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Impact of Turbulence Closures and Numerical Errors
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The simulation of turbulent 
ows including active 
ow control devices, such as synthetic
jets, is still a di�cult task. Numerical parameters (grid size, time step, etc.) may have
a signi�cant in
uence on the result, while the choice of the turbulence closure is often
critical. In this context, we investigate the use of a Kriging-based global optimization
method to determine optimal control parameters. The objective of this study is twofold:
�rstly, we quantify the impact of some numerical and modeling parameters on the Kriging
model constructed using a design of experiment approach. In a second phase, we conduct
an optimization process and measure the impact of numerical and modeling errors on the
optimal control parameters found. An approach to account for some numerical errors
during the optimization is �nally presented. The turbulent 
ow over a backward facing
step, including a synthetic jet actuator, is considered as test-case. The time-averaged
recirculation length is considered as control criterion, while jet frequency and amplitude
are optimized.

I. Introduction

Flow control is an active research area for the last decade, which bene�ts from the progress of simulation
methods in terms of accuracy and robustness, and from the continuous increase of computational facilities.
Actuator devices, such as synthetic jets or vortex generators, have proved their ability to modify the 
ow
dynamics and represent a promising way to improve the aerodynamic performance of systems that exhibit
massive 
ow detachment. However, the determination of e�cient 
ow control parameters, in terms of
location, frequency, amplitude, etc., is tedious and highly problem dependent.1, 2

To overcome this issue, the numerical simulation of controlled 
ows is often considered to determine
optimal control parameters, or at least a range of e�cient parameters. This task can be carried out in a
systematic and parametric way,2 but the use of an automated optimization procedure is more and more
observed.3{7 Nevertheless, several studies have shown that the simulation of controlled 
ows is a di�cult
task, since results may be highly dependent on the turbulence closure used. Comparison between turbulence
model is usually carried out for selected control parameters. However the impact of the model on optimal
parameters is rarely quanti�ed. Moreover, the numerical assessment should be done carefully because the
solution is strongly in
uenced by the numerical parameters, such as the time step or the grid size. As
consequence, the simulation results exhibit modeling and numerical errors, which may lead the optimization
process to failure, or to unexpected low e�ciency.8 Surprisingly, this error is almost never taken into account
and optimizers use simulation output as if it were exact.

Therefore, this paper is �rstly intended to provide a rigorous and systematic assessment of the impact
of the turbulence closures and numerical parameters, in the context of the optimization of 
ow control

� INRIA PhD candidate. E-mail: Jeremie.Labroquere@inria.fr. Tel.: +33 (0)4 92 38 76 15.
y INRIA research associate. E-mail: Regis.Duvigneau@inria.fr. Tel. +33 (0)4 92 38 71 77.
zCNRS research associate. E-mail: Emmanuel.Guilmineau@ec-nantes.fr. Tel.: +33 (0)2 40 37 16 81.
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parameters. Secondly, one explores how to directly take into account errors during the optimization phase,
by considering the simulations as noisy observations.

The paper is organized in three main parts: in a �rst section, simulation methods are described for
two 
ow solvers, a �nite-volume cell-centered code for incompressible 
ows and a hybrid �nite-volume /
�nite-element vertex-centered code for compressible 
ows. In a second section, we describe the optimization
method used, which relies on the iterative construction of a 
ow database and a corresponding Gaussian
Process (GP) model leading the search for optimal parameters. Finally, the third section is devoted to the
presentation and analysis of the selected test-case: the 
ows over a backward facing step. We seek for the
optimal frequency and amplitude of a synthetic jet, in order to reduce the 
ow detachment area as most as
possible. In this context, the impact of spatial and temporal discretization, as well as the choice of turbulence
closure, is quanti�ed �rstly in the context of simulation only, then for optimization purpose.

II. Simulation of controlled 
ows

II.A. Compressible 
ow solver

The compressible 
ow analysis is performed using the NUM3SIS platform developed at INRIA Sophia-
Antipolis. The two-dimensional Favre-averaged Navier-Stokes equations can be written in the conservative
form:

@W
@t

+
@F1(W )

@x
+

@F2(W )
@y

=
@G1(W )

@x
+

@G2(W )
@y

; (1)

where W are the conservative mean 
ow variables (�; �u; �v; E ), with � the density, U = ( u; v) the velocity
vector and E the total energy per unit of volume. F = ( F1(W ); F2(W )) is the vector of the convec-
tive 
uxes and G = ( G1(W ); G2(W )) the vector of the di�usive 
uxes. The pressure p is obtained from the
perfect gas state equationp = ( 
 � 1)(E � 1

2 � k
�!
U k2) where 
 = 1 :4 is the ratio of the speci�c heat coe�cients.

