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Abstract

Visual object retrieval aims at retrieving, from a col-
lection of images, all those in which a given query object |
appears. It is inherently asymmetric: the query object is !
mostly included in the database image, while the converse is
not necessarily true. However, existing approaches mostly:
compare the images with symmetrical measures, without!
considering the different roles of query and database. |

This paper rst measure the extent of asymmetry on _ . . . oo
| | blic dataset tina this task. C ideri Figure 1. Differences between object retrieval and similar image
arge-scale public datasets re ecting this task. LONSIOeNNg ge50ch | (a) object retrieval, the query is delimited by a bound-

the standard bag-of-words representation, we then proposejng nox or a shape, while in (b) similar image search, the query and
new asymmetrical dissimilarities accounting for the differ- gatabase objects are of the same kind. This paper shows the im-
entinlier ratios associated with query and database images. portance of designing an asymmetrical dissimilarity measure for
These asymmetrical measures depend on the query, yet theybject retrieval, in order to better take into account the different
are compatible with an inverted le structure, without no- inlier ratios between query objects and database images.

ticeably impacting search ef ciency. Our experiments show

the bene t of our approach, and show that the visual object

retrieval task is better treated asymmetrically, in the spirit overview of these schemes, the reader may refer to a recent

of state-of-the-art text retrieval. book by Manninget al. [L1]. In this paper, we only con-
sider unsupervised object retrieval, where no annotation is

provided. Our goal is therefore not to determine the class
1. Introduction of an image, but rather to nd images containing visually

similar objects, as in the Instance search task of the Trecvid

The purpose of visual object retrieval is to search a spe-evaluation campaigi [14].
ci ¢ object in large-scale image/video datasets. In contrast,
similar image search or near duplicate detection aims at re-Related work. The bag-of-words (BoW) framework [21]
trieving globally similar images. This difference is illus- is the long-lasting standard approach for large-scale im-
trated in FiguréL, where it appears that the two tasks mostlyage and visual object retrieval. Recent schemes [2, 17, 24]
differ by how the query is de ned. In object retrieval, a derived from this approach exhibit state-of-the-art perfor-
bounding box or a shape delimits the query entity, such asmance on several benchmarks. This baseline method has
a person, place, or other object. In contrast, similar imagebeen improved in several ways in recent years, in particular
search assumes that the query is the full image. to compensate for quantization erroesg., by using large
This task is the visual counterpart of searching by query vocabularies [13, 16], multiple- or soft-assignmenit.[7, 17]

terms in textual information retrieval, where a few words and Hamming embeddingl[5]. Other techniques include im-
or a short descriptions are compared with large textual doc-proving the initial ranking list by exploiting spatial geome-
uments. Early in the 60's, the SMART system designed try [17,121/23] and query expansidn [3].
by Salton [20], considered text retrieval as an asymmetri-  All these approaches rely on a symmetrical metric to
cal scenario. Similarly, state-of-the-art textual engines rely produce the initial ranking of the image collection, such as
on asymmetrical measures, for instance by using differentthe *; [13] or Euclidean (3) [16] distances. Such choices
term weighting schemes for the query and database eleare convenient: they correspond to some underlying vec-
ments, such as in the Okapi [18,/19] method. For a recenttor space and allow the use of dedicated machine learning



techniques such as SVM or metric learning [4]. As a result, correspond to application scenarios where the query is an
the body of literature on asymmetrical metrics is limited. object instance. Then we describe the baseline system. Fi-
An inspiring work is the framework proposed by Kubs nally, we analyze the asymmetry of inliers in query and
al. [8], who consider asymmetrical kernels for the problem database images in visual object recognition tasks and dis-
of domain adaptation in image classi cation. However, this cuss the limitations of the symmetrical BoW in this context.
method requires annotation and is too general to address th
unsupervised visual object retrieval problem. Note that, al-
though Bregman divergences such as Kullback-Leibler [9]
are asymmetrical by construction, they do not re ect the
underlying assumptions underpinning visual object recog-
nition and lead to poor comparison results.

