
concentration in two particular cases considered in more details in Section 4: in the �rst
one, the random factorsD i follow a uniform distribution on an interval[a; b], while in the
second one they follow a discrete distribution taking two possible valuesd1 andd2 with
probabilityq1, q2.
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Figure 8: Eight sample paths of the concentration with Poisson distributed instant of intakes and discretely dis-
tributed random doses, for the �rst 14 days. The black solid line is the limit concentration meanE (C rd ), the
dotted-dashed lines correspond to the con�dence bandsE (C rd ) �

p
Var( C rd ) and the dashed lines to the con�-

dence bandsE (C rd ) � 2
p

Var( C rd ).

The PK parameters chosen for the simulation of the sample paths are the ones given in
Table 1 with an average time between intakes equal to� � 1 = 12h. The parameters for the
random doses in both cases are given in Table 2.
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d1 = 0:4 d2 = 1:9 q1 = 0:6 q2 = 0:4 a = 0:2 b= 1:8

Table 2: Numerical values of the parameters of the random doses distributions
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Figure 9: Eight sample paths of the concentration with Poisson distributed instant of intakes and uniformly dis-
tributed random doses, for the �rst 14 days. The black solid line is the limit concentration meanE (C rd ), the
dotted-dashed lines correspond to the con�dence bandsE (C rd ) �

p
Var( C rd ) and the dashed lines to the con�-

dence bandsE (C rd ) � 2
p

Var( C rd ).

We prove in Section 4.1 that the mean value in this model is the same as in the previous
ones,i.e.

E(Crd (t)) = E(C(t)) :

Furthermore, under the assumption that the doses(D i ) i 2 N do no depend on the times
(Ti ) i 2 N, we show the following equality:

Var( Crd (t)) = (1 + Var( D1))Var( C(t)) :

In other words, the variance in the case of random dosing is simply the one of the determin-
istic dose case multiplied by1 + Var( D1). As a consequence, estimating quantities such
asP(jC � E(C)j � 
 E(C)) or P(C � 
 ) or comparing to the case of (population) full
compliance is readily done onceVar( D1) is known. In Section 4.1, we detail two particular
cases: the �rst one is whereD i is uniformly distributed on a interval, and the second one is
where it takes values in a discrete set. We characterize the situations leading to the largest
variances for both distributions (formulas (33) and (35)).

In contrast to variability, random dosing does not affect the regularity of the distribution
of the long term concentration: this distribution is again smooth when� � > 1 and is
singular at0 otherwise.
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2.5 Discrete model with random intake instants and determin-
istic doses

We study a time-discretized version of the random model presented in Section 2.3. The
general idea is that, instead of taking the drug at arbitrary time instantst 2 R+ , the patient
will only do so at times which form a random subset off tn

l = l=n; l 2 Ng, wheren is a
�xed number. There are two main reasons for considering such a model. First, there are
indeed natural situations where a time discretization does occur. For instance, the medi-
cation must sometimes be taken at precise moments, like before lunch. Many people will
always have their lunch at a �xed time, like certain workers or many older people. Second,
as we show in Section 5.3, the time discretized model tends to the continuous one when the
discretization step tends to 0. Thus, forn large enough, the practical difference between
both models vanishes. Nonetheless, the discrete model displays various interesting and
intriguing features that are not present in the continuous one. Let us �nally mention that
considering the discretized model is very close to sampling the concentration of the con-
tinuous one. Since blood concentrations cannot be monitored continuously, the outcome
of any clinical study is discrete in nature, which gives further justi�cation for the discrete
model.

We show in Section 5.1 that the steady state discretized concentrationY(p) in the situ-
ation where the patient takes a doseD with probabilityp independently at each timej=n
reads:

Y(p) =
FD
Vd

ka

ka � ke

1X

j =0

�
� j

e � � a
j �

X j ; (17)

where the(X j ) j 2 N are i.i.d. Bernoulli random variables with parameterp (i.e. X j = 0
with probability1 � p andX j = 1 with probabilityp). The parameter� e = e� ke=n is the
elimination rate for one time step while� a = e� ka =n is the absorption rate for one time
step. As explained in Section 5.1, in the discrete model, the number of drug intakes per unit
time isnp, thus one has to setp = �

n to ensure correspondence with the continuous model.
Set� := F D

Vd

ka
ka � ke

. The mean and variance of the discretized concentration are given
by the following formulas:

Edisc := E[Y(p) ] = �p
�

1
1 � � e

�
1

1 � � a

�
;

V ardisc := Var( Y(p) ) = � 2p(1 � p)
�

1
1 � � 2

e
�

2
1 � � e� a

+
1

1 � � 2
a

�
:

Note thatEdisc andV ardisc tend respectively to the mean and variance in the continu-
ous model with random instants of intakes whenp tends to0.