Provided that the 
ow domain 
 is discretized by a triangulation Th , a discretization of equation (1)
at the mesh nodesi is obtained by integrating (1) over the volume Ci , that is built around the node si by
joining the centers of the triangles containingsi and midpoints of the edges adjacent tosi :

V oli
@Wi

@t
+

X

j 2 N ( i )

�( Wi ; Wj ; �! � ij ) =
X

k2 E ( i )

	 k ; (2)

where Wi represents the cell averaged state andV oli the volume of the cell Ci . N (i ) is the set of the
neighboring nodes andE(i ) the set of the neighboring triangles. �( Wi ; Wj ; �! � ij ) is an approximation of
the integral of the convective 
uxes over the boundary @Cij between Ci and Cj , which depends onWi ,
Wj and �! � ij the integral of a unit normal vector over @Cij . The convective 
uxes are evaluated using
upwinding, according to the approximate Riemann solver HLLC.9 A high order upwind scheme is obtained
by reconstructing the physical variables at the midpoint of [si sj ] using Wi , Wj and the upwind gradient
(� -scheme), before the 
uxes are evaluated. 	k is the contribution of the triangle k to the di�usive terms,
according to a classical P1 description of the 
ow �elds.

An implicit dual-time stepping procedure is used for the time integration of (2). A classical three-step
backward scheme ensures a second-order accurate discretization of the unsteady term. A �rst-order backward
scheme is employed for the pseudo-time integration. The linearization of the numerical 
uxes provides the
following integration scheme:

�
(
V oli
� t

+
V oli
� �

) Id + J p
i

�
�W p+1

i = �
X

j 2 N ( i )

� p
ij +

X

k2 E ( i )

	 p
k �

3
2

V oli
� t

�W n
i +

1
2

V oli
� t

�W n � 1
i (3)

with:
�W p+1

i = ( W n +1
i )p+1 � (W n +1

i )p �W n
i = ( W n +1

i )p � W n
i �W n � 1

i = W n
i � W n � 1

i (4)

J p
i is the Jacobian matrix of the convective and di�usive terms. � � is the pseudo-time step. For the

computation of the convective Jacobian, we employ the �rst-order 
ux of Rusanov,10 while the di�usive
Jacobian is computed exactly. The right hand side of (3) is evaluated using high order approximations.
The resulting integration scheme provides a second-order solution in space and time. The linear system is

2 of 21

American Institute of Aeronautics and Astronautics



inverted using a SGS method.

Transport equations for turbulence closures are solved in a similar fashion, separately from mean 
ow
equations. Turbulent variables are coupled to 
ow variables using the Boussinesq eddy-viscosity assumption.

II.B. Incompressible 
ow solver

The incompressible 
ow study is carried out with the ISIS-CFD solver, developed at LHEEA and available
as a part of the FINETM /Marine computing suite. It solves incompressible Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations. The solver is based on �nite-volume method to build the spatial dis-
cretization and solves the conservation equations with a face-based cell-centered approach.

Within this framework, the incompressible conservation laws under isothermal conditions are written as

@
@t

Z

V
�dV +

Z

S
� U � n dS = 0 ; (5)

@
@t

Z

V
�U i dV +

Z

S
�U i U � n dS =

Z

S
(� ij I j � pI i ) � n dS; (6)

where V is the domain of interest or control volume, bounded by the closed surface S with a unit normal
vector n directed outward. U and p represent, respectively, the velocity and pressure �elds. � ij are the
components of the viscous stress tensor, whereasI j is a vector whose components are zero, except for the
j th component which is equal to unity.

All 
ow variables are stored at geometric centers of the arbitrary shaped cells. Surface and volume
integrals are evaluated according to second-order accurate approximations by using the values of integrand
that prevail at the center of the face f , or cell C , and neighbor cellsCnb . The various 
uxes appearing in the
discretized equations (5) and (6) are built using the Gamma Di�erencing Scheme (GDS).11, 12 Some other

ux determination methods, as centered, upwind or hybrid schemes, are implemented in ISIS-CFD. More
can be found in Duvigneau and Visonneau13 and more recently in Queutey and Visonneau.12 A pressure
equation is obtained in the spirit of the Rhie and Chow SIMPLE algorithm.14 As for the compressible solver,
unsteady terms are solved using a dual-time stepping approach.

In the case of turbulent 
ows, additional transport equations for modeled variables are discretized and
solved using the same principles.

II.C. Turbulence closures

Various turbulence closures are implemented in the 
ow solvers as linear and non-linear eddy-viscosity based
models. For this study, a compressible version of Spalart-Allmaras model is used in NUM3SIS, while various
incompressible models are used for ISIS-CFD. Their main characteristics are described below.

II.C.1. Spalart-Allmaras closure

The Spalart-Allmaras closure is a one-equation closure calibrated on simple 
ows which is intensively used
in aerodynamics. It provides satisfactory results on attached 
ows and gives a better description of velocity
�elds for detached 
ows than zero-equation models. Several versions and variants of this model, including
curvature corrections, have been developed since the original version was written. The details of the model
are not described here, but the implemented compressible15 and incompressible16 versions correspond to the
standard Spalart-Allmaras model.