Our paper speci cally considers the visual object re-

%.1. Object retrieval benchmarks

Oxford105K. The Oxford buildings dataset (Ox-

ford5K) [16] consists of 5062 high-resolution images
crawled from Flickr.  Another set comprising around
100,000 Flickr images is usually appended to form the

. . ; Oxford105K dataset. A Region of Interest (ROI) is de ned
trieval problem. We argue that symmetrical metrics are not : . . -
for each query image. It is a bounding box delimiting

optimal for judging the presence of query ObJ?Cts' Th!S 'S the building of interest. Following common practice, we
because most of the area in the query image is useful: The

bounding box or shape tightly delimits the relevant object. consider two evaluation scenarios:

In contrast, the database images containing the object may 1. Oxford105K: The dataset is learned on Oxford5K [16].
also contain other objects or “stuff.e., clutter. When the 2. Oxford105K: The vocabulary is independently
images are described by local descriptors, this leads to very  trained on another dataset, namely the Paris building
differentinlier ratios in the query and database images. This set [2,[17]. The performance is tested on the Ox-
key aspect is not taken into account in existing schemes. ford105K. This scenario corresponds to the case where

Contributions. First, we quantitatively analyze the differ- the images are not known beforehan [2. 6, 17].

ent properties of the query and of the database images inTrecVid instance search:

. . . . ) INS2011 and INS2012.The
visual object retrieval. We carried out our analysis on popu- )
; . TrecVid INstance Search (short: INS) datasets were re-
lar large-scale object retrieval datasets and the results sho

the extent to which this task is asymmetrical Weased in the context of the evaluation campaign organized
. ' by NIST. BBC rushes and internet videos comprise the test
Focusing on the standard BC.)W m.ethoq, we then PTOPOSE4ata of the INS2011 and INS2012 datasets, respectively.
new query-adaptive asymmetrical dissimilarities. They are The duration of the video clips in the test datasets is gen-
specially designed to take into account the asymmetry of theerally not longer than 1 minute (30 seconds on average).
comparison underpinning visual object retrieval. They are The task descriptiori [14] is as follows. A large collec-
de ned on-the- y for each query in order to account for the -

ted inli tio. Yet th be ef cientl lculated tion of video clips de nes the dataset to be searched. Sev-
expected Infier ratio. vet they can be et ciently calculated o, query topics are de ned. A query topic may refer to
by using an inverted le index.

h : q q h | | a person, an object or a place. Each query topic consists
The experiments are conducted on three large-scal€yt go\era| query images and corresponding masks delimit-

;jatdasets dezgneddfor visual ogjgcthret.rleval, namelyhOx— ing the ROI. For each query topic, the system has to return
ord105K and two datasets used in the instance search tas e 1000 video clips that are most likely to contain a recog-

of Trecvid. Our method improves the initial ranking in com- nizable instance of the query topic. The INS task is rather

pansonf Vﬁ'th a syn}metrlcal bfaserl]lne_z t_h_alt alrekgdy aChIeVeschallenging, as shown in Figuré 1(a)-right: the objects are
state-of-the-art performance for the initial ranking. small and the database is represented by millions of frames.

~ The rest of this paper is organized as follows. Sedfion 2 zg 5 result, the quality of the initial ranking (before spatial
introduces the datasets used through the paper to evaluyei cation and query expansion) is critical.

ate visual object retrieval, and illustrates the importance

of asymmetry in this task. Sectih 3 describes our query- Evaluation protocol. .The performance on each dataset.is
adaptive asymmetrical dissimilarities and how to calculate €valuated by the of cial scoré.e., the mean average preci-
them with an inverted index. Our results on three large-scaleSion (MAP) on the Oxford105K [16] and the mean inferred
datasets are reported in Sectgn 4, along with a comparisorfiverage precision (infAP) for the TrecVid datasets.

with the state of the art. Sectiph 5 concludes the paper. Table[] provides detailed information about the three
benchmarks. All the images are described by SIFT descrip-

2. Object retrieval: an asymmetrical scenario tors [10] extracted with the Hessian-Af ne detector [12].
For Oxford105K, we used the descriptors provided by

This section shows that the asymmetry phenomenon isPedochet al. [15] in order to allow for a direct compari-
prevalent in visual object retrieval datasets. For this pur- son. The RootSIFT [2] post-processing is used on the Ox-
pose, we rst introduce three public benchmarks, which ford105K and the INS2012 datasets, as it improves the re-



Table 1. Details of benchmark datasets.

# Dataset #lmages  #Videos #SIFT points  #Queries
Oxford105K 105,133 N/A 253,761,866 55

INS2011 1,608,405 20,982 1,206,953,361 25

INS2012 2,228,356 76,751  3,055,162,839 21

trieval performance at no cost. On TrecVid INS, the video
clips are sampled with the rate of 3 frames per second.

