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ABSTRACT

Recent advances in multimedia technology opened the path

for individual manipulation of the different audio objects

within a multichannel mix, for both sampling and karaoke

applications. This requires the transmission of these objects

as an additional information. Informed Source Separation

(ISS) is an adequate framework for this problem. Its main

idea is not to transmit the objects themselves, but rather the

parameters required to recover them using the mixtures and

separation algorithms. In recent studies, the connection was

made between ISS and source coding and the concept of

coding-based ISS (CISS) was introduced. CISS differs from

classical source coding in its use of the mixtures, which per-

mits to reduce the bitrates required to convey audio objects

compared to source coding alone with the same model. In this

study, we extend existing work on CISS to the case of multi-

channel mixtures and demonstrate a considerable increase of

performance over classical ISS.

1. INTRODUCTION

Emerging technologies have created new ways to interact

with musical contents, the so-called active listening scenar-

ios, which include separate manipulation, muting or respatial-

ization of the constituent sound objects, or sources, playing

within a musical track. Special cases of interest include

karaoke or immersion of the listener into surround render-

ing. To this purpose, it is mandatory to transmit not only the

mixture as in the usual case, but also its separate constituent

audio objects. It was early acknowledged [2] that a solution

is to consider the whole set of objects as one multichannel

signal and to make use of spatial cues to recover it from the

downmix. This idea led to the Spatial Audio Object Cod-

ing (SAOC) standard. Independently, researchers from the

source separation community reported [9] that source sep-

aration could be used to recover constituent sources from a

mixture in this context. The difference between the classical

blind scenario and this particular informed configuration is

that the sources are known at some encoding stage, during
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which a side information can be computed and transmitted

along with the mixtures to be used for separation at a decod-

ing stage, when the sources are no longer available. PARVAIX

et al. introduced the term Informed Source Separation (ISS)

for this strategy. The common idea of all methods exploiting

ISS [9, 6] is not to transmit the sources, but rather parameters

that permit to recover them using the mixtures.

The main issue with these methods is that their perfor-

mance is bounded by the best estimates that can be provided

by the considered separation method. Hence, whatever the

bitrate spent on providing better parameters for the separa-

tion algorithms, the quality of the estimates does not improve

consequently. This phenomenon is reminiscent of parametric

coding of waveforms and stems from the intrinsic limitations

of the model used to encode the signals of interest. Recently,

OZEROV et al. [8] demonstrated that ISS could be signifi-

cantly improved so as to consistently benefit from additional

bitrate as in source coding [3, 11] and introduced Coding-

based ISS (CISS) for this purpose. The main idea of CISS is

to encode the signals of interest using a probabilistic model as

in source coding. Instead of using a distribution which does

not make use of the mixture, CISS encodes the sources rely-

ing on their a posteriori distribution given the mixture, whose

entropy is necessarily smaller and which thus leads to reduced

bitrates. This idea can be somewhat related to the coding of

the residual between the original sources and their estimates

as in SAOC. Indeed, these techniques first perform separation

of the mixtures and then encode the residuals using a sepa-

rate source model. CISS can be understood similarly as an

estimation of the sources as the mean of their posterior dis-

tribution given the mixture, followed by an encoding of the

residuals using posterior covariance as signal statistics. Given

this parallel, several advantages of CISS over the aforemen-

tioned approaches can be highlighted. First, CISS exploits

posterior dependencies between the sources, instead of inde-

pendently encoding the residuals. Second, parameters used

for parametric source reconstruction and waveform coding of

residuals are coupled via posterior distribution and can thus

be transmitted more efficiently.

Even if the fundamental idea to encode the signals us-

ing posterior distributions can be exploited in many settings,

a particular CISS scheme was presented in [8] for single-

channel mixtures and Gaussian source model. In this study,



we generalize this model to multichannel mixtures using a

framework inspired by [1] and [6] and we make use of a more

specialized Nonnegative Tensor Factorization (NTF) source

model as presented in [6, 7], which can efficiently exploit

long-term and inter-sources redundancies.

This article is structured as follows. First, we present

the Gaussian model we consider for multichannel mixtures in

Section 2. Sections 3 and 4 are devoted to model estimation

and encoding and to source encoding, given the mixture and

the encoded model. Finally, the proposed method is evaluated

in Section 5.

2. MODEL

2.1. Notation

All signals considered are regularly sampled time series of

length Nn. We will make use of a Time-Frequency (TF)

representation for the signals and we choose the Short-Term

Fourier Transform (STFT) for this purpose. In this study,

waveforms in the temporal domain are written using tilde, e.g.

x̃ (n) and their STFT using the corresponding letter without

tilde, e.g. x (ω, t). Bold lowercase indicates a vector while

uppercase indicates a matrix or a tensor. Nω and Nt are, re-

spectively, the number of frequency bins ω and the number of

frames t of the STFT.