II.C.2. k- � Launder-Spalding andk-! -SST Menter closures

The k-" Launder-Spalding17 and the k-! models are two-equation turbulence closures. The aim of these
closures is to predict the length scale and the time reversal of the largest turbulence eddies in the 
ow. To
determine these characteristics, thek-" model is based on solving the turbulent energyk and the dissipation
rate " while the k-! uses the turbulent energyk and the characteristic frequency! of the largest eddies.
It is well known that the simple k-! closure is sensitive to boundary conditions, but can be integrated to
the wall, while the k-" closure is not sensitive to boundary conditions, but cannot be integrated to the wall
unless using damping functions. By taking both advantages of thek-" and k-! closures, thek-! -SST from
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Menter closure18 is deduced by mixing thek-" closure far away from walls tok-! closures close to the walls.
The coe�cients of the closures are calibrated on simple 
ows at equilibrium.

The application domain for these two models is more general than the Spalart-Allmaras closure, but still
limited by the linear Boussinesq assumption. The baseline closures ofk-" Launder-Spalding and k-! -SST
Menter are used in this study.

II.C.3. Algebraic Stress Models (ASM)

Explicit and Implicit Algebraic Stress Models belong to the larger class of Algebraic Stress Models. They
are based on an extension of the linear Boussinesq assumption, designed to add anisotropic behaviors to
two-equation closures. These models are non-linear and are built upon a full Reynolds Stress estimation, on
the basis of a transport equation for a two-equation closure.

Contrary to two-equation closures, the Algebraic Stress Models can handle negative production of en-
ergy, rotational e�ects, etc. Furthermore, unsteady 
ows are characterized by a misalignment between the
anisotropy tensor and the strain tensor.19 As a consequence, two-equation closures are not able to predict
these features, due to their linear nature, while Algebraic Stress Models can better predict such complex

ows. Finally, an advantage of the formulations of Algebraic Stress Models is that they do not need to be
calibrated.

In ISIS-CFD, the Explicit Algebraic Stress Model based on thek-! closure by Gatski & Speziale20 with
a near-wall formulation21 is implemented.

II.D. Actuators models

In this study, we consider actuations based on synthetic jets. For both solvers, the actuation is implemented
as boundary conditions. In the case of incompressible 
ows, the velocity is imposed on the jet boundary and
is de�ned as:

U = Uj A(x) sin(!t ) d j

with A( x) a unit pro�le function, Uj the amplitude, ! the angular frequency andd j the direction of the jet.
In this study, A(x) is a sine squared function andd j is normal to the boundary.

For the compressible 
ow solver, the velocity is imposed in a similar fashion. Additionally, other variables
are extrapolated from the interior of the domain.22

III. Optimization of control devices

When dealing with turbulent unsteady 
ows, the main issue for optimization is the computational burden.
The evaluation of the cost function gradient using an adjoint approach is highly complex and the non-linear
underlying phenomena may yield multimodality. Furthermore, the optimization process may fail due to
simulation errors (discretization, convergence, etc.), which make the evaluations noisy. To address these
issues, the use of meta-models based on simulation results seems to be a promising approach.23 In particular,
the present work is focused on the E�cient Global Optimization (EGO) algorithm.

The EGO is a global optimization algorithm that makes use of a stochastic process model to drive the
optimization. 24 As a �rst design of experiment phase, an initial database covering the bounded search space
is generated from simulations. This database contains obviously the cost function values, but may also gather
the error estimated for each evaluation. A stochastic model is constructed using this database, which allows
to predict the cost function value in term of expectancy and variance at any point of the search domain.
According to these predictions, the most interesting points are selected by means of a merit function. Once
evaluated, the corresponding cost function values and the error estimations are added to the database. This
process is repeated until convergence, as illustrated on Fig. 1.

III.A. Gaussian Process model

Gaussian Process models (also known as kriging models) belong to response surface methods, that allow to
predict a function value f at a given point x, on the basis of a set of observed valuesFN = f f 1; f 2; : : : ; f N g at
some pointsX N = f x1; x2; : : : ; xN g � Rd. FN is assumed to be one realization of a multivariate Gaussian
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Figure 1. E�cient Global Optimization loop.

process which have a joint Gaussian distribution

p(FN jCN ; X N ) =
exp

�
� 1

2 FN
> C � 1

N FN

�

p
(2� )N det(CN )

; (7)

for any collection of inputs X N . CN is the N � N covariance matrix, whose elementsCmn give the corre-
lation between the function values f m and f n obtained at points xm and xn . We assume that these values
are correlated, since they correspond to underlying physical phenomena. This is expressed in terms of a
correlation function k, i.e., Cmn (xm ; xn ; �) = cov(f m ; f n ) = k(xm ; xn ; �) with � a set of hyper-parameters
that are supposed to be known in the following.

