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†Departamento de Informática e Ingenierı́a de Sistemas (DIIS), Universidad de Zaragoza, Spain

{iturrate, montesano}@unizar.es

Abstract—Do we need to explicitly calibrate Brain Machine
Interfaces (BMIs)? Can we start controlling a device without
telling this device how to interpret brain signals? Can we learn
how to communicate with a human user through practical
interaction? It sounds like an ill posed problem, how can we
control a device if such device does not know what our signals
mean? This paper argues and present empirical results showing
that, under specific but realistic conditions, this problem can be
solved. We show that a signal decoder can be learnt automatically
and online by the system under the assumption that both, human
and machine, share the same a priori on the possible signals’
meanings and the possible tasks the user may want the device to
achieve. We present results from online experiments on a Brain
Computer Interface (BCI) and a Human Robot Interaction (HRI)
scenario.

I. MOTIVATION

EEG-based brain-machine interfaces (BMIs) (see [1] for
a review) provide a communication channel between hu-
mans and machines using only brain activity. Since the first
demonstration of brain-controlled devices, research on BMIs
has emerged as one of the most growing research whose
ultimate goal is to endow people with severe motor disabilities
with communication and control capacities. Yet, the practical
promise of this technology remains unfilled with BMIs remain-
ing confined to the laboratory or limited to clinical studies or
home demonstrations that require close technical oversight [2],
[3].

Among the existent signals used to develop a BMI, recent
works have shown that it is possible to decode information
related to human error processing, namely the error-related
potentials [4] appearing for instance when the device action
does not match the user’s expectations. This potential has
been used mainly to improve the BMI decoder [5] and, more
interestingly, as feedback information to solve sequential tasks
[6], [7]. In fact, they can be interpreted as instructions given
by a teacher to a learner under the implicit assumption that the
two agents share a mutual understanding of feedback meaning
(e.g. a decoder that translates raw signals into feedback such
as speech into words).

In practice, BMI solves the meaning problem using an
open-loop calibration procedure to train a decoder in a super-
vised manner. This calibration phase hinders the deployment
of out-of-the-lab applications [1], due to the need of a specific
calibration for each task and session. However, this phase
is required mainly due to the non-stationary nature of the

EEG [8]; the large intra- and inter-subject variability [9], and
variations induced by the task [10].

It is worth noting that this problem can be generalized to
many kind of human-machine interaction (HMI) scenarios. In
modern human-robot collaboration, there is a need for intuitive
interfaces that allow non-technical users to teach robots. A
major obstacle is that of requiring a pre-defined set of instruc-
tion signals. As a result, in the human to robot interaction
(HRI) community, an important part of the work consists of
building classifiers to translate human communicative signals
(speech, gestures, facial expression) to symbolic meanings
understandable by the robot. Such procedure requires a costly
offline gathering of signals. A machine able to automatically
understand such symbols could improve the usability and ease
of use of such interactive system and even make use of invol-
untary signals, e.g. prosody, to better exploit the information
provided by the user.

While research on robot learning from human interaction
has flourished in the last ten years [11], most work has focused
on how to extract statistical task models from human teachers
following a fixed pre-defined teaching protocol. Thus, a usual
assumption is that the learner and the teacher share a mutual
understanding of the meaning of each others’ signals. The
question of how a robot can learn to interpret personalized and
potentially noisy teaching signals, i.e. learn instruction models,
has been much less explored. In a preliminary work [12], we
presented a computational approach addressing this problem
by considering a finite space of symbolic teaching signals
in simulation while bootstrapping the system with known
symbols. Later [13], we released the need for bootstrapping
and allow the teacher to use signals that can be represented
as fixed length feature vectors, which is better suited for HRI
scenarios.

Interestingly, one similar approache have been developed
in the BMI community. For non-invasive P300 signals, Kinder-
mans et al. proposed a method to learn from scratch in closed
loop a decoder by exploiting multiple stimulations and prior
information [14], [15]. However, the approach needed for a
warm-up period.

In this paper we present a different approach to calibration
procedures. We argue that, for some problems, a calibration
procedure is not explicitly needed. The system could learn,
by interacting with the user, both what to do and how to
map brain signals into meaningful instructions. The innovation
of this work is not about new machine learning development



but resides in a new way to use them. Our method combines
and exploits two sources of information: task constraints and
spacial organization of instruction signals in the feature space.
We report results from a BCI online experiments and a HRI
scenario. The results show that the proposed method is able to
learn good instruction models while solving the task efficiently
without any prior calibration procedure.

