Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions

Abstract : Abstract. A solution of the initial-boundary value problem on the strip (0,1) × [0, 1] for scalar conservation laws with strictly convex flux can be obtained by considering gradients of the unique solution V to an associated Hamilton-Jacobi equation (with appropriately defined initial and boundary conditions). It was shown in Frankowska (2010) that V can be expressed as the minimum of three value functions arising in calculus of variations problems that, in turn, can be obtained from the Lax formulae. Moreover the traces of the gradients V_x satisfy generalized boundary conditions (as in LeFloch (1988)). In this work we illustrate this approach in the case of the Burgers equation and provide numerical approximation of its solutions.
Type de document :
Article dans une revue
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2013, 8 (3), pp.727-744. 〈10.3934/nhm.2013.8.727〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00870300
Contributeur : Helene Frankowska <>
Soumis le : lundi 7 octobre 2013 - 09:04:38
Dernière modification le : mercredi 21 mars 2018 - 18:56:45

Lien texte intégral

Identifiants

Collections

Citation

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2013, 8 (3), pp.727-744. 〈10.3934/nhm.2013.8.727〉. 〈hal-00870300〉

Partager

Métriques

Consultations de la notice

172