T. P. Berger, P. Cayrel, P. Gaborit, and A. Otmani, Reducing Key Length of the McEliece Cryptosystem, Progress in Cryptology ? Africacrypt'2009, pp.77-97, 2009.
DOI : 10.1007/BFb0019850

URL : https://hal.archives-ouvertes.fr/hal-01081727

D. J. Bernstein, List Decoding for Binary Goppa Codes, 2008.
DOI : 10.1109/TIT.1976.1055610

P. Cayrel, P. Gaborit, D. Galindo, and M. Girault, Improved identity-based identification using correcting codes, p.69, 2009.

N. Courtois, M. Finiasz, and N. Sendrier, How to Achieve a McEliece-Based Digital Signature Scheme, Advances in Cryptology ? Asiacrypt, pp.157-174, 2001.
DOI : 10.1007/3-540-45682-1_10

URL : https://hal.archives-ouvertes.fr/inria-00072511

L. Dallot, Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme Proceedings of WEWoRC, 2007.

L. Dallot, D. Vergnaud, and I. Int, Provably Secure Code-Based Threshold Ring Signatures, Conf. Lecture Notes in Computer Science, vol.5921, pp.222-235, 2009.
DOI : 10.1007/978-3-642-10868-6_13

URL : https://hal.archives-ouvertes.fr/hal-01082399

J. Faugère, A. Otmani, L. Perret, and J. Tillich, Algebraic Cryptanalysis of McEliece Variants with Compact Keys, Advances in Cryptology ? Eurocrypt'2010, pp.279-298, 2010.
DOI : 10.1007/978-3-642-13190-5_14

J. Faugère, A. Otmani, L. Perret, and J. Tillich, A distinguisher for high rate mceliece cryptosystems, Cryptology ePrint Archive, vol.331, 2010.

M. Finiasz and N. Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, Advances in Cryptology ? Asiacrypt'2009, pp.88-105, 2009.
DOI : 10.1007/978-3-642-10366-7_6

P. Gaborit, Shorter keys for code based cryptography, International Workshop on Coding and Cryptography ? WCC'2005, pp.81-91, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078726

M. N. Gulamhusein, Simple matrix-theory proof of the discrete dyadic convolution theorem, Electronics Letters, vol.9, issue.10, pp.238-239, 1973.
DOI : 10.1049/el:19730172

K. Kobara, Flexible quasi-dyadic code-based public-key encryption and signature. Cryptology ePrint Archive, Report, vol.635, 2009.

R. Mceliece, A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report, pp.42-4442, 1978.

R. Misoczki and P. S. Barreto, Compact McEliece Keys from Goppa Codes, Selected Areas in Cryptography ? SAC'2009, pp.276-392, 2009.
DOI : 10.1007/978-3-642-05445-7_24

URL : https://hal.archives-ouvertes.fr/hal-00870932

H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, pp.159-166, 1986.

A. Otmani, J. Tillich, and L. Dallot, Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes, Mathematics in Computer Science, vol.1, issue.4, pp.129-140, 2010.
DOI : 10.1007/s11786-009-0015-8

URL : https://hal.archives-ouvertes.fr/hal-01083566

N. J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions on Information Theory, vol.21, issue.2, pp.203-207, 1975.
DOI : 10.1109/TIT.1975.1055350

S. Schechter, On the inversion of certain matrices Mathematical Tables and Other Aids to Computation, pp.73-77, 1959.

P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, vol.26, issue.5, pp.1484-1509, 1995.
DOI : 10.1137/S0097539795293172

V. G. Umana and G. Leander, Practical key recovery attacks on two McEliece variants, International Conference on Symbolic Computation and Cryptography ? SCC'2010, 2010.

D. Zheng, X. Li, and K. Chen, Code-based ring signature scheme. I, J. Network Security, vol.5, issue.2, pp.154-157, 2007.