On the significance of the geometric conservation law for flow computations on moving meshes

Abstract : The objective of this paper is to establish a firm theoretical basis for the enforcement of discrete geometric conservation laws (D-GCLs) while solving flow problems with moving meshes. The GCL condition governs the geometric parameters of a given numerical solution method, and requires that these be computed so that the numerical procedure reproduces exactly a constant solution. In this paper, we show that this requirement corresponds to a time-accuracy condition. More specifically, we prove that satisfying an appropriate D-GCL is a sufficient condition for a numerical scheme to be at least first-order time-accurate on moving meshes.
Liste complète des métadonnées

https://hal.inria.fr/hal-00871722
Contributeur : Herve Guillard <>
Soumis le : jeudi 10 octobre 2013 - 11:36:19
Dernière modification le : samedi 27 janvier 2018 - 01:32:19

Lien texte intégral

Identifiants

Collections

Citation

Hervé Guillard, Charbel Farhat. On the significance of the geometric conservation law for flow computations on moving meshes. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2000, 190 (11-12), pp.1467-1482. 〈10.1016/S0045-7825(00)00173-0〉. 〈hal-00871722〉

Partager

Métriques

Consultations de la notice

198