Now, we suppose that we would like to evaluate the function value at a new pointxN +1 . From Eq. (7),
the (N + 1)-variable Gaussian process has a joint probability density of

p(FN +1 jCN +1 ; X N +1 ) =
exp

�
� 1

2 FN +1
> C � 1

N +1 FN +1

�

p
(2� )N +1 det(CN +1 )

: (8)

To predict the unknown function value f n +1 given the data FN , one uses the conditional probabilities rule
p(AjB ) = p(A; B )=p(B ):

p(f N +1 j(X N ; FN ); CN ; xN +1 ) =
p(FN +1 jCN ; X N +1 )

p(FN jCN ; X N )
: (9)

After some calculations,25 we obtain that the probability density for the function value at the new point is

p(f N +1 j(X N ; FN ); CN ; xN +1 ) / exp

"

�
(f N +1 � f̂ N +1 )2

2�̂ 2
f N +1

#

;

where
f̂ N +1 = kN +1

> C � 1
N FN ; �̂ 2

f N +1
= � � kN +1

> C � 1
N kN +1 ; (10)

with � = k(xN +1 ; xN +1 ; �) and kN +1 = [ k(x1; xN +1 ; �) ; : : : ; k(xN ; xN +1 ; �)] T .
Thus, the probability density for the function value at the new point xN +1 is also Gaussian with mean

f̂ N +1 and standard deviation �̂ f N +1 . Therefore, the most likely value at the new point xN +1 is f̂ N +1 . This
value will be considered as the prediction of the kriging model. The variance ^� 2

f N +1
can be interpreted as a

measure of uncertainty in the value prediction. The function value can be expected to vary in some range
like [f̂ � 3�̂; f̂ + 3 �̂ ].
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III.B. Correlation functions

The choice of the correlation function k is critical for the model, as it contains all the prior hypotheses,
including for example regularity, symmetry, periodicity, etc. The correlation function must a priori re
ect
the characteristics of the output of the computer code.

We use here the Mat�ern class of covariance stationary kernels, which gives a family of correlation functions
of di�erent smoothness. More speci�cally, the following multidimensional correlation function is employed:

k(x ; x 0; � ) = � 1

dY

i =1

e�
�

j x � x 0j
r i

� 2

+ � 2; (11)

with � = f � 1; � 2; r 1; r 2; :::; r dg the set of hyper-parameters to be determined. Practical studies have shown
that the use of a non-isotropic scaling is bene�cial for the problems considered here. The parameter� 1 scales
this correlation. In the second term, � 2 gives an o�set of the function values from zero. The parametersr i

represent the anisotropic distance at which the correlation decays.

III.C. Hyperparameters determination in Bayesian framework

The Bayesian framework allows to make inference with prior knowledge about the cost function. This
framework26 is used to determine the hyper-parameters � in the correlation function.

We want the constructed model to be as consistent as possible with the observed data. Therefore,
hyper-parameters are determined by maximizing the probability density function of the observed data, or
equivalently by minimizing the log-likelihood function given by:

L = � logp(FN jX N ; CN ; �) = FN
> C � 1

N FN + log det( CN ): (12)

This function is known to be multi-modal; hence an evolution strategy is employed for this work, that has
the capability to avoid local minima.

III.D. Merit functions

Once the model is constructed, it is used to locate the most interesting value of the cost function. The naive
choice of the minimum of the model may yield to non-optimum or even non-stationary points.27 Therefore,
the new point to be evaluated is chosen by minimizing or maximizing a merit function, which makes use of
the variance of the model. A comprehensive review of the di�erent merit functions to locate the optimum
for deterministic functions is given by Jones.27 Four di�erent merit functions are used in this study, which
use the variance of the model to reach the global optimum.

Lower bound (LB) : The simplest criterion is the minimization of the lower bound. This merit function
is de�ned as:

LB (x) = f̂ (x ) � � �̂ (x ) (13)

where � is a constant typically chosen to be equal to 0, 1 or 2. Note that when� = 0, the criterion reduces
to the minimization of the meta-model only.

Probability of Improvement (PI) : Maximizing the probability of improvement consists in choosing a point
which maximizes the probability of obtaining a value better than a given target. To do so, a target value is
set, such that T < f min with f min = min

1� i � N
f (x i ). This merit function is �nally computed by:

P I (x ) = �

 
T � f̂ (x )

ŝ(x )

!

; (14)

where �( y) = 1
2 (1 + erf( y=

p
2)) is the cumulative distribution function of the standard normal distribution.

As for LB, several target valuesT can be chosen.
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Expected Improvement (EI): The most popular strategy is the maximization of the Expected Improve-
ment (EI). 24 This approach consists in locating the point x at which the maximum reduction of the cost
function can be expected. The improvement obtained by evaluatingY at the point x is de�ned as:

I := max( f min � Y (x ); 0): (15)

If we assume that the function value is the realization of a random variable with meanf̂ (x ) and standard
deviation �̂ (x ), the probability of reducing its value by an amount I is given by:

1
p

2� �̂ (x )
exp

"

�
(f min � I � f̂ (x ))2

2�̂ (x )2

#

: (16)

Then, the EI criterion is the expected value of I :

EI (x ) =
Z I = 1

I =0
I

(
1

p
2� �̂ (x )

exp

"

�
(f min � I � f̂ (x ))2

2�̂ (x )2

#)

dI: (17)

After an integration by part, it is shown that:

EI (x ) = �̂ (x )[u�( u) + � (u)]; u(x ) =
f min � f̂ (x )

�̂ (x )
; (18)

where � (y) = 1p
2�

exp(� y2=2) is the standard normal distribution.

