
HAL Id: hal-00870448
https://hal.inria.fr/hal-00870448

Submitted on 7 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of PRINCE
Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, Shuang Wu

To cite this version:
Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, Shuang Wu. Security Analysis of PRINCE.
FSE 2013, Mar 2013, Singapore, Singapore. 2013. <hal-00870448>

https://hal.inria.fr/hal-00870448
https://hal.archives-ouvertes.fr

Security Analysis of PRINCE

Jérémy Jean1?, Ivica Nikolić2, Thomas Peyrin2, Lei Wang2 and Shuang Wu2

1 École Normale Supérieure, France
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
Jeremy.Jean@ens.fr {inikolic,thomas.peyrin,wang.lei,wushuang}@ntu.edu.sg

Abstract. In this article, we provide the first third-party security analysis of the PRINCE lightweight block
cipher, and the underlying PRINCEcore. First, while no claim was made by the authors regarding related-key
attacks, we show that one can attack the full cipher with only a single pair of related keys, and then reuse
the same idea to derive an attack in the single-key model for the full PRINCEcore for several instances of
the α parameter (yet not the one randomly chosen by the designers). We also show how to exploit the
structural linear relations that exist for PRINCE in order to obtain a key recovery attack that slightly breaks
the security claims for the full cipher. We analyze the application of integral attacks to get the best known
key-recovery attack on a reduced version of the PRINCE cipher. Finally, we provide time-memory-data
tradeoffs, that require only known plaintext-ciphertext data, and that can be applied to full PRINCE.

Key words: PRINCE, block cipher, cryptanalysis, related-key boomerang, time-memory-data tradeoff.

1 Introduction

Lightweight cryptography is a new, rapidly developing area of symmetric cryptography that has emerged from
the needs of constrained devices. The increasing deployment of such devices in the everyday life has captured the
attention of the cryptographic community. It became clear that most of the available cryptographic primitives,
both ciphers and hash functions, fail to meet the basic requirements of constrained devices – low cost hardware
implementation, as well as low power usage and latency. Thus, so-called lightweight primitives, designed only
for these type of devices, have been proposed (and some already have been implemented) in the past several
years.

PRINCE [4] is a lightweight cipher published at Asiacrypt 2012, and optimized with respect to latency when
implemented in hardware. It is based on Even-Mansour-like construction (so-called FX construction [2, 10]) and
it has the interesting feature that one can perform decryption by reusing the encryption process with a slightly
different key. This feature, so-called α-reflection property, clearly provides an advantage in implementations
requiring both encryption and decryption, but at the same time induces some structure. This structure forced
the designers to reduce the security expectations compared to an ideal cipher and they claimed that the security
of the cipher is ensured up to 2127−n operations when 2n encryption/decryption queries are made. This bound
is only valid for the single-key model, and the authors made no claim concerning the related-key model (a trivial
related-key distinguisher can be built).

Our contributions. In this article, we provide the first third-party analysis of the PRINCE cipher. First, we
analyze in Section 3 the resistance of PRINCE in regard to related-key attacks. We emphasize that the designers
clearly did not make any claim regarding this attack model. However, while no claim was made in this scenario,
the best attack so far was a trivial related-key distinguisher and it was not clear up to what extend an attack
can be mounted. We show that with a single pair of related keys, one can recover the whole secret key faster
than exhaustive search or faster than the claimed single-key security bound.

Moreover, our related-key attacks are actually interesting not only for the related-key model, but also for
the single-key one since we leverage these techniques to show in Section 4 that several choices of values for α
lead to an insecure version of PRINCEcore in the single-key model. It is to be noted that the designers required
α 6= 0 to enforce their security claims and the value of α was eventually derived from the fraction part of π. We
show that the choice of α is actually sensitive for the security of the cipher.

In Section 5, we exploit the related-key relations verified with probability 1 that exist for PRINCE in order
to mount a key recovery attack, slightly breaking the designers claims in the single-key scenario. Namely, we
show that one can generically gain a factor 20.6 compared to their claims, by only taking into account that the
cipher is using the FX construction and has the α-reflection property. While the gain is quite small, it indicates
that perhaps a more precise security proof (taking in account the α-reflection property) might be an interesting
research problem.

? This collaborative work was done while the first author was visiting CCRG lab of Nanyang Technological University
in Singapore.

We explore the application of integral attacks in Section 6 and improve the best known result on a reduced
version of PRINCE, providing a 6 rounds key recovery attack with low complexity.

Finally, in Section 7 we propose tradeoffs for PRINCE. We show that due to the specific structure of the
cipher, tradeoffs involving data and requiring only known plaintexts-ciphertext are achievable for PRINCE. We
start with a Memory-Data tradeoff based on the meet-in-the-middle technique, and improve our results to
Time-Memory-Data tradeoff based on the original Hellman’s approach.

Our results are summarized in Table 1.

Table 1. Summary of the results on PRINCE and PRINCEcore.

Cipher Rounds Data Time Memory Technique Reference

PRINCE

4 24 264 24 Integral Section 6

5 5 · 24 264 28 Integral Section 6

6 216 264 216 Integral Section 6

12 21 2125.47 negl. Single-Key Section 5

12 † 233 264 233 Related-Key Section 3.1

12 MD = N,T = N
1
2 Memory-Data TO Section 7

12 T (MD)2 = N2N
1
2 Time-Memory-Data TO Section 7

12 TMD = NN
1
2 Time-Memory-Data TO Section 7

PRINCEcore

4 24 28 24 Integral Section 6

5 5 · 24 221 28 Integral Section 6

6 216 230 216 Integral Section 6

12 † 239 239 239 RK Boomerang Section 3.2

12 241 241 negl. SK Boomerang for Chosen α Section 4

†: No security claim for related-key attacks
RK: Related-key
SK: Single-key
TO: (Cryptanalytic) Tradeoff

2 Description of PRINCE

PRINCE [4] is a 64-bit block cipher that uses a 128-bit secret key k. The key expansion first divides k into two
parts of 64 bits each k = (k0||k1), where || denotes the concatenation, and then extends the key material into
192 bits:

k = (k0 || k1)→ (k0 || k′0 || k1) = (k0 ||L(k0) || k1), with: L(x) = (x≫ 1)⊕ (x� 63). (1)

The 64-bit subkeys k0 and k′0 are used as input and output whitening keys respectively, while k1 is used as
internal key for the core block cipher PRINCEcore (see Fig. 1).