If ones �xesEdisc = 1 , then the variance in the discrete model becomes:

V ardisc =
1 � p

p
(1 � � e)(1 � � a)(1 + � e� a)
(1 + � e)(1 + � a)(1 � � e� a)

:
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ThusV ardisc tends to0 at speed1� p
2� e

when � e tends to in�nity, which is the same rate
asV ar, the variance in the continuous random model of Section 3.1. When� e tends to
0, V ardisc tends to1� p

p
1� � a
1+ � a

in contrast to both the deterministic and random continuous
cases, where the variance tends to in�nity. Figure 10 displays the evolution of the ratio
V ardisc=V ar as a function of� e and� a when the mean is kept constant.

Formula (36) in Section 5.2 gives the probability that the concentration departs signif-
icantly from its mean. It is interesting to compare it with (24) to contrast the impact of
non-compliance in the discrete and continuous time models, and to (25) to measure the
added variability with respect to the fully compliant situation.

The study of the regularity of the distribution is much more involved in the discrete
case than in the continuous one, as the former may display a fractal behaviour. Indeed, for
some values of the parameters, the distribution will be everywhere singular. This means
that the evolution of the distribution varies wildly for most values of the concentration.
In addition, the dichotomy smooth/singular is not governed by� � alone, but by complex
relations betweenke; ka and the discretization step. More precisely, the relevant parameter
here is� � = � e _ � a and the regularity of the discretized model is very different depending
on whether� � < 1

2 or � � � 1
2 .

When� � < 1
2 , the distribution ofY(p) is singular with respect to the Lebesgue measure.

This means that, in this situation, the probability distribution of the concentration will be
highly irregular : it will vary erratically, taking only very particular values, and the prob-
ability that it ranges in some interval varies wildly when the interval changes. Note that
� � < 1

2 is equivalent top > � � log(2) or k� > n log(2) with k� = ke ^ ka. This re�ects
the fact that, for �xedk� , the time instants at which the patient is supposed to take his drugs
are suf�ciently spaced, and that he forgets to do so randomly at some of these instants.

The case� � > 1
2 is mathematically much more delicate and is not completely settled.

What is known is that the distribution ofY(p) is absolutely continuous for almost all� �

in ( 1
2 ; 1) whenp = 1

2 : in effect, this means that the distribution of the concentration has
a probability density and thus we are in the usual situation where the probability that the
concentration ranges in some interval varies smoothly when the interval changes.

See Section 5.4 for more details.

2.6 Discrete model with random intake instants and random
doses

Similarly to Section 2.4, we consider a random dose variant of the previous model. The
steady state concentration now reads:

Y rd
(p) = �

1X

j =0

(� j
e � � j

a)D j X j ; (18)

which accounts for the fact that the stochastic dose at timej=n is equal to 0 orDD j , where
the random variablesD j are i.i.d. with mean 1 and take values in an interval[dm ; dM ] with
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0 < d m < d M < 1 . The meanE rd
disc and varianceV arrd

disc in the random-dose discretized
model are given by (see Section 6):

E rd
disc = �p

�
1

1 � � e
�

1
1 � � a

�
= Edisc ;

V arrd
disc =

�
Var( D1)

1 � p
+ 1

�
V ardisc :

Random-dosing thus results in multiplying the variance of the deterministic-dose dis-
cretized model byVar( D 1 )

1� p + 1 . It is then easy to study the variability of the random-dose
discretized model using the analysis developed in Section 5.2 for the discretized model.

We do not have at this time any signi�cant result concerning the regularity of the distri-
bution of the concentration in this model.

This ends the overview of our models and their main features. The reader will �nd in
the next sections the precise derivations of the results mentioned above, along with a more
detailed analysis of the models.

3 Continuous model with random intake instants and
deterministic doses
In this section we study the main properties of the random concentration given by (13),
which we recall here for convenience:

C(t) =
FD
Vd

ka

ka � ke

X

i

�
e� ke(t � Ti ) � e� ka (t � Ti )

�
1l(t � Ti ) ;

where(Ti ) i 2 N is a homogeneous Poisson process with parameter� . The probability distri-
bution ofC(t) may be described through its characteristic function' t . It is easily obtained
by applying Campbell's theorem [9]. In our case, this yields:

' t (� ) = exp
�

�
Z t

0

�
exp

n
i��

�
e� ke(t � x) � e� ka (t � x)

�o
� 1

�
dx

�

� exp
n

i��
�

e� ke t � e� ka t
�o

:

where we recall that� := F D
Vd

ka
ka � ke

.