II. PROBLEM

This section describes the problem of executing a task
when the instruction signal’s meaning is unknown or uncer-
tain. For practical reasons, we will only refer to feedback
driven BMI scenarios for the description of the problem and
method. Nonetheless, the idea presented here holds for other
HRI scenarios by replacing brain signals with other feedback
instructions (e.g., speech). BMI control based on feedback
signals (illustrated in figure 1) differs from classical brain-
machine interfaces in the sense that the user does not actively
deliver commands to the device, but only delivers feedback
about actions performed by the device. In this setting, the
device needs to actively execute actions to solve the tasks and
to be able to learn an intelligent behavior from the feedback.
This idea can be seen as a shared-control strategy [16], where
both the user and the device help each other to solve a task.

Fig. 1: In this BMI scenario, the user is watching the agent
moving on the screen and assess the agent actions with respect
to its own objective illustrated by the red state.

Essentially, this BMI control follows an iterative sequential
process where, in a particular state s, the device performs an
action a and the user assesses the action using brain signal
e ∈ Rn. These assessments generate error-related potentials,
i.e. signals elicited in the brain when the outcome observed by
the user differs from the expected one [4]. Thus, collected data
are in the form {(ei, si, ai), i = 1, . . . , N}, i.e. a sequence
of states, actions and teaching signals triplets, with N the
number of steps. In a common scenario, the system has been
fed with a classifier, parameterized by θ, that translates brain
signals e into symbolic instructions z that belong to one of
two classes (correct or incorrect assessment), z ∈ {c, w}. The
model parameters θ are in practice learnt using a calibration
procedure. The device then learns from this symbolic feedback.

This control can be exemplified for a reaching task (Fig. 1),
where the user wants to reach a target position unknown by
the system. The device performs several discrete actions (e.g.
moving left or right), and learns from the feedback given by the
user. After several steps, the device knows which is the desired
target and how to reach it. However, the control can become
intractable as the task complexity increases. Furthermore, only
binary feedback is available and there is a large percentage

of misdetected assessments. Given a set of possible tasks Ξ
= {ξ1, . . . , ξT }, with T the number of task hypothesis, it is
possible to speed up the inference by precomputing the agent’s
optimal behavior πξ = p(a|s, ξ) for each task and using the
feedback signal as a likelihood for the task. For instance,
in the previous example, the possible tasks are given by the
number of targets. This way, an error (negative feedback) after
a particular action will decrease the posterior probability of
those targets whose optimal policy agrees with the action.

In this work, we address the problem of removing the need
for calibration. Therefore we do not have access to the negative
or positive nature z ∈ {c, w} of the brain signals e beforehand.
We propose an algorithm that simultaneously calibrates the
feedback decoder and executes in closed loop a sequential task
only known by the user ξ̂ ∈ Ξ . Our method combines and
exploits two sources of information: task constraints, namely
optimal policies πξ, and spatial organization of brain signals
in the feature space. The underlying assumptions are:

1) a finite number of possible task hypothesis, i.e. ξl for
l ∈ 1, . . . , ξT , can be defined 2) the inputs signals have some
hidden labels z corresponding to their meaning 3) the set of
possible meanings is finite, e.g. z ∈ {c, w} 4) given the ground
truth labels ẑ of the signals, a classifier of sufficient accuracy
could be trained to control the device.

These assumptions may look constraining but are actually
common ones in most current BMI scenarios. For example,
consider the case of a robotic arm assistant helping to grasp
objects on a table. Such robotic assistant could be controlled by
a user assessing the robot actions. For instance, the robot could
start reaching for an object having the user validating or not the
decision of the robot. In such scenario, the usual method would
be to start a calibration procedure to map ERP brain signals
into symbolic feedback instructions for the robot (correct and
incorrect). Once enough data are collected, a classifier would
be trained and we could start assessing the robot’s actions using
brain ERP. This simple scenario, which follows a calibration
procedure, already includes all the assumption we defined
earlier. We have 1) a finite set of hypothesis represented by
the finite number of object on the table 2) a user that is told to
assess the robot’s actions 3) a finite set of possible meanings
(correct and incorrect) 4) signals that can be classified as the
calibration procedure was able to generate a usable classifier.