R0

RC0

R1

RC1

R2

RC2

R3

RC3

R4

RC4

R5

RC5

SR-1 M′ SR R-1
6

RC6

R-1
7

RC7

R-1
8

RC8

R-1
9

RC9

R-1
10

RC10

R-1
11

RC11

PRINCEcore

k0 k′0

k1 RCi

S M

k1RCi

S-1M-1

Fig. 1. A schematic view of the PRINCE cipher.

The internal block cipher PRINCEcore is a Substitution-Permutation Network composed of 12 rounds. A
round function Ri is defined by the bitwise addition of the 64-bit subkey k1 and a 64-bit constant RCi, the

application of a 4-bit Sbox S to each of the 16 4-bit nibbles of the internal state, and finally the multiplication
by a linear diffusion matrix M . The encryption of PRINCEcore is then composed of the application of the 6 rounds
R0, . . . ,R5, the multiplication by a linear diffusion matrix Mmid, and finally the application the 6 inverse rounds
R−1

6 , . . . ,R−1
11 :

PRINCEcore = R−1
11 ◦ R

−1
10 ◦ R

−1
9 ◦ R

−1
8 ◦ R

−1
7 ◦ R

−1
6 ◦Mmid ◦ R5 ◦ R4 ◦ R3 ◦ R2 ◦ R1 ◦ R0.

The 4-bit S-box S has a maximal differential probability of pmax = 2−2, and is given by (in hexadecimal
display) S[x] = [B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4]. The linear diffusion matrix M is composed of a linear
matrix M ′ and a nibble shifting part SR (similar to a ShiftRows in AES [6]): M = SR ◦M ′. Then, the linear
middle matrix Mmid is defined by Mmid = M ◦M ′ ◦M−1 = SR ◦M ′ ◦ SR−1. We refer to [4] for the complete
description of M ′, but one must remark that its diffusion property ensures that at least 16 Sboxes are active
for 4 consecutive round functions.

It is to be noted that RCi⊕RC11−i = α = 0xc0ac29b7c97c50dd for all 0 ≤ i ≤ 11, and since the matrix M ′

is an involution, this allows to perform the decryption D of PRINCE by simply encrypting with the key k1 ⊕ α
instead of k1 and flipping the whitening keys k0 with k′0: D(k0 || k′0 || k1)(·) = E(k′0 || k0 || k1⊕α)(·).

In this article, we see the internal state s of PRINCE as a 4×4 matrix form, where each cell is a nibble, and if
we denote s[i] the i-th nibble, 0 ≤ i < 16 from MSB to LSB, it would be located at row i (mod 4) and column
bi/4c.

3 Related-key attacks

In this section, we describe a related-key attack on the full PRINCE, and a related-key attack on the core
block cipher PRINCEcore. The first one (Section 3.1) uses a single related-key, and the α-reflection property of
the core cipher to recover the 128-bit master key with 233 data, 263 operations and 232 memory. The second
attack (Section 3.2) uses a related-key differential characteristic with high-probability to mount a boomerang
distinguisher on the core block cipher, that can be turned into a key-recovery attack for the 64-bit key k1 of
PRINCEcore. We have verified experimentally our results – an example of boomerang quartet for the full 12-round
PRINCEcore is given in Appendix A.

3.1 Related-key attack on full PRINCE with the α-reflection property

We denote in the sequel the secret master key by k = (k0, k1) that we aim to recover. We introduce one related-
key k′ = (k0, k1 ⊕ α), where α refers to constant defined in Section 2. The attack procedure uses the following
distinguisher on the whole core of PRINCE.

Property 1. Let (P,C) be a plaintext/ciphertext pair encrypted under the secret key k by PRINCE, and (P ′, C ′)
an other plaintext/ciphertext pair from PRINCE with the related key k′. If C ⊕ P ′ = k0 ⊕L(k0), then P ⊕C ′ =
k0 ⊕ L(k0) with probability 1.

Proof. As described in Section 2, PRINCE transforms a plaintext P into the ciphertext C = Ek1(k0⊕P)⊕L(k0),
where Ek1 instantiates PRINCEcore with key k1. For a second plaintext P ′, we set C ′ = Ek1⊕α(k0 ⊕ P ′)⊕ L(k0)

P PRINCEcore C

k1k0 L(k0)

P ′ PRINCEcore C′

k1 ⊕ αk0 L(k0)

x

y′

y

x′

Fig. 2. Related-key distinguisher on full PRINCE.

using the related-key. The condition C⊕P ′ = k0⊕L(k0) actually states that the output of PRINCEcore in the first
message equals the input of PRINCEcore in the second one. Namely, C ⊕P ′ = k0 ⊕L(k0) means x′ = y from the
notations of Figure 2. Since y = Ek1(x) and y′ = Ek1⊕α(x′), we have x = y′, which gives P⊕C ′ = k0⊕L(k0). ut

From this distinguisher, we show how to mount a key-recovery attack on PRINCE.

1. Query 232 ciphertexts to PRINCE with the real key k = (k0, k1), and obtain plaintext/ciphertext pairs
denoted as (Pi, Ci). Store them in a hash table Tc indexed by Xi = Pi ⊕ Ci.

2. Query 232 plaintexts to PRINCE with the related key k′ = (k0, k1⊕α), and obtain plaintext/ciphertext pairs
denoted as (P ′i , C

′
i). Store them in a table Tp index by Yi = P ′i ⊕ C ′i.

3. Find collisions in the keys of Tp and Tc.
4. For each pair Xi = Yj , compute Z = Ci ⊕ P ′j . Sample a plaintext P uniformly at random, and obtain

the corresponding ciphertext C from the encryption oracle. Check the distinguisher by constructing the
ciphertext C ′ = P ⊕ Z, querying its corresponding plaintext P ′ decrypted with the related-key, and check
if P ′ ⊕ C = Z. If this holds, then Z = k0 ⊕ L(k0).