2.2. The baseline BoW system and its limitations.

We brie y introduce the BoW system [21], which serves
as our baseline, and discuss its limitation in the context of
visual object retrieval.

Let us consider a database that consist®oimages.
First, we extract SIFT features from each image. A large
visual vocabulary comprisingc=1 million visual words
is trained by an ef cient approximate k-means algorithm
(AKM) [16]. After vector quantization with the visual vo-
cabulary, each image is described big-dimensional his-
togram vectoiT; 2 R, j = 1:::N. Similarly, a query
imagei is described by a histogram vect® 2 Rk com-
puted from the descriptors appearing in the ROI. The vec-
torsQ; andT; correspond to BoW histograms, optionally
weighted byidf terms.

In the standard scoring method, each vector is ‘st
normalized, withp = 1 or p = 2, and then the ,-distance

T T

OO+ OOk«

with  our

Figure 2. A toy example comparing the standard scoring
methodin the second row("1(Q;T1)=1;"1(Q;T2)=1:2)
asymmetrical dissimilarity in the third row
(1(Q;T1;1)=1; 1(Q;T2;1)=0).

2.3. Statistical analysis of asymmetry

In order to evaluate the extent of asymmetry in visual
object retrieval, we consider the voting interpretation of the
BoW framework [21[ 5]. More speci cally, a pair of fea-

tures respectively from a query and test image is regarded

is computed between the query and all databases vectors t@s a match if these features are quantized to the same visual
order the database images. In our notation, the distance igvord. Each feature is allowed to be matched once at most.

therefore computed as

T
KT K

p(QisTy) = 1)

kQik, p p.

A typical failure for visual object retrieval. The toy ex-
ample in Figurg 2 illustrates the drawback of using Equa-
tion[] as a scoring method in an asymmetrical object re-
trieval scenario. In the rst row, the object region in the
query image is delimited by an ellipse. The dataset con-

Our objective is to separate these features into three cases.

1. Inliers (Inl): Features belong to a matching pair (note
that they may or may not correspond to a true match
between the query and database images);

. Query outliers (Qout): The query features (in the ROI)
that do not correspond to any feature in the database
image;

. Database outliers (Dout): The features of the database
that do not have any matching feature in the query ROI.

We estimate these quantities on the basis of the values

sists of two test images. Let us assume that the object isof Q! andT} , 1.e., thel-th (I = 1 :::k) component in the

described by two robust and repeatable visual words: a ve-

given query and database vectors. This is done by sepa-

pointed star and a circle. In this case, Image 2 is the correctrately collecting the votes, as illustrated in TdHle 2. First, the

answer and contairal the features of the query object. But
it also contains background corresponding to other visual

maximum possible number of matching pain(Q}; T})
is an estimation of the number of inliers for this particu-

content. The second row in Figure 2 shows that the standardar component. The unmatched features are then counted
scoring method produces the wrong result in this case. Foras the outliers either of the query @ > T}) or of the

the sake of exposition, let us assume fild&athas no impact
and consider the; distanc@ Such failures are frequent for
small query objects like those of the Trecvid INS task, be-

database (iQ] < T| ) images. In summary, we separate

cause the distance favors the selection of images described

by a small number of features.

1Thesame conclusion holds fop in this example.

the component®! andTJ! according to the following equa-
tions:
Ql =max(Q| Tj;0)+min(Qi;T});  (2)
Tj=max(T| Qii0)+min(QLT)):  (3)



Table 2. Protocol to collect matching statistics from the histogram Table 3. Estimation of the average number of Inl, Dout and Qout
valuesQ! andT} : the bottom-right cell collects the inliers, while  on the three datasets.
the top-right and bottom-left cells respectively correspond to the

outliers of the query and database images. # Dataset Dout ~ Qout  Inl
T T = Oxford105K 3620.6 1807.4 46.2
#Q  T! 0 >0
=0 N/A max(T] Q};0) INS2011 7791  190.3 127

N/A Dout 3686
Qout 367 Inl  15:8

Figure 3. Query example (“bodleian”) and its average number of
inliers/outlierswhen matching the query ROI with the correspond-
ing relevant images of Oxford105K.