Augmented Expected Improvement (AEI): The main drawback of the EI criterion is that the minimum
f min is not exactly known in presence of noise. The Augmented Expected Improvement28 is based on
two modi�cations in case of noisy functions. First, instead of using the minimum f min , it uses a surrogate,
addressing the problem thatf min is not exactly known. The used surrogate isT = f̂ (x �� ) with x �� (e�ective
best solution) the minimum of f̂ + �̂ over the over the current database. Then, a penalty term is introduced
in order to take into account the error for the next evaluation � N +1 . This penalty enhances exploration by
penalizing points with small variance �̂ 2 with respect to noise � 2

N +1 . Finally, the AEI criterion becomes:

AEI (x ) = EI T (x ) �

0

@1 �
� N +1q

�̂ (x )2 + � 2
N +1

1

A ; EI T (x ) = �̂ (x )[u�( u)+ � (u)]; u(x ) =
T � f̂ (x )

�̂ (x )
(19)

The AEI criterion has exhibited the best results for the optimization of noisy functions among many merit
functions.29

IV. Test-case

IV.A. Backward facing step

The backward facing step is a well known test-case, studied by many researchers experimentally as well as
numerically. This test-case is selected here to provide detached 
ows with a simple geometrical con�guration.
The con�guration de�ned by Driver and Seegmiller 30 is used in this study. It has been documented using
incompressible31, 32 as well as compressible33 
ows.

IV.A.1. Con�guration

The backward-facing step geometry including a control device is de�ned on the �gure 2. The geometry and
parameters are taken from the Driver case:h = 0 :0127m, Uref = 44:2m/s, M ref = 0 :128, the Reynolds
number based on the boundary layer momentum thickness prior to the step is set toRe� = 5000 and the
boundary layer thickness at the inlet is � BL = 0 :019m. The control device is a suction / blowing jet with a
diameter of h=10 and is located ath=50 from the step.

Three di�erent meshes have been designed for this particular con�guration. In the incompressible case,
the coarse, medium and �ne mesh respectively contains 29778, 45805 and 77064 nodes. In the compressible
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Figure 2. Backward-facing step con�guration.

case, the mesh respectively contains 16575, 38235 and 70538 nodes. In all cases, the boundary layer is re�ned
at the wall to ful�ll the y+ < 1 criterion at all time steps.

As well, three di�erent time steps based on the jet frequency are selected. The large, medium and small
time steps are de�ned so that one period contains respectively 64, 128 and 256 time steps.

In a previous work,34 starting from the steady solution of the uncontrolled 
ow, it has been noticed that
the transient e�ect has vanished after 0.025s. Therefore, the time averaging process starts at 0.035s and last
for 4 full periods.

IV.A.2. Optimization parameters

The objective function for this test-case is the recirculation length of the time-averaged 
ow. A post
treatment locates where the wall shear stress vanishes. As design parameters, we consider the jet am-
plitude and frequency, which are allowed to vary in the following intervals: 4m/s � Ujet � 50m/s and
50Hz � f jet � 1000Hz.

V. Impact of parameters on simulation 
ow results

Several studies on the assessment of turbulence closures for backward facing step con�gurations have
been carried out for the last years.33, 35 Simulations are validated by comparing mean 
ow velocity pro�le
distribution, pressure coe�cient and bubble recirculation length past the step. With control devices, the
same criteria are usually considered but only a few couples of blowing frequencies and amplitudes are chosen
in most studies. In the perspective of optimization of 
ow control devices, a more global assessment is
targeted.

First of all, to quantify the impact of turbulence models, meta-models built using di�erent closures are
compared on the same grid. Then, a grid and time step re�nement is done to estimate the discretization
errors, for all the turbulence closures. Finally, a comparison between the compressible code NUM3SIS and
the incompressible code ISIS-CFD is conducted, for a �xed turbulence closure. For all cases, the initial
database is composed of 16 design points determined by an optimized Latin Hypercube Sampling (LHS).

V.A. Impact of turbulence closure

It is well known that turbulence models have a huge impact on detached 
ow simulations. Nevertheless,
the capability to obtain similar trends for the optimum actuation is investigated here. This study is carried
out using the medium grid, with the ISIS-CFD 
ow solver. Four turbulence models are tested: the Spalart-
Allmaras (SA), k-" Launder-Sharma (KE-LS), k-! -SST Menter (KW-SST-MENTER) and quadratic explicit
algebraic stress model (KW-NE-EASM).