The change of variableu = e� (t � x) leads to:

Proposition 1. The characteristic function ofC(t) is

' t (� ) = exp

(

�
Z 1

e� t

exp
�

i��
�
uke � uka

�	
� 1

u
du + i��

�
e� ke t � e� ka t

�
)

: (19)
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3.1 Variability of the concentration

The characteristic function allows us to compute the mean and variance ofC(t):

E(C(t)) = ��
�

1 � e� ke t

ke
�

1 � e� ka t

ka

�
+ �

�
e� ke t � e� ka t

�
;

so that, in the long term,

lim
t !1

E[C(t)] = � e
FD
Vd

; (20)

Likewise, the variance ofC(t) reads:

Var( C(t)) = �� 2

 
1 � e� 2ke t

2ke
+

1 � e� 2ka t

2ka
� 2

1 � e� (ka + ke)t

ka + ke

!

;

from which one gets

V ar = lim
t !1

Var( C(t)) =
� e

2
1

1 + r

�
FD
Vd

� 2

; (21)

with r := ke
ka

.
Note that the convergence in (20) and (21) are exponential: only a few cycles are needed

before the steady state is reached. The same remark applies to all convergences below.
In the next section, we show that, whent tends to in�nity,C(t) also converges to a well

de�ned random variable, denotedC, and we investigate in details some of its properties.
Before, let us give a �nal result of interest pertaining to the variability of the concentration
in the non-compliant case. More precisely, the following proposition yields bounds on the
probability that the concentration exceeds a given (large) level, or departs signi�cantly from
its mean.

Proposition 2. For 
 large enough,

P(C(t) � 
 ) �
7

6
 2

�
FD
Vd

� 2 �
� e

� e � � a

� 2

H (t; ke; ka; � e; � a); (22)

P(C � 
 ) �
7

6
 2

�
FD
Vd

� 2

� 2
e

�
1 +

1
2(� e � � a)

�
: (23)

P(jC � E[C]j � 
E [C]) �
1

2� e
 2

1
1 + r

: (24)

where

H (t; ke; ka; � e; � a) =
�
(� e � 1)

�
1 � e� ke t

�
� (� a � 1)

�
1 � e� ka t

�� 2

+
� � e

2

�
1 � e� 2ke t

�
� � a

2

�
1 � e� 2ka t

��
:
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Proof. This is a direct application of the classical bound (see, e.g. [12], p. 209):

P(C(t) � 
 ) � 7

Z 1




0
(1 � Re(' t (� ))) d�;

valid for 
 > 0, and whereRe denotes the real part. Indeed,

Re(' t (� )) = cos
�

�� (e� ke t � e� ka t ) + �
R1

e� t
sin( i�� (uk e � uk a ))

u du
�

� exp
�

�
R1

e� t
cos( �� (uk e � uk a )) � 1

u du
�

;

and routine estimates yield (22). Inequality (23) follows in a similar way. Finally, (24) is
simply Chebychev inequality.

Note that, in the deterministic case (full compliance), and with the same de�nition of
the variance given by (7) in Section 2.1, one has in place of (24):

P(jCd(t) � E[Cd]j � 
E [Cd]) �
1

2� e
 2

�
1

1 + r
+ G(r )

�
; (25)

with G(r ) given by (10). This is another quantitative way to measure by how much the
probability of differing from the mean will be larger in the non-compliant case. For in-
stance, when� e tends to in�nity but� a remains bounded (which implies thatr tends to 0),
the above bound is of the order of1� 2

e 
 2 , and thus much smaller than the one in (24). When
� a tends to in�nity but � e remains bounded (i.e. r tends to in�nity), the bound is of the
order of 1

� 2
a 
 2 , again much smaller than the one in (24). Finally, when� e and� a tend to

in�nity at the same rate, the bound in the deterministic case is of the order of1
� 4

e 
 2 . This
was illustrated on Figure 3.

3.2 Regularity of the limit distribution

In this section, we study the long term behavior of the drug concentration, that is, the
distribution function of the limitC := lim t !1 C(t), where the limit is taken in the sense
of convergence in distribution.

Proposition 3. The random variableC(t) converge in distribution, whent tends to in�nity,
to a well de�ne random variableC whose characteristic function is

' (� ) = exp

(

�
Z 1

0

exp
�

i��
�
uke � uka

�	
� 1

u
du

)

: (26)

Proof. Whent tends to in�nity, ' t tends pointwise to' , which is continuous at� = 0 . By
Lévy's theorem, this implies the result.
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Note that the distribution ofC invariant by time reversal: looking “backwards” in time,
one see thatC(t) has the same law as

C0(t) =
FD
Vd

ka

ka � ke

X

i

�
e� keTi � e� ka Ti

�
1l(t � Ti ) ;

ast tend to in�nity, the random variablesC0(t) converge almost surely to

C0 =
FD
Vd

ka

ka � ke

X

i

�
e� keTi � e� ka Ti

�
;

which therefore has the same distribution asC. In the sequel, we shall write

C =
FD
Vd

ka

ka � ke

X

i

�
e� keTi � e� ka Ti

�
;

since we are only interested in distributional properties.