Oxford105K INS2011 INS2012

For each relevant (query, database) pair, the quantitiesFigure4. Examples visualizing the asymmetrical inlier/outlier ra-
Inl, Dout, and Qout are estimated by summing the individ- tio on the query and database side on each benchmark. Query
ual contributions of all the componenits= 1 :::k. Fig- regions are inred. Feature points labeled as inliers a_nd outliers are
ure[3 shows the estimation of these quantities for a particu-marked with blue circles and green crosses, respectively.
lar query image contained in the Oxford105K benchmark.

In Table[3, note the average inlier ratio in the queries is

Results of the analysis.Table[3 reports the estimated in- '
liers and outliers on the three datasets considered in this paY€"y_low on each dataset, especially the INS2012 dataset

per. These quantities are averaged over all query-databasgz-< 2,%); This con rms.the dif gulty of °b1e?t retrieval,
pairs that are relevant in terms of the ground-truth. Note @nd indicates that existing metrics are not likely to retumn
that a joint average schenie [L] 24] is used for the TrecVid IMages containing a small object surrounded by cluttered
INS datasets: multiple images in each video clip and query Packground.

topic are jointly quantized to form a single BoW vector by . T

average pooling. This scheme was shown to be effective for3- ASymmetrical dissimilarity

image retrieval([24], and we have used it in all our experi- g objective of the object retrieval task is to determine
ments on the TrecVid benchmarks. the existence of the query object, and it is inherently asym-
By de ning the inlier ratio as the number of matched fea- metric: A appearing in B does not necessarily means that B
ture points divided by the total number of features, we cal- 5/5q appears in A (see Figufds 2 afd 4). This is re ected
culate the inlier ratio associated with the query and databasgy, the asymmetry of the inlier ratio on the benchmarks. In
sides as Inl=l + Qout)and Inl=(nl + Dout), respectively.  the standard scoring framework, distarigan Equatior{ 1
We de ne the outlier ratio in a similar way. is symmetrical, sincé,(Qi;T;) = “»(T;:Qi). For this
As is to be expected for visual object recognition of small reason, we deem that the standard BoW scoring method is
objects, Tablg]3 clearly shows that Qeust Dout;meaning  petter adapted to the symmetrical similarity image search
that the inlier ratio is much higher in the queries than in the proplem (without ROI), but is not optimal for visual object
corresponding database images;, the features points of  yetrieval. In short, we argue that a symmetrical metric is
the query ROI are signi cantly more likely to be presentin gesigned for measuring a symmetrical similarity problem,
a database image than the inverse. This is of course exwhile the asymmetry of visual object recognition requires
pected since additional visual content or clutter exists in g asymmetrical dissimilarity.
database images. Figure 4 evidences this asymmetry in the Thjs section describes asymmetrical dissimilarities that

inlier/outlier ratio by showing typical examples extracted are speci cally adapted to this task. Their design is moti-
from each of our evaluation datasets. Note also that someyated by the following observations:

feature points labeled as matched do not strictly match each

other. This is because a voting scheme based on Bow vec-  The normalization severely penalizes the database im-
tors, rather than a precise nearest neighbor search or stereo  ages in which the query object is small and corre-
matching, implicitly builds loose correspondences. sponds to a small number of features (see Figlre 2).



Table 4. Performance obtained with different parametear Equa-
tion[4. Here'1(Q; T) is the baseline.
Con gurations  Oxford105K  Oxford105K INS2011 INS2012

The casav = 1 corresponds to a symmetrical case. It
amounts to using the regulag distance between the

Q. T. 0) 03 03 002 0 unnormal|zem|stqgram§. o

1Q; T; 1) 2.79 2.78 0.02 0 Thecasev! 1, i.e., using an arbitrarily large value,
1(Q T 1) 65.29 38.85 44.88 19.51 corresponds to the ideal case without considering the
1(Q; T;W opy) 75.38 55.81 47.38 20.88

background in database images. It amounts to count-

1(Q;T) 73.88 54.47 45.16 19.83 ing the number of Qout.