III. METHOD

This section describes our proposed solution to the previ-
ously defined problem of executing a task when the instruc-
tion meaning is unknown or uncertain and under the given
assumption. The main idea is depicted in Fig. 2 for a toy
1D example. The user wants the device to reach the right-
most state. However, neither the target ξ̂ nor the true feedback
labels ẑ are known. The feedback signals e are generated as a
response to the execution of an action a in state s according
to the true unknown task ξ̂ the user wants to solve. The key
point is that these signals are generated from an underlying
model that for binary signals has two different classes. Given
sufficient feedback signals, it is possible to build the underlying
distributions for each possible target. Only the right task will
provide the right meanings (or labels) to each of the feedback
signals (Fig. 2 Left), while the other tasks will gradually mix



both classes as the task gradually differs more from the original
task (Fig. 2 Middle-Right), up to the point of almost mirroring
the labels when the target is mirrored. In the remainder of this
section we show how this property can be exploited to estimate
the task and the model generating the feedback signals.

Fig. 2: Task-dependent labels for a 1-D grid world. For the
represented example, the arrows indicate for each state what
action should elicit a positive feedback to reach the target
marked with T (i.e., the optimal policies). 2D Gaussian dis-
tributions of binary feedback signals for three possible targets
are shown below. While for the correct target the distributions
shows a large separability (Left), the overlaps increases as the
believed target moves away from the real one (Middle, Right).

Following the literature [17], we will model the EEG
signals using independent multivariate normal distributions for
each class, N (µc,Σc),N (µw,Σw). Here, the model parame-
ters θ account for {µc,Σc, µw,Σw}.

Regarding the tasks, the system has access to a set of task
hypotheses Ξ which includes the task ξ̂ the user wants to
solve1. We do not make any particular assumption on how the
task is represented given that for each particular task ξ we are
able to compute a policy πξ which represents the probability
of choosing a given action a in state s, πξ(s, a) = p(a|s, ξ).
These policies, conditioned on the task, provide meanings to
the signals of an action-state pair (e.g. in a reaching task,
progressing towards the goal will generate correct answers
while moving apart from it will generate wrong ones). We
define Z the function that, given a state s, an action a, and a
task ξ return the probability of the user intended meaning z, i.e.
Z(s, a, ξ) = p(z|s, a, ξ). With

∑
f=c,w p(z = f |s, a, ξ) = 1.

Instead of a binary meaning estimate, we add a noise term to
cope with those situations were the user assessment may be
wrong. For example, the probability that the user, having task
ξ in mind, provides a signal of meaning correct c if the device
execute action a in state s is:

p(z = c|s, a, ξ) =

{
1− α if a = argmaxa πξ(s, a)

α otherwise

with α modeling error rate of the user. In our case, only two
signal meanings are possible, i.e. correct (c) and incorrect (w),
therefore: p(z = w|s, a, ξ) = 1− p(z = c|s, a, ξ)

Following the discussion of Fig. 2, a sensible option to
estimate the task ξ̂ is to measure the coherence of the signal
model θξ computed using the virtual meanings, given by
Z, provided by the target policy. In other words, the best
(ξ, θξ) pair would provide the lowest predictive error (perr)
on the observed signals p(e|s, a, ξ, θ). One possible way of
solving this problem is to maximize the expected predictive

1If this is not the case, the system will find the most suitable task.

classification rate:

ξ̂, θ̂ = argmaxξ,θ Ee (δ(Z(s, a, ξ), Y (e, θξ))) (1)

where δ() being an indicator function. And Y (e, θξ) is the
predicted label z for signal e under the model parameterized by
θξ, i.e. Y (e, θξ) = p(z|e, θξ). With

∑
f=c,w p(z = f |e, θξ) =

1. In practice, it is just the probability of the meaning under the
Gaussian model provided by θξ. For example, the probability
that signal e is of meaning correct (c) under θ can be expressed
as:

p(z = c|e, θ) =
p(e|z = c, θ)p(z = c)∑

k=c,w p(e|z = k, θ)p(z = k)

=
N (e|µc,Σc)p(z = c)∑

k=c,wN (e|µk,Σk)p(z = k)
(2)

In our case, only two signal’s meaning are possible, i.e. correct
(c) and incorrect (w), therefore: p(z = w|e, θ) = 1 − p(z =
c|e, θ).

The expected predictive error can be explicitly written
dependent on the task and decoder model:

Ee (δ(Z(s, a, ξ), Y (e, θ))) =∑
f=c,w

p(z = f |s, a, ξ)p(z = f |e, θ) (3)

Note that the optimization process has been factored using
the fact that given a task ξ, the estimation of θ under the
Gaussian model is trivial. It basically requires to compute the
maximum-likelihood estimate θML

ξ for each task ξ.