5. Retrieve k0 by inverting the bijection x → L(x) ⊕ x, and finish the attack by recovering k1 by exhaustive
search.

Complexity analysis. After the two first steps where two structures of 232 independent values have been
constructed, by the birthday paradox we expect one collision for step 3. This collision gives a suggestion for k0

that we check with the previously described distinguisher. This attack requires known-plaintexts, but we note
that with a chosen-plaintext attack, we can pick Ci and P ′j carefully such that Ci ⊕ P ′j covers all the possible

264 values. This ensures the value of k0 to be recover with probability 1 at Step 4.
The total data complexity is about 233 chosen-plaintexts to construct the two tables and check the distin-

guisher, and requires a time complexity equivalent to 233 + 264 ≈ 264 encryptions. We recall that the security
bound for single-key attack with 233 data claimed by the designers equals 127− 33 = 94 bits.

3.2 Related-key boomerang attack on PRINCEcore

In this section, we describe a related-key boomerang attack on PRINCEcore with a time complexity equivalent to
248 encryptions. To construct the boomerang distinguisher, we split the core block cipher E of PRINCE into two
halves E = E1 ◦ E0, where both E0 and E1 consists in 6 non-linear layers. The main observation that makes
the distinguisher efficient is the existence of related-key differential characteristics with a very high probability.
We start our analysis with an inspection of the S-box of PRINCE.

Property 2. For the S-box of PRINCE, there are 15 differential transitions, i.e. 15 pairs of input-output differ-
ences, that hold with probability 2−2.

Further, we introduce three differences (∆,∆M ,∇) that play the main role in our boomerang attacks. Let
∆→ ∆O be one of the 15 transitions with probability 2−2, and let ∆M be defined as ∆M = M(∆O), where M
is the linear layer of PRINCE. Finally, let ∇ = ∆⊕∆M .

�
�
�
�

∆M

�
�
�
�

∇

�

∆

S

�

∆O

M′

�
�
�
� SR

�
�
�
�

∆M

Fig. 3. Iterative differential characteristic on one round of PRINCEcore used in the boomerang distinguisher.

Property 3. For PRINCEcore, there exists one round iterative characteristic (∆M ,∇) → (∆M) where ∆M is
the difference in the incoming state and ∇ is the difference in the key, that holds with probability 2−2.

The proof is trivial and is based on the particular values of the differences we have defined above (see Fig.3).
The related-key boomerang distinguisher uses two independent six-round differential characteristics, pro-

duced as concatenation of six copies on the single-round differential characteristic previously described. Thus,
we obtain two six-round characteristics with probabilities p = q = 2−2×6 = 2−12. Consequently, the related-
key boomerang distinguisher finds a boomerang quartet of plaintexts in (pq)−2 = 248 queries to the encryp-
tion/decryption oracle. We have implemented the distinguisher on a PC and found out that due to the amplified
probability of the boomerang, the actual complexity is lower, i.e. it is somewhere around 236. Thus, we were
able to find a boomerang quartet for the full 12 rounds of PRINCEcore. An example of one such quartet is given
in Appendix A.

Before we continue, we would like to make a few observations regarding the boomerang:

• the distinguisher is applicable regardless of the choice of the diffusion matrix M ,
• the distinguisher is applicable regardless of the position of ∆ in the state, i.e. we can choose any of the 16

nibbles,
• the distinguisher is applicable regardless of the choice of ∆ in the top and the bottom characteristics,
• for one of the six-round characteristics one can choose differential transition that holds even with probability

2−3. In that case, the probability of the boomerang becomes 26·2·(−3)+6·2·(−2) = 2−60.

Thus we can conclude that for PRINCEcore, one can launch around 15 · 16 · 15 · 16 ≈ 216 different related-key
boomerang distinguishers that hold with probability 2−48, and around 210 · 16 · 15 · 16 + 15 · 16 · 210 · 16 ≈ 221

boomerangs with probability 2−60. In the sequel, we denote A(i, j) the boomerang distinguisher with probability
2−48 where the active on the top characteristic is the i-th one, and the j-th one for the bottom characteristic,
0 ≤ i, j < 16.

Key-recovery attack. We now show how to turn the previous related-key boomerang distinguisher into a
key-recovery attack. After the previously described distinguishing algorithm has completed, the attacker has
one boomerang structure consisting in two pairs conforming to the first differential characteristic, and two other
pairs verifying the second differential characteristic. From the plaintext, we show that the entropy of the nibble
from k1 corresponding to the active nibble in the top characteristic has been reduced to 2 bits. Indeed, as the
pair verifies the first round, we know the differential transition of the first active nibble, so that there are only
4 possible values of that particular nibble3. Since we know the values in the plaintexts, and we have two pairs
that verify this transition, the corresponding key-nibble can only take two values. The same reasoning applies
on the ciphertexts for the bottom characteristic.

If we run 16 different instances of the boomerang distinguishing algorithm A(n, n), 0 ≤ n < 16, with the
same nibble position n in the two characteristic, each iteration would narrow the n-th nibble of k1 to exactly
one value, but this would also require 16 · 236 chosen-plaintexts. Instead, we run 8 times the algorithm with
different nibble positions in the top and the bottom part: A(n, n+ 8), 0 ≤ n < 8. Consequently, the information
from the top pairs reduces the left half of k1 to 28 values, and the bottom pairs reduces the right half of k1 to 28

values as well. In total, this requires 8 · 236 data and time to run the boomerang algorithm A, and an additional
216 time to recover the actual key k1.

4 A Single-key Attack on PRINCEcore With Chosen α

The related-key boomerang attack presented above does not make use of the α-reflection property, but rather
of the high probability one-round iterative characteristic. In this section, we show that the two concepts can
be combined into a single-key boomerang attack with a modified value of α, i.e. we show existence of a set of
values of α 6= 0 for which one can launch key-recovery attack on PRINCEcore. The idea of our single-key attack
is to align encryption with decryption in the boomerang. We note that the possibility of alignment has been
discussed in the submission (see Sect. 3.1 of [4]), however the designers did not examine the case of boomerangs.