Compared with the baseling, none of these choices is sat-
Ideally, the scoring should not depend too much on jsfactory, because none is adapted to the speci ¢ query and
the amount of clutter in the database imaige;, Dout  database. Instead, the next subsection introduces a query-
should not be penalized too much. dependent method that automatically adapts the waight
In contrast, a feature appearing in the object has ato a given query and database.

higher probability of appearing in a relevant image; . C
i.e., Qout should receive a larger penalty. 3.2. Query-adaptive dissimilarity

The weightw re ects the different inlier ratios between
the query and database images. A naive strategy would be
to x it, as in the three particular cases mentioned before,
thus we get1(Q; T; W opy) in Tablg/4. A xed optimalwop
yields better results than the baseline Yet the parame-

After introducing our asymmetrical dissimilarities, we show
how the computation is sped-up with an inverted le.

3.1. Asymmetrical penalties

We de ne our asymmetrical dissimilarity as follows: ter wopt highly depends on the dataset, for instarneg is
700, 300, 1500 and 700 for the Oxford105K, Oxford105K
p(Qi; Tj;w) = kd(Qi; Tj;wk, ; (4)  INS2011 and INS2012, respectively.

In other terms, such a strategy implicitly assumes that
the inlier ratio is constant across query and database im-
ages, which is not true in practice. We partially address this
d@"Tl:w)= w max(Q' T!:0)+max(T ! - 0): p_roblem by _aut_omatlcall)_/ selectlr_\g on-the-y, at query

(QuTyw) @ 7,50 (T) Qi) time. Substituting Equation| 2] 3 into Equatioh 5 and then
into Equatiorf ##, we get:

where thel-th component of the vectod (Q;; T;;w) is
given by

The parametew is a weight that takes into account the
asymmetry of the problem. Equatiph 5 can be rewritten as p(QisTisw) =wkQi  min(Qi; T)k,
d@iTiw= 7 T i 2> I! L (®) e min(QuT i (0
Qi I Qi i Recall thatQ;; T; are weighted byidf terms. Let us
Since we rely on relative values to establish the ranking 'St consider the ; asymmetrical dissimilarity. Note also
list, Equatiof  only requires one weighting parametett the vectors involved in Equatidrj 7 are all positives. After
should be optimally related to the expected ratios betweendropping the constant termkQik,, which has not impact
Qout and Dout (see Sectifh 2). As one can deduce fromPn the relative ranking of the images, and setting w+1,
Table2, the valuew and 1 are penalties associated with the We re-de ne an equivalent dissimilarity measure as
query and datlabase (estima.ted) outliers, respectively. We 2(Qi;Tjw) = KTjk,  wkmin(Q;;T)k, : @8)
intentionally give a larger weight,e.,w > 1, to the query
outliers. This means that we severely penalize features thafThe two terms on the right side of Equat[dn 8 are intuitively
are detected in the query object regions having no corre-understood as follows. Test images that are uncluttered (i.e.
sponding features in the database image. In contrast, th&T;k, is small) and have many matches with the query
database outliers receive a comparatively smaller penalty(kmin(Q;; T )k, is large) will be regarded as similar to the
This limits the impact, on the ranking, of the background query region. The quantity balances the impact of clutter
appearing in the database images. and positive matches in the scoring. In our method, instead
of directly settingw to a xed value, we set a parametey

Discussion. We consider three particular choices for the : .
related tow by the following equation:

parametew, as shown in Tablg|4:

The casew = 0 amounts to penalizing the database 3 KTk,

images based on Doutg., the estimated amount of w= i=1 : )
background. Intuitively, this choice is not desirable be- L kmin(Q;: T )k

cause database images are expected to include clutter. = R



Table 5. Performance of the baseline for different con gurations.

The bene t of this expression is that it automatically adapts _
Con gurations  Oxford105K  Oxford105K INS2011 INS2012

the dissimilarity function to 1) the database and to 2) the

. . . The selected 73.88 54.47 45.16 21.71
particular queryQ; with the denominator. Overall, our  pifferent AS 70.93 48.95 44.89 21.14
method only requires the parametey (whose impact is Different DS 70.03 51.07 45.13 19.83
thoroughly analyzed in Sectign) 4). Similarly, the dissimi- With re-ranking 76.59 71.82 30.76 14.15

Note: the selectedcon guration (top) is: using soft assignment and hard
assignment on the Oxford and TrecVid datasets, respectively; utilizing
metric on all datasets except the INS20L2gend for alternative choices:
2(Qi; Tj ;W) AS: alternative assignment scheme (swap hard and soft with selected); DS:

=wkQ; min(Qi;Tj)kz + ij min(Qi;Tj)kz choice of the distance (swap with " 7).