V.A.1. Flow without control

At �rst, we compare the results for the 
ow without actuation. It is used to initialize the simulation of the
controlled 
ow over the backward-facing step. The velocity streamlines for the di�erent turbulence closures
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are shown on the Fig 3. The e�ect of turbulence closure is obvious, even for the steady non-controlled

(a) Spalart-Allmaras closure. (b) k-" Launder-Sharma closure.

(c) k-! -SST Menter closure. (d) k-! -ne-easm closure.

Figure 3. Comparison of velocity streamlines for di�erent turbulence closures for the 
ow over the backward facing
step without control.


ow. While the shapes of the recirculation bubble are close for the Spalart-Allmaras,k-" Launder-Sharma
and k-! -SST Menter closures, the quadratic explicit algebraic stress model predicts a signi�cantly longer
recirculation bubble. On the Fig. 4, the velocity pro�les at di�erent locations are represented. As well, the

Figure 4. Initial velocity pro�les at x = � 4, x = 1 , x = 4 ,x = 6 and x = 10 for di�erent turbulence closures for the 
ow
over the backward facing step without control.

table 1 gives the recirculation length for the di�erent models.

Experimental Spalart-Allmaras k-" Launder-Sharma k-! SST Menter k-! -ne-easm
6.26 6.05 5.41 6.37 7.56

Table 1. Comparison of recirculation length l=h computed against the experimental results from Driver and Seegmiller.

As seen, thek-! SST Menter is the closest one to the experimental recirculation length value while
the Spalart-Allmaras and k-" Launder-Sharma underestimate it and the k-! -ne-easm overestimates the
recirculation bubble length. The Spalart-Allmaras closure has the worst behavior concerning the velocity
pro�les.

V.A.2. Flow with control

The meta-models for the di�erent turbulence closures are presented on Fig. 5. These models were generated
with simulations including 256 time steps per period on the medium grid and for a reduction of 3 orders for
the non linear residuals. E�ect of discretization error are further studied.
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(a) Spalart-Allmaras closure. (b) k-" Launder-Sharma closure.

(c) k-! -SST Menter closure. (d) k-! -ne-easm closure.

Figure 5. In
uence of turbulence closures on the recirculation length.

As can be observed, the trend of the meta-model is signi�cantly dependent on the closure chosen. The
Spalart-Allmaras closure provides a model whose shape is very di�erent from the other ones. Thek-! -SST
Menter, k-" Launder-Sharma and k-! -ne-easm closures agree for the medium and high frequencies, while
the very low frequencies signi�cantly di�er.

The Fig 6 compares the vorticity for the k-! -SST Menter and k-! -ne-easm models. The selected design
point corresponds to a non dimensional amplitude of 0.8 and a frequency of 0.0666667 (40:8m=s and a
frequency of 113:333Hz). The non linearities of the k-! -ne-easm turbulence model are observed on the
instantaneous vorticity of the 
ow. The k-! -SST Menter is more di�usive and the k-! -ne-easm tends to be
more rotational than its counterpart.

V.B. Impact of discretization errors

The discretization errors for unsteady simulations is due to the grid size and the time step. Thek-! -ne-easm
turbulence closure is used for this study.

V.B.1. Grid re�nement

To measure the e�ects of the grid size on the meta-model, three grids are considered, with a �xed number
of 256 time steps per period and a reduction of 4 orders of non linear residuals. The di�erent meta-models
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Figure 6. Comparison of the vorticity for k - ! -ne-easm (left) and k -! -SST Menter (right) turbulence closure with 256
time steps by periods and the medium mesh. The current actuation point has an amplitude of 40:8m=s and a frequency
of 113:333Hz . From top to bottom, the jet angular phase is ! � 0, ! � �

2 , ! � � and ! � 3 �
2 .

obtained using the three grids can be compared on Fig. 7. Results look quite similar for all the grids. One
can notice that the e�ects of medium and high frequencies actuation is better captured when the grid is
re�ned. The grid size do not exhibit a strong in
uence on low frequencies. The overall meta-model shape is
not really sensitive to grid re�nement as the e�ective control in medium frequencies and low frequencies is
still located around the same location.

V.B.2. Time step re�nement

To quantify the e�ects of the time step, three di�erent discretization of 64, 128 and 256 time steps per period
are selected, with the �ne grid and a reduction of non linear residuals of 4 orders. The meta-models shown
on Fig. 8, do not look di�erent. Surprisingly, change of the time step has not a strong in
uence on the
meta-model shape.

V.C. Iterative error

Dual time stepping method implies the convergence of the 
ow equations at each time step. Here, the e�ect
of the reduction of non linear residuals on the meta-model is quanti�ed for 1, 2 and 4 orders as stopping
criterion. The medium grid, with 256 time steps per period is selected. The Fig. 9 shows the di�erent
meta-models obtained. The order of convergence has a huge e�ect on the meta-model shape especially in
high and low frequencies. In medium and high frequencies, with a low convergence of non linear residuals,
the recirculation length is over-predicted. In low frequencies, the design point with a high amplitude is the
most sensitive to this parameter.

11 of 21

American Institute of Aeronautics and Astronautics



(a) Coarse grid. (b) Medium grid.