First, let us assume the encryption Enc of PRINCEcore is aligned with decryptionDec, and focus on differential
trails. Due to the α-reflection property, these two primitives are identical up the the addition of the round
constants RCi. As pointed by the designers, to build a related-key differential trail between Enc and Dec, one
takes difference α in the related keys and since the same difference α is introduced by the round constants, in
each round the differences cancel and the trail holds with probability 1. On the other hand in the single-key case,
the difference coming from the key is 0, while the constants would still have the predefined α. Recall that in the
six-round differential trails used in the related-key boomerang attack, in each round the difference introduced by
the key is ∇. Hence, if α would coincide with the difference ∇ in the key from the above related-key boomerang,
then a six-round single-key trail between Enc and Dec is precisely the same as the six-round related-key trail
between two Enc (or between two Dec), i.e. the keys and constants switch roles. In other words, in the single-key
case one can build a six-round trail with probability 2−12.

The single-key boomerang attack for the whole PRINCEcore uses the same ∆M in the top and bottom
characteristics, and it can be described as follows:

1. Aligning encryption with decryption at the beginning: Take a random plaintext P1 and compute
C2 = P1 ⊕∆M .

2. Aligning two encryptions with decryptions at the end: Encrypt P1 to produce the ciphertext C1,
and decrypt C2 to produce the plaintext P2. Compute C3 = C1 ⊕∆M and P4 = P2 ⊕∆M .

3. Aligning encryption with decryption at the beginning: Decrypt C3 to produce the plaintext P3.
Encrypt P4 to produce the ciphertext C4. If P3⊕C4 = ∆M output the boomerang quartet (P1, C2, P3, C4),
otherwise go to step 1.

3 The transitions occurring with probability 2−2, there are two pairs of values that are solution to S(x)⊕S(x⊕∆) = ∆O.

After repeating 1-3 around 248 times, one finds the quartet with a high probability. The proof of correctness
of the above boomerang is similar as in the case of standard boomerangs (where one aligns encryptions with
encryptions).

In the single-key case, we cannot choose the position of the active nibble as it is fixed by the value of α.
Thus in the key recovery attack, we can recover only a single nibble of the master key. The first boomerang
quartet will suggest 4 possible values for this nibble, and an additional quartet will give the exact value. Thus
the complexity of recovering 4 bits of the master key is 2 · 248 = 249. The remaining 60 bits can be searched
exhaustively. Our experimental results suggest that when the top and the bottom characteristic use the same
value ∆M then the probability of the boomerang is somewhat lower, i.e. instead of 2−36 obtained in the case of
different ∆M , now we get 2−40. Therefore the actual recovery of the 4 bits is around 2 · 240 = 241.

The above attack is applicable only when the value of the constant α coincides with the value of ∆M defined
in the previous section. Therefore, α can take 15 · 16 = 240 different values. We note that the original value
chosen by the designers is not among these 240 values.

5 Exploiting the extra linear relation

In this section, we give an analysis of PRINCE in the single-key model. We show that while the claim of the
authors is that no attack can be conducted on PRINCE with less than 2127−n computations with 2n queries, it is
possible to slightly break this bound by leveraging the various linear relations that exist with probability 1 in
the cipher. Of course, considering the small gain factor (only about 20.6), our attack does not really contradict
the claim of the designers. However, it indicates that perhaps it might be possible to tweak the security proof
in order to take in account all the linear relations inherent to the structure of PRINCE. We emphasize that the
gain factor comes directly from the number of keys tested, not by computing only parts of the cipher as for
biclique attacks [3]. It would be possible to slightly increase the gain by combining with the accelerating tricks
from biclique attacks, but our goal is not in this direction as we are analyzing the structural behavior of the
cipher.

5.1 The linear relations

The idea underlying our attack is that there exist two linear relations for PRINCE cipher that are verified with
probability 1:

E(k0||k1)(P) = E(k0⊕∆||k1)(P ⊕∆)⊕ L(∆) or D(k0||k1)(C) = D(k0⊕∆||k1)(C ⊕ L(∆))⊕∆ (2)

D(k0||k1)(C) = E(k0||k1⊕α)(C ⊕ k0 ⊕ L(k0))⊕ k0 ⊕ L(k0) (3)

The first equation (2) is the simple related-key relation due to the Even-Mansour construction of PRINCE, while
the second equation (3) is the α relation required for the smooth decryption of PRINCE. Using these two relations,
we will be able to test 4 keys at the same time, with only one PRINCE computation, thus leading to a maximal
gain factor of 2 over the claimed security (2127 with a single query).

First let us assume that we queried some plaintext P to the encryption oracle and we received ciphertext C.
By picking a random key (k0||k1), the attacker can compute E(k0||k1)(P) = C ′ and directly check if C ′ = C. If
not, then he knows that (k0||k1) is not the secret key. However, he can deduce more than just this information.
Indeed, from (2) and by denoting C ′ ⊕ C = δ 6= 0, we deduce

E(k0⊕L−1(δ)||k1)(P ⊕ L−1(δ)) = E(k0||k1)(P)⊕ L(L−1(δ))

= C ′ ⊕ δ = C

and since δ 6= 0, then L−1(δ) 6= 0 and thus the key (k0 ⊕ L−1(δ)||k1) encrypts a different plaintext than P to
ciphertext C, i.e. it is not a valid key (and it is different from key (k0||k1) since L−1(δ) 6= 0).

At this point, the attacker can test two keys with one PRINCE query and one PRINCE offline computation.
However, he can deduce even more information by using equation (3) and using notation X = L−1(P ⊕C⊕k0):

D(X||k1⊕α)(C) = E(X||k1)(C ⊕X ⊕ L(X))⊕X ⊕ L(X)

= E(k0||k1)(C ⊕X ⊕ L(X)⊕ k0 ⊕X)⊕X ⊕ L(X)⊕ L(k0 ⊕X)

= E(k0||k1)(P)⊕ L(k0)⊕X
= C ′ ⊕ L(k0)⊕ L−1(P ⊕ C ⊕ k0)

and if C ′ ⊕ L(k0)⊕ L−1(P ⊕ C ⊕ k0) 6= P , then it means that the key (X||k1 ⊕ α) deciphers the ciphertext C
to a plaintext different from P , i.e. it is not a valid key. Moreover, using notation Y = P ⊕ C ′ ⊕ L(k0), we can

also write:

E(Y ||k1⊕α)(P) = D(Y ||k1)(P ⊕ Y ⊕ L(Y))⊕ Y ⊕ L(Y)

= D(k0||k1)(P ⊕ Y ⊕ L(Y)⊕ L(k0 ⊕ Y))⊕ Y ⊕ L(Y)⊕ k0 ⊕ Y
= D(k0||k1)(C

′)⊕ k0 ⊕ L(Y)

= P ⊕ k0 ⊕ L(P ⊕ C ′ ⊕ L(k0))

and if P ⊕ k0 ⊕ L(P ⊕ C ′ ⊕ L(k0)) 6= C, then it means that the key (Y ||k1 ⊕ α) ciphers the plaintext P to a
ciphertext different from C, i.e. it is not a valid key.

