Spatial location priors for Gaussian model based reverberant audio source separation

Ngoc Duong 1 Emmanuel Vincent 2, * Rémi Gribonval 3
* Auteur correspondant
2 PAROLE - Analysis, perception and recognition of speech
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
3 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE, Inria Rennes – Bretagne Atlantique
Abstract : We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.
Type de document :
Article dans une revue
EURASIP Journal on Advances in Signal Processing, SpringerOpen, 2013, 2013 (1), pp.149. 〈10.1186/1687-6180-2013-149〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00870191
Contributeur : Ed. Bmc <>
Soumis le : dimanche 6 octobre 2013 - 05:10:31
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : vendredi 7 avril 2017 - 06:58:31

Fichiers

Identifiants

Citation

Ngoc Duong, Emmanuel Vincent, Rémi Gribonval. Spatial location priors for Gaussian model based reverberant audio source separation. EURASIP Journal on Advances in Signal Processing, SpringerOpen, 2013, 2013 (1), pp.149. 〈10.1186/1687-6180-2013-149〉. 〈hal-00870191〉

Partager

Métriques

Consultations de la notice

1293

Téléchargements de fichiers

230