C. Gary and . Cohen, Higher-order numerical methods for transient wave equations, 2002.

M. Durufle, P. Grob, and . Joly, Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain, Numerical Methods for Partial Differential Equations, vol.7, issue.3, pp.526-551, 2009.
DOI : 10.1002/num.20353

URL : https://hal.archives-ouvertes.fr/hal-00403791

I. Takur¯, Fundamentals of piezoelectricity, Oxford science publications, 1990.

E. Dieulesaint and D. Royer, Elastic waves in solids, free and guided propagation, 2000.

S. Li, Transient wave propagation in a transversely isotropic piezoelectric half space, Zeitschrift für Angewandte Mathematik und Physik, pp.236-266, 2000.
DOI : 10.1007/s000330050197

R. Lerch, Simulation of piezoelectric devices by two- and three-dimensional finite elements, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.37, issue.3, pp.233-247, 2002.
DOI : 10.1109/58.55314

P. Challande, Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.37, issue.3, pp.135-140, 2002.
DOI : 10.1109/58.55302

Y. Gómez-ullate-ricón, F. De, and E. Freijo, Piezoelectric modelling using a time domain finite element program, Journal of the European Ceramic Society, vol.27, issue.13-15, pp.13-154153, 2007.
DOI : 10.1016/j.jeurceramsoc.2007.02.127

J. San-miguel, F. Adamowski, and . Buiochi, Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water, ABCM Symposium Series in Mechatronics, vol.2, pp.458-464, 2005.

N. Abboud, D. Wojcik, and . Vaughan, Finite element modeling for ultrasonic transducers, SPIE Int. Symp. Medical Imaging, 1998.

D. Mercier and S. Nicaise, Existence, Uniqueness, and Regularity Results for Piezoelectric Systems, SIAM Journal on Mathematical Analysis, vol.37, issue.2, p.651, 2005.
DOI : 10.1137/040617728

V. Priimenko and M. Vishnevskii, An initial boundary-value problem for model electromagnetoelasticity system, Journal of Differential Equations, vol.235, issue.1, pp.31-55, 2007.
DOI : 10.1016/j.jde.2006.12.016

A. Nikolaos, V. A. Kampanis, J. A. Dougalis, and . Ekaterinaris, Effective computational methods for wave propagation, 2008.

P. Monk, Finite element methods for maxwell's equations, 2003.
DOI : 10.1093/acprof:oso/9780198508885.001.0001

J. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems, 2001.

C. Weber and P. Werner, A local compactness theorem for Maxwell's equations, Mathematical Methods in the Applied Sciences, vol.46, issue.3, pp.12-25, 1980.
DOI : 10.1002/mma.1670020103

L. Schmerr, J. , and S. Song, Ultrasonic nondestructive evaluation systems, 2007.
DOI : 10.1007/978-0-387-49063-2

E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions part I: Models without homogenization, Mathematical and Computer Modelling, vol.26, issue.5, pp.79-106, 1997.
DOI : 10.1016/S0895-7177(97)00159-3

T. Lahrner, . Kaltenbacher, . Kaltenbacher, E. Lerch, and . Leder, FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.2, pp.465-475, 2008.
DOI : 10.1109/TUFFC.2008.664