5.2 Speeding up the key recovery with linear relations

For previous subsection, it is clear that with only a single query to the encryption oracle, and performing
only a single PRINCE offline computation, one can eliminate four keys at a time (namely K1 = (k0||k1), K2 =
(k0⊕L−1(δ)||k1), K3 = (L−1(P ⊕C⊕k0)||k1⊕α) and K4 = (P ⊕C⊕δ⊕L(k0)||k1⊕α)) by testing simple linear
relations. However, there is a subtlety here because among the four keys that are tested, some are uncontrolled
by the attacker. Indeed, while K1 is directly chosen by the attacker, the value of the tested keys K2 or K4

depend on δ which is a random value from the view of the attacker. The third key K3 does not depend on δ
and therefore can be chosen by the attacker as well (that is, k0 and k1 linearly define K1 and K3).

We would like to evaluate the complexity of a brute force key search using this method that tests four keys
with only a single PRINCE computation. One can first divide the sets of keys k1 into 263 independent pairs
(k1, k1 ⊕ α). The attacker will go through the 263 pairs and for each of them test all the possible values of k0.
For each PRINCE computation, he will eliminate two keys for k1 (i.e. K1 and K2) and two keys for k1⊕α (i.e. K3

and K4), continuing until he has tested all the keys k0 for both k1 and k1 ⊕ α, and then going to the next pair
(k1, k1⊕α). To minimize the overall complexity, at each step the attacker will select a value for k0 such that key
K1 and key K3 have not been tested yet and this can be done with a good probability4 as long as the number
of untested keys k0 for both k1 and k1 ⊕ α is bigger than 232. The two others keys K2 and K4 will randomly
hit either a new and untested key or an already tested one, but on average over the whole process about one
key will be eliminated. Overall, with one PRINCE computation on average about three new key candidates are
removed and the total key recovery complexity is about 2128/3 = 2126.4 PRINCE evaluations, while with a single
query to the encryption oracle the security claim by the designers is 2127. We give in Appendix B a slightly
more precise analysis of the attack complexity, leading to 2126.47 computations.

5.3 Generalization to several queries

In the previous subsection, only a single plaintext query was sent to the encryption oracle, but in fact this is not
enough to fully recover the PRINCE secret key since at least two 64-bit queries are required to fully determine
the 128-bit secret key. Asking one more query to the oracle in order to prune the remaining key candidates will
reduce by a factor 2 the security claim given by the designers which will become lower than our key recovery
complexity. Therefore, we need to generalize our previous attack to the case of several oracle queries, and we
analyze the example of two queries.

Our goal with two queries is now to be able to test 8 keys at a time (instead of 4), using only one offline
PRINCE computation. Let us assume that in addition to the first query (P,C), we also ask for the encryption of
P⊕1 and we receive C+1. As before, by choosing a random key (k0||k1) and computing offline E(k0||k1)(P) = C ′,
we can test four keys at a time by using (P,C). It is actually straightforward to apply the very same reasoning
to (P ⊕ 1, C+1) as well and get to test four more keys for free. For example, similarly to the first key K1 we can
write:

E(k0⊕1||k1)(P ⊕ 1) = E(k0||k1)(P)⊕ L(1)

= C ′ ⊕ L(1)

and if C ′ ⊕ L(1) 6= C+1, then it means that the key (k0 ⊕ 1||k1) ciphers the plaintext P ⊕ 1 to a ciphertext
different from C+1, i.e. it is not a valid key. We can apply this kind of transformation to the three other keys
K2, K3, K4 and obtain three more free keys.

During the key recovery process, we now get a structure with 8 tested keys, where 4 are for k1 (two controlled
and two uncontrolled) and 4 are for k1⊕α (two controlled and two uncontrolled). With the very same reasoning

4 Since there are 264 values of k0 to test, there will always be at least 232 untested key for both k1 and k1 ⊕ α except
at the very end of the process, but then the effect is negligible since only 232 keys will remain to be tested.

as before5, we deduce that 6 new keys are tested on average per offline PRINCE computation, and the final key
recovery complexity is 2128/6 = 2125.4 PRINCE evaluations, while with two queries to the encryption oracle the
security claim by the designers is 2126. Using the same reasoning than depicted in Appendix B, we obtain a
slightly more precise analysis of the attack complexity, leading to 2125.47 computations.

6 Integral attacks for reduced-round PRINCEcore and PRINCE

In this section, we present key-recovery attacks for reduced variants of 4, 5 and 6 rounds of PRINCEcore, and
show how to extend them to key-recovery attack on the same number of rounds for PRINCE. The basic strategy
comes as a direct application of the SQUARE attack proposed in [5]. We begin by describing the context for
PRINCE with a 4-round version, and then show how to extend it to 5 and 6 rounds. In the sequel, we use the
notations defined in Section 2 where the middle layer Mmid is linear.

6.1 Attack on 4 rounds

This small version considers two rounds R0 and R1 in the first part of the core block cipher, followed by the
middle linear layer Mmid, and finally the two last rounds R2 and R3. The secret key to recover for PRINCEcore
is k1. This attack, as well as the subsequent ones, uses the following 3-round distinguishing property as its core.

Property 4. Let Pn be a set of 24 plaintexts such that a particular nibble n assumes all 24 possible values
while the 15 other ones are fixed to chosen constants. We call this structure a δ-set. The encryption of the δ-set
Pn through three rounds of PRINCEcore produces a set C where all nibbles are balanced, that is:

∀n ∈ {0, . . . , 15},
⊕
c∈C

c[n] = 0.

The proof strictly follows the one from [5] and is due to the wide-trail strategy followed by the designers.
Additionally, we can also consider the encryption of Pn under 3.5 rounds of PRINCEcore, where we skip the
application of the non-linear layer in the fourth round. Applying the S-box destroys this algebraic property of
the δ-set, but allows to mount a key-recovery attack.