The sources, or audio objects, are defined as M time se-

ries s̃m and the mixture is defined as a set of K time series x̃k.

The mixture is obtained through a processing of the sources.

For some given source s̃m, a mixing process produces a set

of K signals {ỹkm}k=1,···,K called mth source image. All

images are summed up to produce the kth channel x̃k of the

mixture.

In the STFT domain, we denote

s (ω, t) = [s1 (ω, t) , . . . , sM (ω, t)]
⊤

x (ω, t) = [x1 (ω, t) , . . . , xK (ω, t)]
⊤

as the M × 1 and K × 1 column vectors gathering all sources

and all channels of the mixture for TF bin (ω, t) with ·⊤ de-

noting transposition. The K × 1 image of source m at (ω, t)

writes ym (ω, t) = [y1m (ω, t) , . . . , yKm (ω, t)]
⊤

.

2.2. Source model

In all the following, we assume that the sources are indepen-

dent and modeled as Locally Stationary Gaussian Processes

(LSGP). Basically, this means that within each frame, the

sources are stationary and that all the frames of the signals

can be considered independent. Under this assumption and

provided that the frames are of sufficient length, it can be

shown that all TF bins of sm are independent and normally

distributed:

sm (ω, t) ∼ Nc (0, vm,ω,t) ,

where Nc is the circular symmetric complex normal distribu-

tion and vm,ω,t is the variance of source m at TF bin (ω, t).
As can be seen, the LSGP model is parameterized by the

M × Nω × Nt tensor V = {vm,ω,t}m,ω,t and thus comes

with as many parameters as the number of TF bins for the

source signals. Since V has to be transmitted from the coder

to the decoder, it is of importance to find an appropriate com-

pression scheme to reduce its weight. Many methods can be

used to this end, corresponding to different source models.

Following the work in [6, 7], we make use of Nonnegative

Tensor Factorization (NTF) to decompose vm,ω,t as:

vm,ω,t =

R
∑

r=1

wωrhtrqmr, (1)

where W = {wωr}ω,r, H = {htr}t,r and Q = {qmr}m,r

are Nω × R, Nt × R and M × R nonnegative matrices, re-

spectively, and where R is often called the number of com-

ponents. In that case, the source parameters θs are given

by θs = {W, H, Q}. As demonstrated e.g. in [6, 7], an

interesting feature of this particular source model is that it

permits to exploit long-term as well as inter-sources redun-

dancies. Other models may be used for V including image

compression schemes as in [6].

The source model being given, two main elements are still

missing. First, how the parameters θs are estimated and sec-

ond, how they are quantized so as to yield a transmitted quan-

tized source model θ̄s. Both problems are considered in Sec-

tion 3.

2.3. Mixing model

Many studies in source separation model the image of a

source s̃m as produced through convolutive mixing, which

means that there are K filters ãkm such that ỹkm (n) =
(ãkm ∗ s̃m) (n) where ∗ denotes convolution. Provided the

mixing filters are sufficiently short, this expression can be

cast into the STFT domain as:

ykm (ω, t) ≈ akm (ω) sm (ω, t) , (2)

where akm (ω) is the frequency response of filter ãkm at fre-

quency bin ω. Let am (ω) = [a1m (ω) , . . . , aKm (ω)]
⊤

and

let A (ω) = [a1 (ω) , . . . ,aM (ω)] be the mixing matrix at

frequency bin ω. The mixture is then supposed to be the sum

of the images:

x (ω, t) =
M
∑

m=1

ym (ω, t) + ǫ (ω, t) , (3)

where ǫ is a complex K × 1 additive white Gaussian term

which accounts for both model and mixing noise and which

is supposed to be distributed as follows:

ǫ (ω, t) ∼ Nc

(

0, diagσ2 (ω)
)

, (4)



where σ
2 (ω) =

[

σ2
1 (ω) , . . . , σ

2
K (ω)

]⊤
and diagσ2 (ω) is

a diagonal matrix whose diagonal coefficients are given by

σ
2 (ω). Let θm =

{

{A (ω)}ω ,
{

σ
2 (ω)

}

ω

}

be the set of

all mixing parameters. Combining (2), (3), (4) and defining

Css (ω, t) = diag [v1,ω,t, . . . , vM,ω,t], we get

x (ω, t) | θsθm ∼ Nc (0,Cxx (ω, t)) ,

where

Cxx (ω, t) = A (ω)Css (ω, t)A
H (ω) + diagσ2 (ω) (5)

is the prior covariance matrix of the mixture.