Proposition 4. The characteristic function' satis�es

j' (� )j � K j� j � � �
; when � ! 1 ;

with K a positive constant and� � = �
(ke^ ka ) = max f � e; � ag.

Proof. One computes:

j' (� )j = exp

(

� �
Z 1

0

1 � cos
�
��

�
uke � uka

��

u
du

)

=: exp f� �I (� )g :

Set0 < � < 1, and decompose the integralI (� ) as follows:

I (� ) = I 1(� ) � I 2(� ) � log(� ); (27)

where

I 1(� ) =
Z �

0

1 � cos
�
��

�
uke � uka

��

u
du;

I 2(� ) =
Z 1

�

cos
�
��

�
uke � uka

��

u
du:

(28)

When0 � u � � , we have that�
�
uke � uka

�
� j � juke^ ka , and thus

I 1(� ) �
Z �

0

1 � cos
�
��u ke^ ka

�

u
du

�
1

ke ^ ka
log(� j� j) +


 e

ke ^ ka
+ log(� ) + O

�
1
�

�
;

(29)
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where
 e is the Euler constant.

Denoteh(u) = �
�
uke � uka

�
. The functionh has a global maximum atu0 =

�
ke
ka

� 1
k a � k e

with h" (u0) < 0. Stationary phase arguments imply that, when� tends to in�nity,

I 2(� ) � Re

 Z 1

�

ei�� (uk e � uk a )

u
du

!

� Re

 
ei ( �h (u0 )� �= 4)

p
2�

u0
p

� jh" (u0)j

!

=
cos(�h (u0) � �= 4)

u0

s
2�

� jh" (u0)j

= O
�

1
p

�

�
:

(30)

Formulas (27), (28), (29) and (30) entail that

I (� ) =
1

ke ^ ka
log(� j� j) +


 e

ke ^ ka
+ O

�
1

p
�

�
:

This implies that there existsK > 0 such thatj' (� )j � K j� j � � �
when� tend to in�nity.

We denote byF the probability distribution function ofC, associated to' . Then, from
Proposition 4 we have the following results with respect to the regularity ofF :

1. F has anL 2 density1 if and only if � � > 1
2 .

2. For � � < 1 and0 < " < 1,
R1

1 � � � � " j' (� )jd� < 1 thusF 2 Lip (� � � " ).

3. For � � < 1
2 , 1

T

RT
� T j' (� )j2d� = O

�
T � 2� � �

thusF 2 Lip (� � ).

4. A classical Tauberian theorem (see,e.g.[7], p.445) entails that:

F (" ) �
e� � � 
 e j� j � � �

�( � � + 1)
j" j � � �

;

when" ! 0. Then,F is not differentiable at0 when� � < 1 and it has a �nite non
vanishing derivative at0 exactly when� � = 1 .

5. From Proposition 3 in [11], we have that, for anyx > 0,

F (x + ") � F (x) = O(");

when" ! 0+ . This implies that0 is the only possibly singular point ofF .

1This means that the integral of the square of the probability density function is �nite.
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The practical meaning of these results is that, when� < minf ka; keg the instant of
intakes are too scarce, with respect to the absorption and the elimination rates, resulting in
a high probability of having too small concentration of drugs.

4 Continuous model with random intake instants and
random doses
In this section, we consider the generalization of the continuous model of Section 3 to allow
for random doses. We study the main properties of the random concentrationCrd (t), given
by (16), which we recall here for convenience:

Crd (t) =
FD
Vd

ka

ka � ke

X

i

D i

�
e� ke(t � Ti ) � e� ka (t � Ti )

�
1l(t � Ti ) ;

where the(Ti ) i 2 N again form a Poisson process, and the(D i ) i 2 N are random variables.F
andVd are constants. At timeTi , the dose taken isDD i , and we assume thatE(D i ) = 1 ,
thatD i is supported onR+ , and that it has compact support (although we shall need only
weaker assumptions).

The processCrd (t) thus de�ned is a marked Poisson process. In this work, we shall as-
sume that the(D i ) i 2 N are independent and identically distributed random variables, where
eachD i may depend onTi but is independent from the(Tj ) j 6= i . This makes sense from
a pharmacokinetic point of view, since it seems plausible that the patient will not adjust
his dose at timeTi on the basis of his past or future behavior except for the time lag from
the previous take, although it would maybe be desirable to letD i depend also onD i � 1.
We denote by� (T; :) the conditional distribution ofD i knowing thatTi = T. Our as-
sumptions allow to apply a generalized form of Campbell theorem [9] to the effect that the
characteristic function' rd

t of Crd (t) is given by:

' rd
t (� ) = exp

�
�

Z t

0

Z

A

�
ei��uh (t � x) � 1

�
� (x; du)dx + i��h (t)

�
(31)

where, as before,� = F D
Vd

ka
ka � ke

, h(t) = e� ke t � e� ka t andA is the support of theD i .