We begin by constructing a δ-set P0 of 24 plaintexts where nibble at position 0 assumes all 24 values, and
we ask the encryption P0 under the secret key k1 and store the ciphertexts in C. Then, for all nibbles n in k1,

guess the value of k1[n] and compute σ =
⊕

c∈C S
(
c[n]⊕ k1[n]⊕RC4[n]

)
. If σ = 0, then the nibble before the

last non-linear layer is balanced, and we get a valid suggestion for the value k1[n]. Otherwise, we discard the
guess.

This algorithm requires 24 chosen plaintexts and suggests in average one value per nibble of k1 since each
check should remove 1 out of 24 guesses. At the end, we recover in sequence all the nibbles of k1 with a total
time complexity of 16 · 24 = 28 simple operations, and 24 64-bit words of memory.

6.2 Attack on 5 rounds

Further we show how to add one round at the end of the previous attack, to reach five rounds. We note that
this reduced variant of PRINCEcore is not symmetric since there are two rounds, R0 and R1, before Mmid and
three rounds after: R2, R3 and R4. The strategy remains the same: we guess particular key nibbles to check the
distinguishing property on an encrypted δ-set C. Now we need to guess 4 nibbles of a column of k1 to partially
decrypt the corresponding columns of the ciphertexts and check the balanced property. Note that in the case of
PRINCEcore, we only need to guess 4 nibbles since there is no key-schedule, whereas for the AES we would need
5.

In comparison to the previous attack where one check suffices to remove all but one key guess, here we
need more. Indeed, we expect a single check to behave as a 4-bit filter, so that 4 δ-sets should provide enough
information to discard all but 1 key guess. In practice, we measure that the filter is not that strong: we require
in average 4.7 δ-set to determine the 4 key nibbles uniquely. In total, the attack requires 5 ·24 chosen plaintexts,
5 · 24 memory to store them, and a time complexity of 4 · 5 · 216 ≈ 221 simple operations to recover the full k1.

5 We have 4 controlled keys, which can be chosen to be always untested keys as long as the number of untested keys
k0 for both k1 and k1 ⊕ α is bigger than 248. Since there are 264 values of k0 to test, there will always be at least 248

untested key for both k1 and k1 ⊕ α except at the very end of the process, but then the effect is negligible since only
248 keys will remain to be tested.

6.3 Attack on 6 rounds

On top on the previous attack, we add one additional round at the beginning to reach six rounds. The strategy
is the same as the one for the AES: we construct a set of plaintexts P such that we can construct a δ-set
after one round. To do so, we consider a larger structure of 216 plaintexts where the four diagonal nibbles
assume all the possible values, and we ask its encryption to get the set of corresponding ciphertexts C. Then,
we guess the four diagonal nibbles of k1 and partially encrypt the associated data under the key guess to find
24 plaintexts/ciphertexts pairs defining a δ-set in the second round. We expect 212 δ-sets Pi for any nibble i,
so the data can be reused to replay the attack on a different δ-set. We can now apply the 5-round attack by
guessing only 3 additional nibbles: we already know one in each column from the diagonal guess. In total, the
attack requires 216 chosen plaintexts of data and same for memory requirements and runs in time equivalent to
4 · 216 · 212 = 230 simple operations.

6.4 Extension from PRINCEcore to PRINCE

All the three previous attacks on PRINCEcore can be extended to attacks on PRINCE by guessing the same nibbles
in L(k0). Namely, if we have an integral attack on r rounds of PRINCEcore requiring g precise guesses in the last
application k1, we can deduce an attack recovering k1 ⊕ L(k0) on the same number r of rounds by guessing
the same g nibbles in both k1 and L(k0). For each correct final guess g that verifies the balanced property, we
deduce the right value for k1[g] ⊕ L(k0)[g]. Hence, for the 6-round attack, we can recover k1 ⊕ L(k0) with 216

chosen plaintexts and (24)4+3+4 = 244 simple operations. We first guess the four diagonal nibbles of k1 to find
the δ-set, then we guess 4 nibbles in a column of L(k0) and three new guesses in the same column of k1 to
partially decrypt the ciphertexts. For the same reason as before, only three guesses are needed in k1 because we
already know one. Finally, we can exhaust the 264 values of either k0 or k1 to recover the full 128-bit master
key.

7 Time-Memory-Data Tradeoffs

In this section, we present tradeoffs for the construction used in PRINCE, i.e. our approaches work regardless of
the cipher used as PRINCEcore. The proposed tradeoffs are based on a property that the cipher can be divided
into two parts, leading to a similar division of the phases of the key recovery attack. Then, one side of the
attack is precomputed as it does not depend on the plaintext-ciphertext, while the other side is data-dependent
and it is recomputed in the online phase. Depending on the precomputation phase and in particular on the
memory used in this phase, our tradeoffs are based either on the meet-in-the-middle (MITM) attacks or on
Hellman’s tradeoffs[9]. We note that we give time-memory-data tradeoffs, i.e. we show that one can achieve
tradeoffs involving data as well. This is not the case for the rest of the block ciphers, as the only known generic
block cipher tradeoff is the Hellman’s tradeoff which does not make use of larger data set.

We assume the reader is familiar with the Hellman’s time-memory tradeoff that consists of two phases: 1)
precomputation or offline phase, when the attacker encrypts a chosen plaintext under all possible keys and
stores part of the results in so-called Hellman’s tables, and 2) online phase, in which the attacker recovers the
secret key using the tables. A cryptanalytic tradeoff is defined by the following parameters:

• N is the size of the key space (e.g. for PRINCE N = 2128)
• P is the time complexity of the precomputation phase
• M is the amount of the memory used in both the precomputation and the online phases
• T is the time required to recover the secret key, i.e. the complexity of the online phase
• D is the amount of data required to recover the secret key

The standard way of presenting a tradeoff is by giving its curve, which is a simple relation between the time,
memory, data, and the size of the key. The Hellman’s time-memory tradeoff is the only known generic tradeoff
for block ciphers, and has the curve TM2 = N2,M > N

1
2 and P = N . We use (P,C) to denote the plaintext-

ciphertext pair for PRINCE, and (A,B) to denote the pair for PRINCEcore.
Our tradeoffs exploit the linearity of the addition of k0. Recall that the addition of the key k0 is defined as:

P ⊕ k0 = A (4)

B ⊕ L(k0) = C, (5)

or equivalently

L(P)⊕ L(A) = L(k0) (6)

B ⊕ C = L(k0). (7)

Thus, the values of P,C,A,B are related as:

L(P)⊕ C = L(A)⊕B (8)

Therefore, the separation of (P,C) on one side, and (A,B) on the other is manageable. We note that a similar
reduction was presented in [7]. It was applied to the case of single-key Even-Mansour, where L(k0) = k0, and
the inner transformation F is a permutation rather than a cipher as in our case. However, [7] does not examine
the possibility of tradeoff attacks.