larity , becomes

1
_ 2 ; . ; . 2 2
=W kQiky  2Qi min(QiiT;) + kmin(Qii T, )k; baseline outperformed the state of the art by itself on some
+ KT, k; 2T, min(Qi;T,)+ kmin(Q::T, )kg 3 benchmarks. After .analyzing the impact of Fhe additiona_l
parameter involved in our approach, we provide a compari-
(10) son with the best baseline and the state of the art.
. In the experiment, we used a BoW baseline system with-
For the same reason as in thecase, we set a parame- ot any re-ranking step, such as spatial re-ranking [17, 21]
ter  in Equatior] 1] instead of directly setting and query expansion[3], because we focus on improving
m the initial ranked accuracy, which is critical especially for
KT; kg 2T; min(Q;; Tj) + kmin(Q;; T; )kg dif cult datasets. Most re-ranking algorithms, such as spa-
i=1 q . tial veri cation [17,[21] or query expansion|[3], require the
2 ) ) . ] 2 short-list to be of suf cient quality to produce good results.
kQiky  2Qi min(Qi; Tj) + kmin(Qi: Tj)k; Moreover, they are mostly complementary to our method.
(11)

Con guration of the baseline system. Table[$ evaluates
3.3. Speeding-up retrieval with an inverted index the different options considered for the baseline system.

The direct calculation of the dissimilarities with Equa- Hard or soft assignmenis previously reported in the liter-
tions[4 or[% requires one to access all the vector compo-ature [17], soft assignment improves the results on the Ox-
nents. It is therefore inef cient whek is large, as in the  ford105K dataset. But unexpectedly, it reduces the perfor-
case of our million-sized vocabulary. However, it appears mance on the INS TrecVid datasets. Our interpretation is
that the proposed dissimilarities (Equati¢ris 8 pnjd 10) canthat the joint average pooling compensates the loss in quan-
be decomposed such that the calculation only involves 1)tization, at least to some extent, thus making the soft assign-
the shared nonzero components of two vectors to be com-ment unnecessary or even undesirable.
pared, as in the case of BoW |21], along with 2) terms that _

separately depend on the database and query (computed off+ VS 2- AS shown in the literature [7. 13, 22], the best
line and on-the- y, respectively). It is therefore ef ciently Norm for BoW depends on the dataset. Thenetric is bet-

implemented based on an inverted index. The symmetricalt®' ON the INS2012 dataset, whereas theistance wins on

distances and our asymmetrical dissimilarities have compa-N€ Others. In our experiments, we used the best con gu-
ration for each dataset and kept this choice consistent with

rable complexities. The amount of visited memory is iden- ) oL clid B
tical. The quantitie&T | k , are pre-computed during the of-  °4' asymmetrical dissimilarities.

ine indexing stage. The computation burden of the query- gpaiia| re-rankingimproves the performance only on Ox-
speci c terms of ,, is comparable to that of thg distance. ford. As mentioned above, we will not consider any re-

Forinstance, the terkmin(Qi; T )k, in Equatiqlﬁﬁ ISalso  ranking scheme like this in the remainder of this section,
calculated in the case of the distance. In practice, it takes since we focus on improving the initial ranking list.

less than 0.1 second to search an object in the Oxford105K

dataset with the inverted le structure. o
Impact of the parameter , and relative improvement.

The™1/ 1 case.Figure[$ shows the impact of the parame-
ter ; associated with the; dissimilarity (see Equatidn 9).
This section describes our experiments on three large-We include the performance of the baseline system (dash
scale datasets designed for object retrieval. In order tolines) provided by the; distance for a fair comparison.
compare our asymmetrical dissimilarities with a compet-  Our dissimilarity consistently outperforms the symmet-
itive baseline, we rst optimized the choices involved in rical baseline: The improvement is of +5.77%, +12.08%,
the baseline system for each dataset. As we will see, our+7.40% and +8.88% on the Oxford105K, Oxford105K

4. Experiments and analysis



Table 6. Comparison with the baseline (Bgst and the state of
the art (Best). The scores of Bestare reported for reference
but are not directly comparable, as they generally include multiple
features, spatial veri cation or/and query expansion.