Concretely, given a set of task hypothesis Ξ of size T ,
we can assign, for each hypothesis, probabilistic labels to the
signals received from the user (Z). This provides one dataset
of signals with T sets of labels. For each task hypothesis and
given its associated hypothetic label set, we can now compute
the maximum-likelihood model θML. By comparing the fitted
model prediction (Y ) with the initially assigned labels (Z),
we can compute a score, here the expected predictive error,
that account for the coherence of the spacial organization of
brain signals in the feature space with the associated hypothetic
labels. The idea is that only the right task will provide the right
meanings (or labels) to each brain signals, while the other
tasks will gradually mix both classes (Fig. 2). The correct task
should therefore have a lower expected predictive error.

IV. RESULTS

In this section we present online results from a BCI sce-
nario as well as a pick and place HRI scenario to illustrate the
wider potential application of our approach. For the remaining
of this section, we will consider the error rate of the user α
equals to 0.1.

A. BCI Control Task

1) Control task: As illustrated in figure 1, we consider
a 5x5 grid world, where an agent can perform five different
discrete actions: move up, down, left, right, or a target-reached
action. The user goal is to teach the agent to reach one, yet
unknown to it, of the 25 discrete positions which represent the
set of possible tasks. We thus consider that the agent has access



to 25 different task hypothesis (one with goal location at each
of the cells). We use Markov Decision Processes (MDP) to
represent the problem [18]. From a given task ξ, represented
as a reward function, we can compute the corresponding policy
πξ using, for instance, Value Iteration [18].

2) EEG-based feedback signals: EEG signals were
recorded with a gTec system (2 gUSBamp amplifiers) with
32 electrodes distributed according to the 10/10 international
system, with the ground on FPz and the reference on the left
earlobe. The EEG signals were digitized with a sampling fre-
quency of 256 Hz, common-average-reference (CAR) filtered
and band-pass filtered at [0.5, 10] Hz.

During operation, the role of the users was to assess the
agent actions as good or bad, obtaining this way potentials
associated to correct or erroneous actions. Previous studies
have demonstrated that these signals can be detected online
[4] and even be used as binary feedback signals [6]. Following
these studies, features were extracted from two fronto-central
channels (FCz and Cz) within a time window of [200, 700] ms
(being 0 ms the action onset of the agent) and downsampled
to 32 Hz. This leaded to a vector of 34 features. This feature
vector served as the input for our algorithm

3) Zero-calibration BCI Control with Human Subjects:
This experiment will evaluate the main claim of our algorithm,
that we can identify the task desired by the user even without
an explicit calibration phase and without any knowledge of
the brain signals. The experiments were conducted with four
subjects (aged between 25 and 28). Each subject performed 5
runs of learning from scratch how to reach a target (chosen
randomly).

Figure 3 summarizes the results. The probability of the
correct task (averaged across subjects and tasks) is shown
in Fig 3a. Figure 3b shows the run by run results. We
can conclude that the algorithm is very robust as all the
subjects were able to identify the correct task. There are strong
variations among subjects, but we note that in previous works
the calibration phase used between 300 and 600 examples [6],
[19]. Thus, even for the worst subject, it is still possible to start
controlling the system without calibration and in less iteration
than required by such calibration procedure.

B. HRI Pick and Place scenario

In this section, we illustrate the broad range of possible
application for our approach with a small size pick-and-place
task with a real robot. This robot is going to be programmed
using a natural speech interface whose words have an unknown
meaning and are not transformed into symbols via a voice
recognizer. The interaction between the robot and the human
is a turn taking social behavior, where the robot performs
an action and waits for a feedback instruction signal to
continue. This allows to synchronize a speech wave with its
corresponding pair of state and action.

1) Experimental System: We consider a six d.o.f. robotic
arm and gripper that is able to grasp, transport and release
cubes in four positions. We used a total of three cubes that can
form towers of two cubes. The robot has 4 actions available:
rotate left, rotate right, grasp cube and release cube. The state
space is discrete and defined as the location of each object,

(a)

(b)

Fig. 3: Results from the online BCI experiment for identifying
the task: a) Evolution of the probability of the taught task
averaged for all subjects; b) Evolution of the probability of
the taught task for each subject and run

including being on top of another or in the robot’s hand. So
for a set of 3 objects we have 624 different states. Figure 4
shows the robot grasping the orange cube.

As for the BCI control task, MDP is used to represent the
problem. For this particular representation we assume that the
reward function is sparse and so we can generate possible tasks
by sampling sparse reward functions. In other words the task
is to reach one, yet unknown, of the 624 states of the MDP.