4.1 Variability of the concentration

From (31), one deduces easily the mean and variance ofCrd :

(' rd
t )0(� ) = ' rd

t (� )
�
�

Z t

0

Z

A
i�uh (t � x)ei��uh (t � x) � (x; du)dx + i�h (t)

�
;

and thus

(' rd
t )0(0) = i�

�
� e(1 � e� ke t ) � � a(1 � e� ka t )

�
Ex (D1) + i�

�
e� ke t � e� ka t

�
:
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whereEx (D1) =
R

A u� (x; du) is the expectation ofD i knowing thatTi = x, which is
equal to one for anyx by assumption. Thus we �nd that, not surprisingly:

E(Crd (t)) = E(C(t)) :

Likewise,

(' rd
t )"( � ) = ' rd

t (� )

" �
�

Z t

0

Z

A
i�uh (t � x)ei��uh (t � x) � (x; du)dx � � 2h2(t � x)

� 2

� �
Z t

0

Z

A
� 2u2h2(t � x)ei��uh (t � x) � (x; du)dx

�
:

Using that, by de�nition,
R

A u2� (x; du) = Ex [D 2
1], this entails:

(' rd
t )00(0) = � E[C(t)]2 � �� 2

Z t

0
h2(t � x)

Z

A
u2� (x; du)dx

= � E[C(t)]2 � �� 2
Z t

0
h2(t � x)Ex (D 2

1)dx

or, since(' rd
t )00(0) = � E[C(t)]2 � Var( Crd (t)) ,

Var( Crd (t)) = �� 2
Z t

0
h2(t � x)Ex [D 2

1]dx:

However,
Ex (D 2

1) = Var x (D1) + Ex [D1]2 = Var x (D1) + 1

(Varx (D1) denotes the variance ofD i knowing thatTi = x) and

�� 2
Z t

0
h2(t � x)dx = Var( C(t)) ;

thus

Var( Crd (t)) = Var( C(t)) + �� 2
Z t

0
h2(tx )Var x (D1)dx:

Assuming thatVarx (D1) = Var( D1), i.e. the variance ofD i does not depend on the value
of Ti , one gets:

Var( Crd (t)) = E[D 2
1]Var( C(t)) = (1 + Var( D1))Var( C(t)) :

Thus random-dosing results in multiplying the variance of the deterministic-dose case by
E(D 2

1). It is then easy to obtain inequalities similar to (22), (23) and (24) for the random-
dose case.

Two particular cases may be of special interest:
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� Discrete distribution: theD i assume the valuesf d1; : : : ; dm g � R+ with probabili-
tiesq1; : : : ; qm , independently of theTi . We denote byCrd;d

t and' rd;d
t the concen-

tration and characteristic function. Then:

' rd;d
t (� ) =

mY

j =1

' t (qj �; d j � ); (32)

where we have written' t (qj �; �) instead of' t (:) for the characteristic function in the
deterministic-dose case, given in equation (19), but with parameterqj � instead of� .
This equality also holds whent tends to in�nity, yielding the long term concentration
characteristic function. The variance is given by:

Var( Crd;d (t)) = E[D 2
1]Var( C(t)) =

0

@
mX

j =1

qj d2
j

1

A Var( C(t)) :

It is of interest to characterize the situation giving the largest variance among all
admissible random dosings with arbitrarym, qi , anddi . In other words, we look for
the value ofVmax := max f Var( Crd;d (t))g subject tom > 1, (q1; : : : ; qm ) 2 [0; 1]m

with at least twoqi non zero and
P m

j =1 qi = 1 , (d1; : : : ; dm ) 2 [a; b] with b > a > 0,
and

P m
j =1 qi di = 1 . It is easily shown, for instance using Lagrange multipliers, that

the maximum is reached form = 2 andd1 = a; d2 = b. In this case,

Vmax = ( a + b� ab)Var( C(t)) : (33)

Thus the worst-case situation is when the patient “oscillates” between two dosings
whose average is the prescribed one.

