F. [. Baldi and . Chiaraluce, Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes, 2007 IEEE International Symposium on Information Theory, pp.2591-2595, 2007.
DOI : 10.1109/ISIT.2007.4557609

P. [. Berger, P. Cayrel, A. Gaborit, and . Otmani, Reducing Key Length of the McEliece Cryptosystem, Progress in Cryptology ? Africacrypt'2009, pp.77-97, 2009.
DOI : 10.1007/BFb0019850

URL : https://hal.archives-ouvertes.fr/hal-01081727

R. [. Barreto, R. Lindner, and . Misoczki, Decoding square-free Goppa codes over F p . Cryptology ePrint Archive, Report, vol.372, issue.7 11, 2010.

T. [. Bernstein, C. Lange, . Peters, and . Wild-mceliece, Wild McEliece, Selected Areas in Cryptography, pp.143-158, 2010.
DOI : 10.1109/18.21264

T. [. Bernstein, C. Lange, and . Peters, Smaller Decoding Exponents: Ball-Collision Decoding, Lecture Notes in Computer Science, vol.6841, pp.743-760, 2011.
DOI : 10.1007/978-3-642-22792-9_42

URL : http://repository.tue.nl/714848

M. [. Courtois, N. Finiasz, and . Sendrier, How to Achieve a McEliece-Based Digital Signature Scheme, Lecture Notes in Computer Science, vol.2248, pp.157-174, 2001.
DOI : 10.1007/3-540-45682-1_10

URL : https://hal.archives-ouvertes.fr/inria-00072511

]. M. Fin10 and . Finiasz, Parallel-CFS, Selected Areas in Cryptography ? SAC 2010, pp.161-172, 2010.

]. Fopt10a, A. Faugère, L. Otmani, J. Perret, and . Tillich, Algebraic cryptanalysis of McEliece variants with compact keys Advances in Cryptology ? Euro- crypt'2010, Lecture Notes in Computer Science, vol.6110, pp.279-298, 2010.

J. Faugère, A. Otmani, L. Perret, and J. Tilllich, Algebraic cryptanalysis of compact McEliece's variants ? toward a complexity analysis, International Conference on Symbolic Computation and Cryptography ? SCC'2010, pp.45-56, 2010.

N. [. Finiasz and . Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, Advances in Cryptology ? Asiacrypt, pp.88-105, 2009.
DOI : 10.1007/978-3-642-10366-7_6

]. P. Gab05 and . Gaborit, Shorter keys for code based cryptography, International Workshop on Coding and Cryptography ? WCC'2005, pp.81-91, 2005.

P. [. Misoczki and . Barreto, Compact McEliece Keys from Goppa Codes
DOI : 10.1007/978-3-642-05445-7_24

URL : https://hal.archives-ouvertes.fr/hal-00870932

]. R. Mce78 and . Mceliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Network Progress Report, vol.44, pp.114-116, 1978.

J. [. Monico, A. Rosenthal, and . Shokrollahi, Using low density parity check codes in the McEliece cryptosystem, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060), p.215, 2000.
DOI : 10.1109/ISIT.2000.866513

N. [. Macwilliams and . Sloane, The theory of error-correcting codes, pp.2-4, 1977.

]. H. Nie86 and . Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, pp.159-166, 1986.

J. [. Otmani, L. Tillich, and . Dallot, Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes, Mathematics in Computer Science, vol.1, issue.4, pp.129-140, 2010.
DOI : 10.1007/s11786-009-0015-8

URL : https://hal.archives-ouvertes.fr/hal-01083566

]. E. Per11 and . Persichetti, Compact McEliece keys based on quasi-dyadic Srivastava codes. Cryptology ePrint Archive, Report, vol.179, 2011.

]. C. Pet10 and . Peters, Information-set decoding for linear codes over F q, Lecture Notes in Computer Science, vol.6061, pp.81-94, 2010.

]. C. Pet11 and . Peters, Curves, Codes, and Cryptography, 2011.

S. [. Sidelnikov and . Shestakov, On insecurity of cryptosystems based on generalized Reed-Solomon codes, Discrete Mathematics and Applications, vol.2, issue.4, pp.439-444, 1992.
DOI : 10.1515/dma.1992.2.4.439

K. [. Tzeng and . Zimmermann, On extending Goppa codes to cyclic codes (Corresp.), IEEE Transactions on Information Theory, vol.21, issue.6, pp.712-716, 1975.
DOI : 10.1109/TIT.1975.1055449