A MITM Tradeoff. Our first tradeoff is MITM based. It can be described as follows:

1. In the precomputation phase, the attacker fixes 264−d values of A and for all possible 264 values of the key
k1 computes the corresponding value of B = PRINCEcore(A, k1) and stores the tuple (L(A)⊕B,A,B, k1)
in a table S̃. The size of S̃ is 2128−d.

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each pair (Pi, Ci), the attacker
computes the value of L(P) ⊕ C and checks for a match in the table S̃. For every found match, the outer
key k0 is computed, and a possible candidate k0||k1 is checked on a few more pairs of plaintexts-ciphertexts.

As there is 2d data, the size of the set S̃ is 2128−d, and the matching space is only 64 bits, there would be
2d+128−d−64 = 264 candidates, thus the correct key would be found with an overwhelming probability.

This tradeoff has the following parameters:

N = 2128, P = 2128−d,M = 2128−d, T = 264, D = 2d, (9)

and thus the precomputation phase is smaller than N , i.e. PD = N , while the resulting memory-data tradeoff
curve is of the type:

DM = N,T = N
1
2 ,M > N

1
2 . (10)

Interestingly, this is precisely the curve given by Babbage and Golić [1, 8] for stream ciphers. Compared to the

Hellman’s curve, we get TM2 = 26424·64−2d = 24·64264−2d = N2264−2d, hence when the data D > N
1
4 = 232,

we get a better tradeoff.

Hellman’s tables trade-off. Though the time complexity seems attractive as it is only N
1
2 , the memory

complexity required by the previous tradeoff is quite large. Hence, it is reasonable to try to reduce the memory
by increasing the time. This is achievable by implementing Hellman’s tradeoff as intermediate step of the tradeoff
for the whole cipher. Hellman’s tradeoff satisfies the curve TM2 = N2, where N = 2n, T = t2,M = mt, and
mt2 = 2n. The values t,m are related to the dimension and the number of the tables created during the offline
phase. Note that Hellman’s tables are computed for a particular plaintext. We call P -Hellman’s tables, the
precomputation phase computed under the plaintext P . Thus P -Hellman’s tables can recover the secret key if
the supplied plaintext is P .

Our tradeoff based on Hellman’s tables can be described as:

1. In the precomputation phase, the attacker creates a set S̃ of 2n−d different values Ai for A and for each
value, builds Ai-Hellman’s tables for the cipher PRINCEcore(Ai, k1).

2. In the online phase, given 2d pairs of known plaintexts-ciphertexts, for each pair (Pi, Ci), the attacker
performs the following steps:
• Fixes one value of Ai from the predefined set S̃,
• Computes the value of k0 = Pi ⊕A,
• Computes the corresponding value of B = Ci ⊕ L(k0),
• Uses Ai-Hellman’s table, to find a value of k1 such that PRINCEcore(Ai, k1) = B,
• Checks if the found key k0||k1 is the correct key by testing on a few more pairs of plaintext-ciphertext,
• If the suggested key is incorrect, repeats all of the above steps.

As there is 2d data, and 264−d values of Ai in S̃, in total there are 2d264−d = 264 possible values for the key
k0, and for each of them on average one value for the key k1, or 264 pairs of suggested keys, thus the attacker
finds the right key with a high probability. In the precomputation phase, for a single value of A, the attacker
uses 264 computations to build Hellman’s tables and requires M = mt memory to store each of them. In the
online phase, given A and B, the attacker needs T = t2 time to find the correct value of the key k1. Therefore,
the tradeoff has the following parameters:

N = 2128, P = 2128−d,M = 264−dmt, T = 264t2, D = 2d, (11)

and the resulting time-memory-data tradeoff curve is of the type:

T (MD)2 = 264t222·64−2dm2t222d = 23·64(t2m2t2) = 23·6422·64 = 25·64 = N2N
1
2 . (12)

Again, our tradeoff compared to the Hellman’s tradeoff is better at the points of the curve where D > N
1
4 .

We should note that due to the claimed security level of PRINCE, i.e. TD < N , an additional requirement
M2D > 2192 is introduced.

Hellman’s single table trade-off. In the Hellman’s tradeoff, different tables, each with a unique reduction
function, are created in order to avoid colliding chains, i.e. if the chains are too long, the probability they will
collide is high and therefore either the precomputation time has to be increased or the number of keys that
can be recovered in the online phase becomes small. The collisions in the precomputation phase cannot be
detected, hence the chains are kept short. However, the situation changes if one can store all of the values. This
type of scenario is discarded in the classical Hellman’s tradeoff as it requires M = N . However, in the case of
PRINCEcore, the required memory is only M = N

1
2 which is precisely the lower bound on the memory in the

Hellman’s tradeoff (recall that the memory requirement in the Hellman’s tradeoff is M > N
1
2 = 264). Using 264

memory, one can easily create a single Hellman’s table for the whole tradeoff – the table has m chains, each
with around t points. The first chain starts with a terminal point (a value that does not have a preimage) and
can have a length of up to 232, i.e. t < 232. If the length t is chosen to be less than 232, then the starting point
of the next chain is the end point of the previous one. This process is repeated until a collision is obtained –
such collision can be detected immediately as one has all the values stored. Once a collision occurs, the next
chain starts again with a terminal point. Hence, to build the whole table, one needs 264 time and memory, and
mt = 264. Only the starting and end points of the chains are stored for the online phase, thus the memory of
the online phase is m, while the time complexity is t, and therefore the tradeoff curve becomes TM = N . Note
that the memory 264 is reusable across different tables, i.e. if one wants to create different tables for tradeoffs
with different plaintexts, the same 264 can be used. Also, as the chains can have a maximal length of 232, if
follows that t ≤ 232 and m ≥ 232.