� Uniform distribution: the D i are uniformly distributed over[a; b] � R+ , indepen-
dently of theTi . We denote byCrd;u

t and' rd;u
t the concentration and characteristic

function. In this case, one computes:

' rd;u
t (� ) = exp

(
�

b� a

Z b

a

Z 1

e� t

ei�y� (uk e � uk a ) � 1
u

dudy + i��h (t)

)

: (34)

This last function is easily seen to be convergent whent tends to in�nity, which
gives us the long term concentration characteristic function. Note that' rd;u tends
to ' when the couple(a; b) tends to(D; D ): the concentration with random doses
uniformly distributed on[a; b] tends in law to the concentration with �xed doseD.
The variance is given by:

Var( Cu(t)) = E(D 2
1)Var( C(t)) =

a2 + ab+ b2

3
Var( C(t)) : (35)

We can see that the choice of[a; b] maximizing the variance under the constraint
E(D1) = 1 is a = 0 , b = 2 , as expected.
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4.2 Regularity of the limit distribution

We �rst consider the two cases of discrete and uniform random dosing.

� Discrete distribution

From (32) and Proposition 4, one easily sees that:

j' rd;d (� )j �
mY

j =1

(dj � ) � qj � �
= K� � � �

when� tends to in�nity, whereK is a constant.

� Uniform distribution

In this case, the limit of the function' rd;u
t , de�ned in Formula (34), whent tends to

in�nity is:

' rd;u (� ) = exp

(
�

b� a

Z b

a

Z 1

0

ei�y� (uk e � uk a ) � 1
u

dudy

)

:

The modulus of' rd;u is

j' rd;u (� )j = exp
�

� �
(b� a)

Z b

a

Z 1

0

1 � cos(�y� (uke � uka ))
u

dudy
�

;

= exp
�

� �
(b� a)

Z b

a
I (�y )dy

�
:

The proof of Proposition 4 shows that, for large enough� ,

I (�y ) �
1

ke ^ ka
log(�y j� j) + constant:

This implies that there existsK > 0 such thatj' (� )j � K j� j � � �
when� tends to

in�nity. This fact will be justi�ed in the proof of Proposition 5.

Thus in both particular cases above, we recover the same behaviour for the characteristic
function as in the deterministic-dose case. As the next proposition shows, this is in fact a
general feature of all random dosings provided� (x; du) does not depend onx, with an
additional mild condition:

Proposition 5. Assume that� (x; du) = � (du) and that
R

A log(y)� (dy) < 1 . Then

j' rd (� )j � K j� j � � �

when� tends to in�nity, whereK is a positive constant.
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Proof. Thanks to the assumption on� , one computes

j' rd;u (� )j = exp
�

� �
Z

A

Z 1

0

1 � cos(�y� (uke � uka ))
u

du� (dy)
�

= exp
�

� �
Z

A
I (�y )� (dy)

�
:

The proof of Proposition 4 shows that, when� tends to in�nity,

� �I (�y ) � K � � � (log(� ) + log( y))

for a certain constantK , with in addition� �I (�y ) � K + � � (log(� ) + log( u)) tending to
0 with a rate of convergence1p

�
. Thus, using the assumption on the logarithmic moment of

� ,

� �
Z

A
I (�y )� (dy) � K � � � log(� ) � � �

Z

A
log(y)� (dy)

and one �nishes up the proof with the help of a dominated convergence argument to show
that the difference between the right-hand side and the left-hand side in the equivalent above
indeed tends to0 when� tends to in�nity.

Proposition 5 shows that random dosing, at least when the distribution of theD i is
independent of theTi , does not alter the regularity of the distribution of the long-term
concentration as compared to the deterministic-dose case.

5 Discrete model with random intake instants and
deterministic doses
We study in this section a discretization in time of the model above. In other words, instead
of taking the drug at arbitrary time instantst 2 R+ , we assume that the patient will only do
so at (random) times which form a subset off tn

l = l=n; l 2 Ng, wheren is a �xed number.
We shall �rst rewrite the drug concentration in this discrete setting. It will appear that the
discretized concentrationCd has the same law as an object that has been thoroughly studied
in mathematics under the name ofin�nite Bernoulli convolution. We will study the vari-
ability of the discretized concentration. Then we will show that, whenn tends to in�nity,
the discretized model indeed tends distribution-wise to the continuous-time one. We will
�nally study the regularity of the long term behaviour of the discretized concentration for
n �xed or tending to in�nity, and show that it is, under certain circumstances, singular.

5.1 The discretized concentration

The discretized model taking the following form. Leth = 1
n be the discretization step.

Thus, the drug intakes can only occur at timest j = jh with j 2 N.
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From a general point of view, the discrete analog of the Poisson process is the Bernoulli pro-
cess. Indeed, in the continuous framework, the Poisson process is the only counting process
which has stationary and independent increments. Likewise, the only discrete counting pro-
cess with the same property is the Bernoulli process. In terms of waiting times, this amounts
to replacing the i.i.d., memoryless, exponential random variablesSn = Tn+1 � Tn , by i.i.d.
random variables following a geometric distribution (recall that the geometric distribution
is the only memoryless discrete distribution).

