A Conjugate Gradient Algorithm for Blind Sensor Calibration in Sparse Recovery

Abstract : This work studies the problem of blind sensor calibration (BSC) in linear inverse problems, such as compressive sens- ing. It aims to estimate the unknown complex gains at each sensor, given a set of measurements of some unknown train- ing signals. We assume that the unknown training signals are all sparse. Instead of solving the problem by using con- vex optimization, we propose a cost function on a suitable manifold, namely, the set of complex diagonal matrices with determinant one. Such a construction can enhance numerical stabilities of the proposed algorithm. By exploring a global parameterization of the manifold, we tackle the BSC prob- lem with a conjugate gradient method. Several numerical experiments are provided to oppose our approach to the so- lutions given by convex optimization and to demonstrate its performance.
Type de document :
Communication dans un congrès
IEEE International Workshop on Machine Learning for Signal Processing - 2013, Sep 2013, Southampton, United Kingdom. 2013
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00871323
Contributeur : Cagdas Bilen <>
Soumis le : mercredi 9 octobre 2013 - 14:20:12
Dernière modification le : vendredi 16 novembre 2018 - 01:38:55
Document(s) archivé(s) le : vendredi 7 avril 2017 - 08:41:58

Fichiers

mlsp13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00871323, version 1

Citation

Hao Shen, Martin Kleinsteuber, Cagdas Bilen, Rémi Gribonval. A Conjugate Gradient Algorithm for Blind Sensor Calibration in Sparse Recovery. IEEE International Workshop on Machine Learning for Signal Processing - 2013, Sep 2013, Southampton, United Kingdom. 2013. 〈hal-00871323〉

Partager

Métriques

Consultations de la notice

1032

Téléchargements de fichiers

172