#Dataset Best', Best, Best Besb
Oxford105K  73.88 78.14  62.2][1] 891l[2]
Oxford105K  54.47  61.05 34.3[1r] 77.2[15]

INS2011 45.16 48.50 - 55.6 [24]

INS2012 2171  21.87 - 27.0114]

Figure 5. Impact of the parameter (horizontalaxis) in Equa-
tion[d: performance (vertical axis) of the asymmetrical dissim-
ilarity.

is optimally selected in Table] 5. This shows the effectiv-
nessof our asymmetrical dissimilarities. The improvement
is very signi cant, except in the case of INS2012 (compa-
rable results). This might be related to the fact that we gen-
INS2011, and INS2012, respectively. As expected, the per-€rally observe that the relative improvement of our method
formance monotonically increases with until it attains IS better forp =1 than forp = 2, and thatp = 2 is the best

a peak ;. Then it monotonically decreases. This shows choice for', and , on the INS2012 dataset (only).

the importance of balancing the clutter and matching terms
in Equatior] 8. Interestingly the performance is remarkably
stable around the peak: setting = 0:5 leads to close-to-
optimal results on all benchmarks, and which is consistently
better than 1 (Q; T; W op) in Table/4.

Remark:For the sake of completeness, the table also reports
the best results (Best achieved by using, additionally,
multiple features, spatial veri cation or other re-ranking
schemes such as query expansion. Those results are there-
fore not directly comparable to our technique, and these
The *,/ , case. For the , asymmetrical dissimilarity, —additional techniques are arguably complementary to our
we draw the same conclusions as above. However, ag‘nethod. In addition, we underline that for INS2011 and
in the symmetrical case, the dissimilarity only slightly ~ INS2012 benchmarks, the scores Bese obtained by us-
outperforms the corresponding on the INS2012 dataset ing the interest points outside the RO&., by exploiting the
(+1.30%) and gives worse results on other benchmarks.context around the object. This does not correspond to our
This dissimilarity systematically achieves its best perfor- Visual object recognition scengfjo

mance in the extreme case of, ! 1, which amounts

to totally ignoring the clutter term. 5. Conclusions

Sample results.Figureg 6 compares the ranked lists returned  This paper speci cally addressed the asymmetrical phe-
by our ; dissimilarity with those associated with thedis- nomenon arising in an visual object retrieval scenario. This
tance. Our method is especially better at returning relevantled us to propose new dissimilarities measures, adapted to
images containing a signi cant amount of clutter. One key the bag-of-words representation, that explicitly take into ac-
problem of the symmetrical distance is that the same sam-count this aspect to improve the retrieval quality. Our mea-
ples containing the query ROI are not necessarily rankedsures get rid of the normalization factor to address the cases
before the others: in the rst example, the image same aswhere a small object appears in an image populated with
the query is ranked second, and in the last example, themany features. In addition, it takes into account the differ-
most bottom-right sample returned by thedissimilarity ent inliers ratios. A key feature is to automatically adapt,
does not appear before some of the negative samples. per query, a parameter that re ects the different inlier ratios

i i in the query and database images. Our dissimilarities come
Comparison with the state of the art. The best results 4 1ot cost, as they are implemented with a vanilla inverted
we arte (?‘f’varti of arelz_trep;):';]ed_ Ir']t'TIaEE]e Ei.l_'l;he best reE'“'Itsindex like those used for symmetrical distances.
et Lot oy b, 15 efecivenes s demansated ncomprehensic x
fore c.:orrespond to the same setup as the one used in ou eriments car_rled out on Iarge-sca_le benchmarks_. To con-

lude, we believe that our method is fully compatible with

teczmquf' Nfote rstthFhaE[ otur t;?ﬁehmta- sys;sm (Bjﬁ)tf’"" the standard object retrieval architecture[[2, 16], meaning
ready outperforms this state of the art (Bg$or producing - ¢\ ther re nements such as spatial re-ranking or query

the initial short-list. . . . expansion can be seamlessly integrated with it.
Second, our asymmetrical method (Beg} is consis-

temlly better than its Symmetrical counterpart for th? best  27hisis effective on INS2011/INS2012 because the objects are often
choice (Best,) of the baseline system. Recall that Bgst  occurring with the same background.




Figure 6. Comparison of ranked lists. Query objects are on the left side. On the right side, the top 10 returns are ranked from left to right:

For each example, the upper and lower rows are returnéd bnd 1, and the accuracies from top to bottom are 3%6367.46, 27.2s.
50.17, and 39.7¢s. 56.35. Positive (negative) samples are marked with green (red) bounding boxes.
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