(c) Fine grid.

Figure 7. Grid re�nement e�ect on the recirculation length with kw-ne-easm turbulence closure and 256 time steps by
periods.

V.D. Impact of compressibility

Finally, we compare two codes, the incompressible 
ow solver ISIS-CFD and the compressible 
ow solver
NUM3SIS. The turbulence is modeled by the Spalart-Allmaras closure in both cases, while the �ne grid and
time step are employed.

The results of these simulations are given on Fig. 10. Similar trends are observed, although the value
of the predicted length is di�erent, especially for high frequencies and amplitudes. This behavior may be
explained by the fact that compressibility generates a damping e�ect, especially for high frequencies. The
time spent to reach a periodic state from the steady uncontrolled 
ow is longer for incompressible case. It
takes 0:25s for the compressible solver against 0:35s for the incompressible one.

VI. Impact of simulation parameters on optimization process

Now, we propose to study the e�ect of simulation parameters on the optimization process. First of all,
we show a full optimization using the Spalart-Allmaras model. Then, to overcome some di�culties due to
the presence of numerical noise, a �ltering approach is proposed and validated with the optimization of an
analytical test case, then tested on the Spalart-Allmaras model. Finally an optimization using thek-! -SST
Menter is performed.
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(a) Large time step. (b) Medium time step.

(c) Small time step.

Figure 8. Time step re�nement e�ect on the recirculation length with k -! -ne-easm turbulence closure and a �ne grid
and convergence of 4 orders of non linear residuals.

VI.A. Optimization of a synthetic jet with the compressible Spalart-Allmaras model

We consider here the �rst 9 optimization steps using the lower bound merit function, for the minimisation of
the BFS mean 
ow recirculation length with the compressible code. The turbulence closure is the Spalart-
Allmaras model. The initial database contains 15 design points and, for each step, three simulations are run
in parallel, so the �nal database contains 42 points in total. In this case, the recirculation length is computed
using the closest grid point for which the friction coe�cient vanishes. The mesh used is the coarsest one
and the mesh size in the streamwise direction in the recirculation area ishcoarse = 1 :10� 3m, which gives
a non dimensional size ofhadim

coarse = 0 :0787. The Fig. 11 shows the �nal meta-model obtained with the
interpolating meta-model. As seen the model oscillates. Furthermore, by looking at the evaluation points,
we see that they are not converging. This indicates that the meta-model changes abruptly each time a new
point is added to the database.

VI.B. Optimization with noisy observations

We make the assumption that the oscillations are due to numerical errors yielding a noisy evaluation process.
Therefore, we introduce some modi�cation in the Gaussian Process framework to take it into account.
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(a) Criterion reduction of 1 order. (b) Criterion reduction of 2 orders.

(c) Criterion reduction of 4 orders.

Figure 9. Non linearities convergence criterion e�ect on the recirculation length with k -! -ne-easm turbulence closure,
a �ne grid and a 256 time steps per period.

VI.B.1. Prediction of noisy observations with Gaussian Processes

In real-life problems, either in experiments or numerical simulations, observations made on the process are
noisy. In case of experiments, the noise related to gauge or instruments can usually be well estimated. In
numerical simulations, errors arise from models, discretization, iterative solvers, human errors, etc. As a
consequence, in both cases, we need to take into account noisy observations in our models.

According to Ginsbourger,36 assuming a Gaussian distributed noise" , the process observation can be
written as:

f " (x ) = f (x ) + " ;

with " � N (0; �), where � = diag( � 2
i ; i 2 [0; n]). The error at the observation point i is thus considered as

a centered Gaussian distribution with a variance� 2
i .

By introducing the noise in the process, the variance of the observationCN is changed toCN + �. As a
result, the prediction of mean f̂ N +1 and variance ^� 2

f N +1
in Eq. (10) need to be modi�ed to:

f̂ N +1 = kN +1
> (C � 1

N + �) FN ; �̂ 2
f N +1

= � � kN +1
> (C � 1

N + �) kN +1 : (20)

In addition, the log-likelihood from Eq. 12 to be minimized becomes:

L =
1
2

FN
T (CN + �) � 1FN +

1
2

log jCN + � j: (21)
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(a) Incompressible ISIS-CFD 
ow solver. (b) Compressible num3sis 
ow solver.

Figure 10. In
uence of the 
ow solver on the bubble recirculation length.

Figure 11. Final interpolating meta-model for the optimization of the recirculation length. The solver is the compress-
ible one with a Spalart-Allmaras closure. For the optimization, we used the lower bound merit function and the �nal
database contains 42 points in total.

VI.B.2. Analytical case

To illustrate the meta-model based optimization of noisy functions, the following unconstrained problem is
considered:

Minimize f (x) =
1
2

�
sin(20x)

1 + x
+ 3x3 cos(5x) + 10( x � 0:5)2 � 0:6

�
+ "p (22)

with "p � N (0; � 2
p ), a random perturbation with a normal distribution of mean 0 and standard deviation

� p = 0 :1.
Several optimization cases are considered here. The �rst ones are optimizations using an interpolating

meta-model. In that case we consider exact observations. Then, we consider a non interpolating meta-model
where the error variance is set to� 2

p . In all cases, the initial database contains 5 points equally distributed.