2) Speech processing: We consider speech as the modality
for interacting with the robot. After each action we record the
teaching word pronounced by the user. This data is mapped
into a 20 dimensional feature space using the methodology
described next.

A classical method for representing sounds is the Mel-
Frequency Cepstral Coefficients (MFCC) [20]. It represents
a sound as a time sequence MFCC vectors of dimension 12.
Comparing sounds is done via Dynamic Time Warping (DTW)
between two sequences of feature vectors [21]. This distance
is a measure of similarity that takes into account possible
insertions and deletions in the feature sequence and is adapted



Fig. 4: Robotic System. A six d.o.f robotic arm and gripper
learning to performing a pick-and-place task with three cubes.

for sounds comparison of different length. Each recorded vocal
signal is represented as its DTW distance to a base of 20 pre-
defined spoken words which are not part of words used by the
teacher.

By empirical test on recorded speech samples, we esti-
mate that a number of 20 bases words were sufficient and
yet a relatively high number of dimensions to deal with a
variety of people and speech. This base of 20 words has
been randomly selected and is composed of the words: Error,
Acquisition, Difficulties, Semantic, Track, Computer, Explored, Distribution,
Century, Reinforcement, Almost, Language, Alone, Kinds, Humans, Axons,
Primitives, Vision, Nature, Building.

It should be made explicit that this is not state of the
art speech processing technics but is not the concern of our
research. This representation allows to represent spoken words
in a relatively low dimensional space with good accuracy.

3) Zero-calibration HRI online pick and place experiment:
This brief experiment demonstrates the transferability of our
approach to other domains. In addition, it briefly illustrates the
ability of our algorithm to reuse acquired knowledge. Once
the robot has understood the first task, we can freeze the
classifier corresponding to the identified task and start learning
a new task faster as this time the signal to meaning mapping
is known.

Fig. 5: Evolution of the probability of the taught task. 1) The
robot learns a task from unlabeled speech feedback. 2) By
freezing the classifier corresponding to the best task estimate,
the user teaches the robot a new task faster.

Fig. 5 shows results from one online interactive session
with a user using speech to teach the robot what configuration
of cube it wanted to the robot to build. In the first run it takes
about 100 iterations for the robot to learn the task. Whereas in
the second run, when reusing knowledge from the first one, the
robot is able to learn a new task faster, in about 30 iterations,
meaning that it has well found the two clusters in our feature
space as well as the mapping to their corresponding meanings.

V. DISCUSSION

For communication to be successful, the human and the
machine need to share some common background which is
usually the meaning of the signals received by the device. In
practice, such signal to meaning mapping is represented by a
specific classifier learnt using a calibration procedure. In this
work we have seen that this signal-to-meaning classifier can
be learnt automatically and online by the system under the
assumption that both, human and machine, share the same a
priori on the possible meanings of the signals and the possible
task the user may want the device to achieve. We presented
a learning algorithm able to associate meaning with unknown
signals by reasoning about their relation to previous signals
and their relation to the environment itself. The intuition for
our method is that the classification of the brain/speech signals
is easier when they are interpreted according to the task desired
by the user. The method thus relies on finding which pair
of classifier-task has the smaller expected prediction error in
the signals. We considered the case of brain signals but of
particular interest is the possibility to use the same system
with other modalities, such as speech. This allows different
users to use the system according to their own preferences,
skills and limitations. Finally, we showed that, once the system
has identified a first task, it can reuse the acquired knowledge
about the user instruction signals for learning of a new task
faster.

An important challenge for such interactive systems is
to deal with non-expert humans. Several studies discuss the
different behaviors naive teachers use when instructing robots
[22], [23]. An important aspect is that the feedback is fre-
quently ambiguous and deviates from the mathematical inter-
pretation of a reward or a sample from a policy. For instance,
in the work of [22] the teachers frequently gave a positive
reward for exploratory actions even if the signal was used by
the learner as a standard reward. Also, even if we can define an
optimal teaching sequence, humans do not necessarily behave
according to those strategies [23]. Such aspects were not
further considered in this work than by modeling the error-
rate of the user.

We believe working without calibration procedure is a
novel challenge that can make human to machine interaction
more practical to use. Future work will consider how the device
can act in order to disambiguate faster the different hypothe-
ses. An important direction is to push this method towards
more advanced robotic scenarios by considering, for example,
continuous state-action spaces, asynchronous interactions and
more complex types of instructions.
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