2.4. A posteriori distribution

Now, assume the K × 1 mixture x (ω, t) is available as well

as the parameters θ = {θs, θm} of the LSGP formalism as

defined above. We consider the case where the original M

sources are to be recovered. For some TF bin (ω, t), we

focus on the distribution p (s (ω, t) | x (ω, t) , θ) of s (ω, t)
given x (ω, t) and θ, which summarizes what is known about

s (ω, t) after observation of x (ω, t) and knowledge of θ. First,

the joint distribution of s (ω, t) and x (ω, t) given θ writes:

Nc

(

0,

[

Css (ω, t) Css (ω, t)A
H (ω)

A (ω)Css (ω, t) Cxx (ω, t)

])

. (6)

Then, the distribution of s (ω, t) given x (ω, t) and θ is ob-

tained through conditioning of this joint distribution to yield:

s (ω, t) | x (ω, t) , θ ∼ Nc

(

µpost (ω, t) ,Cpost (ω, t)
)

,

(7)

with

G (ω, t) = Css (ω, t)A
H (ω)Cxx (ω, t)

−1

µpost (ω, t) = G (ω, t)x (ω, t)

Cpost (ω, t) = Css (ω, t)−G (ω, t)A (ω)Css (ω, t) .

3. MODEL ESTIMATION AND ENCODING

3.1. Model estimation

At the encoder, we suppose that both the sources s (ω, t) and

the mixture x (ω, t) are available. s (ω, t) is to be encoded

using the distribution p (s | x, θ) given by (7). However, the

model parameters θ that will be transmitted need to be esti-

mated first. In a Bayesian paradigm, they may be chosen as

those maximizing (7) when both s and x are known, leading

to a discriminative approach as depicted in Fig. 1 (a). In-

deed, such a choice produces θ that maximize the a posteriori

probability of the signals to be recovered given the mixture

and thus leads to the minimal required bitrate for encoding.

Still, such a discriminative model learning is hard to han-

dle using the parameterization of p (s | x, θ) given in (7). An-

other solution is to maximize p (s,x | θ) instead, leading to a

Fig. 1. Two different approaches for model learning.

generative approach, as was done in [8, 6] and as is depicted

in Fig. 1 (b). Basically, the generative approach permits to

estimate the parameters θ which best model the generation of

the data, instead of focusing on the best parameters for the

estimation of the sources given the mixture. Even if it leads

to suboptimal results in terms of encoding, the generative ap-

proach has an appealing advantage of tractability.

First, θs was trained through maximization of p (s | θs).
In many studies, it was demonstrated that learning θs in the

Gaussian case is equivalent to the minimization of the Itakura-

Saito (IS) divergence between |S|2 =
{

|sm (ω, t)|2
}

m,ω,t

and V. In the NTF source model (1) considered here, learn-

ing can hence be done through decomposition of |S|2 using

the IS divergence as a cost function as in [6].

Second, supposing that θ̄s, s and x are known, θm was

trained through maximization of p
(

x | s, θ̄s,θm
)

. This is

achieved through the EM algorithm presented in [1] with the

difference that some quantities in the ISS case are kept fixed,

e.g. s and the quantized source model θ̄s. This algorithm

yields the maximum likelihood estimate θm for the mixing

parameters.

3.2. Model encoding

When θ has been estimated, it is to be quantized in order to

form a quantized model θ̄ =
{

θ̄s, θ̄m
}

. Using some approx-

imations [6, 8], it can be shown1 that a quantization of the

source model θs minimizing the squared error between log v
and its quantized version maximizes the likelihood. For the

NTF source model (1), this leads to uniform quantization of

logW, logH and logQ using step-sizes respectively propor-

tional to
√
Nω ,

√
Nt and

√
M . The resulting indices are Huff-

man encoded as in [7].

4. SOURCE ENCODING

In our previous work on ISS [6], we simply considered the

source estimates to be given by their a posteriori mean. This

strategy may also be followed here by estimating the sources

s at the decoder as the a posteriori mean given by (7). Indeed,

as this distribution is Gaussian, this leads to the Minimum

Mean Squared-Error (MMSE) estimate given x and θ.

Still, as highlighted in [8], this scheme can be significantly

improved when one considers the source encoding of s (ω, t)

1Due to page limitation, this derivation is left for a longer study.



Algorithm 1 Coding-based ISS for multichannel mixtures.

For all TF bins (ω, t):

1. Compute µpost and Cpost as in (7).

2. Compute Cpost = Udiag [λ1, . . . , λM ]UH .

3. Compute z = UH
(

s (ω, t)− µpost

)

.

4. Quantize each dimension m of z using two uniform

quantizers of step-size ∆s

2
for the real and imaginary

parts of zm, to yield quantized z̄m. Using an arithmetic

coder as an entropy coder [11], the effective codeword

length (in bits) is given by:

−
M
∑

m=1

log2

ˆ

re (z − z̄m) ≤ ∆s

2

im (z − z̄m) ≤ ∆s

2

Nc (z | 0, λm) dz

5. Quantized vector s̄ (ω, t) can be reconstructed through

s̄ (ω, t) = Uz̄+ µpost.

using distribution (7) instead. This Coding-based ISS scheme

has several advantages. First, the quality of the estimates is no

longer bounded by Oracle estimators. Second, it is more effi-

cient than usual source coding using only prior distributions,

because it makes use of the mixture. Finally, recent advances

in source coding [11] can be straightforwardly used instead

of having to rely on ad-hoc techniques for the transmission of

the residuals as done in [2].