Optimization with an interpolating model: An optimization with an interpolating meta-model and
an EI merit function is considered. Four �gures among the �rst 15 steps of the optimization are shown on
Fig. 12. As we could expect, the optimization of a noisy function using an interpolating meta-model gives
a very oscillating model with a strong uncertainty in the low-sampled regions. Whatever the merit function
considered, this algorithm would fail to �nd the global minimum in a limited number of iterations as the
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(a) Optimization iteration 0. (b) Optimization iteration 4.

(c) Optimization iteration 9. (d) Optimization iteration 14.

Figure 12. Optimization with the expected improvement of a 1D function using � p = 0 :1 and an interpolating meta-
model.

meta-model is too far from the reality.

Optimization with a non interpolating model: As previously seen, increasing the points in the database
for a noisy function yields an oscillating meta-model. To address this problem, we consider here the meta-
model including noisy observations.

First, an optimization with a non-interpolating meta-model with the EI merit function is considered.
Four steps among the 15 optimization iterations are shown on Fig. 13. These �gures show that the meta-
model converges to the global minimum. Furthermore, as the number of iteration increases, the meta-model
remains stable, which is not the case with an interpolating meta-model.

VI.B.3. Application to the CFD case

We reconsider the �nal database of the section VI.A and construct non-interpolating meta-models with
di�erent level of error. Fig. 14 shows that the oscillating model becomes more stable as the error standard
deviation is increased. 3� i � hadim

coarse = 0 :0787 seems to be a threshold value, indicating that the error is
related to the cell size at reattachment point.
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(a) Optimization iteration 0. (b) Optimization iteration 4.

(c) Optimization iteration 9. (d) Optimization iteration 14.

Figure 13. Optimization with the expected improvement of a 1D function using � p = 0 :1 and non-interpolating meta-
model, with an observation uncertainty standard deviation set to � i = 0 :1.

VI.C. Optimization of a synthetic jet with the incompressible k-! -SST Menter model

In the following, we examine the optimization of synthetic jet parameters using thek-! -SST Menter model
since this model seems to provide a more reliable 
ow prediction. The initial database is composed of 6
design points selected using an optimized Latin Hypercube Sampling algorithm. 128 time steps per period
and a reduction of non linear residuals of 3 orders are chosen. The initial database is represented on the
Fig. 15. The meta-model after six iterations using PI and AEI merit functions are shown on Fig. 16. During
the �rst iterations, the method based on PI tends to concentrate the points around the located optimum
yielding oscillatory behavior as section VI.B.3. On the contrary, the method based on AEI begins to spread
the points in the research domain avoiding the oscillatory e�ect during the �rst phase of the optimization.
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Figure 14. Comparison of meta-models using the same database coming from an optimization with di�erent level of
standard deviation to model the error. From the top to the bottom, � i = 0 :1; � i = 0 :05; � i = 0 :02; � i = 0 :01. As the standard
deviation of the error decreases, the meta-model becomes unstable due to the presence of noise in the observations.
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Figure 15. Initial database generated for the optimization of jet amplitude and frequency. The k -! -SST Menter model,
128 time steps per period and a reduction of non linear residuals of 3 orders is used.

Figure 16. Comparison of meta-models after �ve optimization iterations of jet amplitude and frequency parameters
using PI and AEI. The k -! -SST Menter model, 128 time steps per period and a reduction of non linear residuals of 3
orders is used. The PI (top), AEI (bottom) merit functions are used.
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VII. Conclusion and prospects

In this study, we have �rst analysed the e�ect of numerical parameters and turbulence modeling on
the controlled 
ow over a backward facing step using a design of experiment approach. The grid size and
time step have not a signi�cant impact on the response surface for the computation carried out here. The
most critical numerical parameter is the non linear residual reduction criterion which dramatically modi�es
the recirculation length. On the other side, the most signi�cant in
uence on the response surface is due
to the turbulence closure. The Spalart-Allmaras model gives an e�cient control for high amplitude and
low frequency, while thek-! -SST Menter tends to give good control parameters at mid-frequency and mid-
amplitude. The behavior of the k-! -ne-easm agrees for the mid-range parameters with thek-! -SST Menter
model, but it presents some di�erent characteristics at high amplitude and low frequency jet parameters.

Moreover, the necessity to account for numerical error during the meta-model based optimization has
been shown. In particular, the use of interpolating models yields oscillating and unrealistic representations,
leading the optimization process to failure. The introduction of the noisy observation concept allowed to
overcome this di�culty. In the test case considered here, the noise level seems to be related to the grid size
at reattachment point

The question how to automatically estimate the numerical error made on each point still remains. This
question has been studied by Forrester et al.37 and more sophisticated approached will be investigated in
the future.
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