We are thus led to consider a sequence(X j ) j 2 N of i.i.d. Bernoulli random variables
with parameterp such thatX j = 1 if the patient takes the drug at timet j andX j = 0 if
not.

In this discrete model the number of drug intakes per unite time isp
h , so one has choose

p = �h . Note that, for the model to make sense,p must be smaller than one, which
translates into�h < 1.

At a �xed time tn the contribution of thej -th intake to the current concentration is

�
�
� n� j

e � � n� j
a

�
X j ;

where� e = e� keh and� a = e� ka h : � e is the elimination rate for one time step and� a is
the absorption rate for one time step.

Thus, the total concentration at timetn is given by

Cn = �
nX

j =0

�
� n� j

e � � n� j
a

�
X j :

Since the random variable(X j ) j 2 N are independent, they are exchangeable, and in par-
ticular the vector(X 0; : : : ; X n ) has the same distribution as the reversed vector(X n ; : : : ; X 0).
HenceCn is equal in distribution to

Yn = �
nX

j =0

�
� j

e � � a
j �

X j :

The sequence(Yn ) converges almost surely to the random variableY(p) , given by equa-
tion (17) in Section 2.5;i.e.,

Y(p) = �
1X

j =0

�
� j

e � � a
j �

X j :

The distribution ofY(p) is thus the one of the long term concentration in this model.
SinceY(p) is an in�nite sum of independent Bernoulli random variables, its law is an in�nite
convolution of Bernoulli distribution, hence its name “in�nite Bernoulli convolution”.

From the independence of(X j ) j 2 N we have that the characteristic function ofY(p) is
given by

' p(� ) =
1Y

j =0

h
(1 � p) + pei�� (� j

e � � j
a )

i
:
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5.2 Variability of the discretized concentration

One computes easily the meanEdisc and varianceV ardisc in the discretized model:

Edisc := E[Y(p) ] = �p
�

1
1 � � e

�
1

1 � � a

�
;

V ardisc := Var( Y(p) ) = � 2p(1 � p)
�

1
1 � � 2

e
�

2
1 � � e� a

+
1

1 � � 2
a

�
:

As we shall see in the next section, the discrete model tends in law to the continuous
one whenp tends to0. For now, we simply remark that, indeed,Edisc tends to� e

F D
Vd

and

V ardisc tends to� e
2

1
1+ r

�
F D
Vd

� 2
whenp tends to0, i.e. the mean and variance of (20) and

(21) (note that, whenp tends to0, � e � 1 � p
� e

and� a � 1 � p
� a

so� e and� a tend to1).
ForEdisc constant, sayEdisc = 1 , the variance in the discrete model reads:

V ardisc =
1 � p

p
(1 � � e)(1 � � a)(1 + � e� a)
(1 + � e)(1 + � a)(1 � � e� a)

:

For a �xed p, we see thatV ardisc tends to0 at the speed1� p
2� e

when� e tends to in�nity,
which is the same rate asV ar, the variance in the continuous random model of Section 3.1.
When� e tends to0, V ardisc tends to1� p

p
1� � a
1+ � a

in contrast to both the deterministic and
random continuous cases, where the variance tends to in�nity. We show on Figure 10 the
behaviour of the ratioV ardisc=V ar as a function of� e and � a when the mean is kept
constant.

Figure 10: RatioV ardisc =V ar as a function of� e and� a when the mean is kept constant.

As a consequence of Chebychev inequality we have (compare with Formulas (24) and
(25)):

P(jC � E[C]j � 
E [C]) �
1

 2

1
1 + r

+
2

1 � r 2

1 � p
p

(1 � � e)(1 � � a)(1 + � e� a)
(1 + � e)(1 + � a)(1 � � e� a)

: (36)
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5.3 Limit when the discretization step tends to 0

The following proposition describes the behaviour ofY(p) whenn tends to in�nity or, which
is the same, whenp tends to zero. Note that this also equivalent to letting� e and� a tend to
1.

Proposition 6. Y(p) converges in law toC whenp tends to zero.

Proof. The proof is analogous to the one of Proposition 4 in [11]: one shows that the
characteristic function' p of Y(p) tends pointwise to the characteristic function' of C. The
details are omitted.

In practical terms, this results means that, as long as we are only interested in distribu-
tional properties of the concentration, we may consider the discrete model instead of the
continuous one providedp is chosen small enough. Note however that the discrete model
with arbitrary value ofp is interesting in its own right.