More specifically, the sources s (ω, t) are encoded us-

ing model-based constrained entropy quantization based on

scalar quantization in the mean-removed Karhunen-Loeve

Transform (KLT) as described in [11]. For some particular

TF bin (ω, t), let Cpost be the posterior covariance matrix

as given in (7) and let Cpost = Udiag [λ1, . . . , λM ]UH

be its eigenvalue decomposition. Cpost being positive def-

inite, λm ∈ R+. UHs (ω, t) is the KLT of s (ω, t) given

x (ω, t). Assuming the MSE distortion, uniform quantization

is asymptotically optimal for the constrained entropy case

[3]. Thus, we consider uniform scalar quantization of s (ω, t)
with a fixed source step-size ∆s in the mean-removed KLT

domain, which is summarized in Alg. 1.

Recent advances in source coding [5] may be used to

demonstrate on theoretical grounds why it is much more

efficient to allocate some bitrate to source coding than to

increase the quality of the model as experimentally verified

in [8]. If no bitrate is allocated to source quantization, CISS

becomes equivalent to classical ISS, i.e. the source estimates

coincide with µpost as given in (7). This latter scheme is

called MMSE-ISS in the following.

5. EXPERIMENTS

The proposed method was evaluated on a set of 14 excerpts

sampled at 44.1kHz of professionally produced recordings for

which all constituent sources are available. Each excerpt is

approximately 30s long and composed of 5 to 10 sources.

Two mixing scenarios were considered: linear instantaneous

and convolutive mixtures using short Head Related Transfer

Function filters of order 200.

The metrics considered for evaluation are the Signal to

Distortion Ratio (SDR) of BSSEval [10] between original and

estimated sources as well as the Perceptual Similarity Mea-

sure (PSM) of PEMO-Q [4]. Both metrics are intended to

be related to perceptual quality of the estimates, but SDR is

mostly used in the source separation community, while PSM

is more common in the coding community.

CISS and MMSE-ISS were run at various levels of qual-

ity, corresponding respectively to different choices for the

source quantization step-size ∆s in Alg. 1 for CISS and to

different number of components R for MMSE-ISS. As done

in [6], all results are compared to those of the oracle MMSE

estimate, obtained as the mean given by (7) using |S|2 in-

stead of V. This permits to compare metrics across different

excerpts.

For a given excerpt and a given quality, the estimated au-

dio objects were first compared to the original. Second, the

obtained SDR and PSM scores were averaged so as to obtain

the corresponding metric for this excerpt and quality. Third,

the metrics obtained by the oracle estimate on the same ex-

cerpt were subtracted so as to obtain the differential metric

δSDR (excerpt, bitrate) and δPSM (excerpt, bitrate). Finally,

for a given method and each metric, the δ of all excerpts were

merged together and the scatter plots (bitrate, δ) are displayed

in Fig. 2 for both instantaneous and convolutive mixtures.

As can be seen, CISS outperforms MMSE-ISS for both

the SDR and PSM metrics. Most noticeably, the performance

of CISS is seen not to be bounded by oracle performance but

to consistently increase with the bitrate. Still, the proposed

method does not yet include a perceptual model, which ex-

plains why the SDR score benefits more than PSM from the

source coding strategy. Indeed, it is close to a squared-loss

criterion. However, CISS permits to easily include percep-

tual coding through a further perceptual weighting in Alg. 1,

expressed directly on the source signals. We are currently in-

vestigating this point.

6. CONCLUSION

In this study, we extended recent work on coding-based in-

formed source separation to multichannel mixtures. Such an

extension allows recovering the original sources for convolu-

tive mixing processes. Furthermore, the framework we pro-

pose is compatible with any compression technique applied

on the spectrograms of the mixture for source modeling. In
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Fig. 2. Rate-SDR and rate-PSM curves for the proposed CISS and MMSE-ISS schemes using NTF as a source model for both

instantaneous and convolutive mixtures.

this study, we made use of the recent Nonnegative Tensor Fac-

torization model, which efficiently exploits long-term as well

as inter-sources redundancies.

The use of a coding-based strategy to encode the signals

permits to consistently increase the quality of separation when

more bitrate is available and our experiences have shown that

it is often most efficient to use this approach than to spend

bitrate in better model parameters, as is predicted by the the-

ory. Current work focuses on better source models and the

use of perceptual weighting. Both can easily be included in

the proposed framework.
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