Reduced-bias estimators for the Distortion Risk Premiums for Heavy-tailed distributions

Abstract : Estimation of the occurrence of extreme events actually is that of risk premiums interest in actuarial Sciences, Insurance and Finance. Heavy-tailed distributions are used to model large claims and losses. In this paper we deal with the empirical estimation of the distortion risk premiums for heavy tailed losses by using the extreme value statistics. This approach can produce a potential bias in the estimation. Thus we look at this framework here and propose a reduced-bias approach of the classical estimators already suggested in the literature. A finite sample behaviour is investigated, both for simulated data and real insurance data, in order to illustrate the efficiency of our approach.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : El Hadji Deme <>
Soumis le : mardi 1 octobre 2013 - 16:32:09
Dernière modification le : lundi 29 mai 2017 - 14:25:14
Document(s) archivé(s) le : lundi 6 janvier 2014 - 09:35:52


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00868624, version 1



El Hadji Deme, Gane Samb Lo. Reduced-bias estimators for the Distortion Risk Premiums for Heavy-tailed distributions. 2013. 〈hal-00868624〉



Consultations de la notice


Téléchargements de fichiers