5.4 Regularity of the discretized model

We assume that� a 6= � e, sinceY(p) is constantly equal to zero when� a = � e. The work
[1] provides an analysis of the regularity of generalized in�nite Bernoulli convolutions, and
specially its fractal properties. The interested reader may also consult [6, 16, 17] for studies
on regular in�nite Bernoulli convolutions.

The relevant parameter here is� � = � e _ � a. The results of [1] show that the regularity
of the discretized model is very different depending on whether� � < 1

2 or � � � 1
2 :

� When� � < 1
2 , the distribution ofY(p) is singular with respect to the Lebesgue mea-

sure. More precisely, the Hausdorff dimension of its support is equal to

lim inf
n!1

� n log(2)
log(� n )

=
log(2)
log(� � )

< 1;

where� n = �
�

� n +1
e

1� � e
� � n +1

a
1� � a

�
. The Hausdorff dimension measures the “size”, in a

certain sense, of the support of the measure,i.e. where it is concentrated. A Haus-
dorff dimension smaller than one means that the set of possible values taken by the
concentration is extremely sparse and does not form a continuum. In addition, the
probability of being in an interval varies in a very non-smooth way with the bounds
of the interval. In practical terms, this means that probability distribution of the con-
centration will be highly irregular : it will vary erratically, taking only very particular
values, and the probability that it ranges in some interval may vary wildly when the
interval changes. Note that� � < 1

2 is equivalent top > � � log(2) or hk � > log(2)
with k� = ke ^ ka, (recall thath is the discretization step ). This re�ects the fact that,
for �xed k� , the time instants at which the patient is supposed to take his drugs are
suf�ciently spaced, and that he forgets to do so randomly at some of these instants.
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Alternatively, for a �xedh, k� must be suf�ciently large. Note also that, in view of
p < 1, this is possible only if� � < 1

log(2) .

� The case� � > 1
2 is mathematically much more delicate and is not completely settled.

Results given in [5, 15] entail that the distribution ofY(p) is absolutely continuous for
Lebesgue-almost all� � in ( 1

2 ; 1) whenp = 1
2 . This means that the distribution of

the concentration has a probability density: in other words, in contrast with the case
� � < 1

2 , we are in the usual situation where the probability that the concentration
ranges in some interval varies smoothly when the interval changes.

� In all other cases, the characterization of the regularity of the distribution ofY(p)
remains an open problem.

6 Discrete model with random intake instants and
random doses
In the discrete case, the random-dose model takes the following form:

� We still have a sequence of i.i.d. Bernoulli random variables(X j ) j � 0 with parameter
p, which mark the random instants of drug intake.

� To account for the random dosing, we consider a sequence of i.i.d. random variables
(D j ) j � 0, that will represent the doses, with distribution� compactly supported on
R�

+ . We will let � denote the product measure�
N

N.

� We make the assumptionE[D1] = 1 , which means that the patient takes the normal
dose on average.

� We suppose that all theD i are independent of theX j .

� As before,� e = e� keh and� a = e� ka h are respectively the elimination rate and the
absorption rate for one time step.

We investigate the behaviour of the almost sure limit (with respect to� ) of the steady
state concentrationY rd

(p) , given by Formula (18) in Section 2.6,i.e.

Y rd
(p) = �

1X

j =0

(� j
e � � j

a)D j X j :

Independence of(X j ) j 2 N and(D j ) j 2 N entail that the characteristic function ofY rd
(p) is

given by

' rd
p (� ) =

1Y

j =0

�
(1 � p) + p

Z
ei�� (� j

e � � j
a )u � (du)

�
:

As before, we �rst proceed to investigate the variability in this model, and then the
limit when the discretization step tends to zero. We do not characterize the regularity of the
concentration, as no results are available in this more complex situation.
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6.1 Variability of the concentration

The meanE rd
disc and varianceV arrd

disc in the random-dose discretized model are easily seen
to be:

E rd
disc := E[Y rd

(p) ] = �p
�

1
1 � � e

�
1

1 � � a

�
= Edisc ;

V arrd
disc := Var( Y rd

(p) ) = � 2 (Var( D1)p + p(1 � p))
�

1
1 � � 2

e
�

2
1 � � e� a

+
1

1 � � 2
a

�

=
�

Var( D1)
1 � p

+ 1
�

V ardisc :

Random-dosing thus results in multiplying the variance of the deterministic-dose dis-
cretized model byVar( D 1 )

1� p + 1 . It is then easy to study the variability of the random-dose
discretized model using the analysis developed in Section 5.2 for the discretized model.

6.2 Limit when the discretization step tends to 0

The following result can be proved in the same way as Proposition 4 in [11]:

Proposition 7. Y(p) converges in law toCrd whenp tends to zero.

Again, this means that, if one is only interested in distributional properties of the con-
centration, the discrete model may be considered in place of the continuous one providedp
is chosen small enough.
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