The tradeoff presented above can be tweaked, and instead of building multiple Hellman’s tables with mt2 =
2128, we can use the single table described here with mt = 264. Hence, using this technique, we obtain the
following tradeoff:

N = 2128, P = 2128−d,M = max(264−dm, 264), T = 264t,D = 2d, (13)

and the resulting time-memory-data tradeoff curve is of the type:

TMD = 264t264−dm2d = 22·64(tm) = 22·64264 = NN
1
2 . (14)

Obviously M > N
1
2 has to hold (same as in the Hellman’s tradeoff), but now we get that for any D > M/N

1
2

our tradeoff is better than Hellman’s, that is if one uses 264+d memory, and can obtain more than 2d known
pairs of plaintext-ciphertext, by implementing our tradeoff he can recover the key with less computations then
by implementing the generic Hellman’s tradeoff. We emphasize that our tradeoff requires only known data, i.e.
it is far more practical requirement, than the one of the generic tradeoff.

Acknowledgement

The authors would like to thank the FSE 2013 reviewers and the Prince team for their valuable comments. Ivica
Nikolić is supported by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-
03. Thomas Peyrin, Lei Wang and Shuang Wu are supported by the Singapore National Research Foundation
Fellowship 2012 NRF-NRFF2012-06.

References

1. Steve Babbage. A Space/Time Trade-Off in Exhaustive Search Attacks on Stream Ciphers. 1995. European
Convention on Security and Detection, IEE Conference Publication No. 408.

2. Alex Biryukov. DES-X (or DESX). In Henk C. A. van Tilborg and Sushil Jajodia, editors, Encyclopedia of Cryp-
tography and Security (2nd Ed.), page 331. Springer, 2011.

3. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the Full AES. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
344–371. Springer, 2011.

4. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R. Knudsen, Gregor
Leander, Ventzi Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Soren S. Thomsen, and Tolga Yalçın.
PRINCE: A Low-latency Block Cipher for Pervasive Computing Applications. In ASIACRYPT. to appear, 2012.

5. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In Eli Biham, editor, FSE, volume
1267 of Lecture Notes in Computer Science, pages 149–165. Springer, 1997.

6. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
2002.

7. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The Even-Mansour Scheme Revisited.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 336–354. Springer, 2012.

8. Jovan Dj. Golić. Cryptanalysis of Alleged A5 Stream Cipher. In Walter Fumy, editor, EUROCRYPT, volume 1233
of Lecture Notes in Computer Science, pages 239–255. Springer, 1997.

9. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory, 26(4):401–
406, 1980.

10. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an Analysis of DESX). J.
Cryptology, 14(1):17–35, 2001.

A Example of a boomerang structure

We present here an example of a boomerang structure found for the attack described in Section 3.2.

Table 2. Example of a related-key boomerang structure
(

(ki, pi, ci)
)
i=1,...,4

for the full PRINCEcore in hexadecimal values.

(k1, k2, k1 ⊕ k2) 91b4e89d2625f1fb 91b5e88d2725f1fa 0001001001000001

(p1, p2, p1 ⊕ p2) 0b92a736c9bb91a3 0b93a726c8bb91a3 0001001001000000

(c1, c2, c1 ⊕ c2) 2f04603451d1d3df 3846bd541167b633 1742dd6040b665ec

(k3, k4, k3 ⊕ k4) 91a4e99d2635f1fa 91a5e98d2735f1fb 0001001001000001

(p3, p4, p3 ⊕ p4) a763296ea531a6b8 a762297ea431a6b8 0001001001000000

(c3, c4, c3 ⊕ c4) 2f14613451d1d3de 3856bc541167b632 1742dd6040b665ec

(k1, k3, k1 ⊕ k3) 91b4e89d2625f1fb 91a4e99d2635f1fa 0010010000100001

(p1, p3, p1 ⊕ p3) 0b92a736c9bb91a3 a763296ea531a6b8 acf18e586c8a371b

(c1, c3, c1 ⊕ c3) 2f04603451d1d3df 2f14613451d1d3de 0010010000000001

(k2, k4, k2 ⊕ k4) 91b5e88d2725f1fa 91a5e98d2735f1fb 0010010000100001

(p2, p4, p2 ⊕ p4) 0b93a726c8bb91a3 a762297ea431a6b8 acf18e586c8a371b

(c2, c4, c2 ⊕ c4) 3846bd541167b633 3856bc541167b632 0010010000000001

B Analysis of the key recovery attack complexity of Section 5

In the cryptanalysis described in Section 5, the attacker would like to test the entire set of the 2k possible keys.
At each step, four keys will be tested directly. However, for each step, the attacker can only choose the value of
two keys, and the two others are randomly chosen among the set of all possible keys (thus potentially already
tested ones). Since the overall complexity of the attack is the number of steps required to test the entire set of
keys, we would like to evaluate this quantity precisely.

In order to ease the modeling, we consider the problem where at each step one key is chosen by the attacker
(thus always an untested one) and another one is chosen randomly. Let T1/2 be the step where half of the keys
have already been tested. After T1/2, at least one new key will be tested on average, since the attacker can
choose one key each step. Before T1/2, at least 1.5 new key will be tested on average, since the attacker can
choose one key each step and since the randomly chosen key will have a probability greater than 1/2 to be an
untested key. We can conclude that the average number of keys tested per step is at least 2/(1 + 1/1.5) = 1.2.

We further continue the partitioning by denoting Ti/x the step where a proportion i/x of all keys have
already been tested. Then, with the same reasoning, after Ti/x at least (2− (i+ 1)/x) new keys will be tested
on average and before Ti/x at least (2− i/x) new keys will be tested on average. The approximation gets more
precise as x grows and we obtain that the average number of key tested per step is equal to

lim
x→∞

x∑x−1
i=0 (1/(1 + i/x))

=
1

ln(2)
≈ 1.443. (15)

As a consequence, the average number of steps required to test the entire key space in Section 5 is approximately
2k/(2× 1.443) = 2k−1.53.

