
HAL Id: hal-00873496
https://hal.inria.fr/hal-00873496

Submitted on 15 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Concurrency Control and Awareness Support for
Multi-synchronous Collaborative Editing

Mehdi Ahmed-Nacer, Pascal Urso, Balegas Valter, Nuno Preguiça

To cite this version:
Mehdi Ahmed-Nacer, Pascal Urso, Balegas Valter, Nuno Preguiça. Concurrency Control and Aware-
ness Support for Multi-synchronous Collaborative Editing. 9th IEEE International. Conference
on Collaborative Computing: Networking, Applications and Worksharing, Oct 2013, Austin, Texas,
United States. �hal-00873496�

https://hal.inria.fr/hal-00873496
https://hal.archives-ouvertes.fr

Concurrency Control and Awareness Support for
Multi-synchronous Collaborative Editing

Mehdi Ahmed-Nacer, Pascal Urso
Université de Lorraine - INRIA, LORIA

Email: mehdi.ahmed-nacer@loria.fr,
pascal.urso@loria.fr

LORIA Campus scientifique, Nancy. France

Valter Balegas, Nuno Preguiça
CITI/FCT-Universidade Nova de Lisboa

Email: balegas@gmail.com,
nuno.preguica@di.fct.unl.pt

MONTE DA CAPARICA, PORTUGAL

Abstract—Collaborative editing tools have become increas-
ingly popular in the last decade, with some systems being used
by massive numbers of users. While traditionally collaborative
editing systems would either target synchronous or asynchronous
collaboration settings, some recent systems support both types
of collaboration, even supporting disconnected work. In this
paper we analyze the limitations of existing systems and propose
a data management solution that overcomes such limitations.
The proposed concurrency control algorithm, based on conflict-
free data types, builds on the ideas previously developed for
synchronous collaboration, extending them to support asyn-
chronous collaboration. Our solution also includes the necessary
information for providing comprehensive awareness information
to users. The evaluation of our algorithm shows that comparing
our solution with traditional solutions in collaborative editing,
the conflict resolution strategy proposed in this paper leads to
results closer to the ones expected by users.

Keywords—Collaborative editing, multi-synchronous applica-
tions, move/update operations, concurrency control, CRDT, aware-
ness information.

I. INTRODUCTION

In recent years a large numbers of massively used col-
laborative editing applications have been developed. These
applications can be broadly classified as supporting asyn-
chronous collaboration, such as wikis and version control
systems; or synchronous collaboration, such as distributed real-
time collaborative editors, collaborative design tools or cloud
integrated development environment. Moreover, everyday mass
market applications, such as note-taking tools or cloud drives
– notably Google Drive [1] and Microsoft SkyDrive [2] – aim
to provide collaboration and synchronization between multiple
devices and to support offline work on mobile devices. At
the heart of these systems, we can find the algorithms for
concurrency control developed in the last decades by the
groupware community, or adaptations of these algorithms.

In asynchronous collaborative applications, users modify
shared documents independently without immediately observ-
ing changes being performed by other users. These appli-
cations usually use some kind of floor control [3] that al-
low a single user to modify each document (or document
area), or allow concurrent updates to occur and combines
them using either a three-way-merge tool [4] or patch-based
techniques [5], [6]. In synchronous collaborative applications,
each user immediately observes the changes performed by the
other users. These applications often use algorithms based on

operational transformation (OT) [7], [8] to merge concurrent
updates while allowing each client to immediately observe her
changes.

More recently, some of these synchronous collaborative
applications, notably Google Drive [1], have started supporting
disconnected operation for allowing users to modify documents
during periods of both voluntary disconnection or connectivity
problems. Using traditional groupware classification, we could
say that these applications have become multi-synchronous.
By relying on algorithms developed to synchronous settings
(or simple adaptations of these algorithms), these applica-
tions exhibit unexpected behaviour to users when merging
updates executed during disconnected periods, e.g. inserted
text disappears without being explicitly removed by any user.
Also, contrary to asynchronous systems, these systems include
no or limited awareness mechanisms, making it hard for a
user to understand what has happened during the merge of
concurrent asynchronous modifications. The difficulty here is
that these existing systems cannot be just corrected since
traditional OT algorithms either do not scale or do not permit
arbitrary topology of organization between users as allowed
by distributed version control systems.

To address these issues, we argue that this new class
of applications requires specialized solutions with integrated
concurrency control and awareness mechanisms. We propose
such a solution based on conflict-free data types (CRDT) [9].
CRDTs ensure eventual convergence of replicas, given that all
updates are received in all replicas in causal order. CRDTs
address the limitations of OT algorithms, while keeping the
same behaviour for users. Unlike previous CRDT-based solu-
tions [10], [11], our solution extends the traditional interface
of documents with support for operations appropriate to an
asynchronous setting - different granularity for insert and
delete operations. We keep awareness informations that allow
the system to show to the users the result of the merge of
concurrent modifications.

Additionally, our solution offers new update and move
operations that are necessary to offer fine-grain awareness
and merge quality to the user. Even in these additional op-
erations have been recognized important for the end user,
few actual implementation exists due to the difficultly in
ensuring consistency in presence of such operations and in
identifying these subjective operations [12]. We propose a
complete solution that allows to manage and to accurately
extract these operation in the asynchronous context. We have

implemented our algorithm and evaluated it by measuring the
quality of merge of concurrent updates in documents from
existing repositories. Results show that our approach improves
the results of merge, by making it closer to the result expected
by the users.

The remainder of this papers is organized as follows:
Section Requirements discusses requirements for supporting
multi-synchronous collaborative editing; we then present our
solution for managing shared documents and providing aware-
ness information to users in the following section; Section
Evaluation provides an evaluation of our proposal in the con-
text of existing repositories; Section Related Work discusses
related work; and the following section concludes the paper
with some final remarks.

II. REQUIREMENTS

Collaborative editing applications allow users to collabo-
rate for creating a shared document. To this end, users can
typically edit any part of the shared document concurrently.
An important aspect of collaboration is awareness [13], which
allows a user to be aware of the actions of other users, making
collaboration more effective and minimizing potential con-
flicts. Even with user awareness information, or due to latency
to obtain this information, users can easily update an area of
the document that is being edited by another user. To address
this issue, collaborative editing systems include some form
of concurrency control mechanism that handles concurrent
actions from multiple users and merge their contributions.

In recent years, a new generation of web-based collab-
orative editing tools have been developed – e.g., Google
Drive [1] and Microsoft Office at SkyDrive [2]. These systems
allow users to edit shared documents both synchronously and
asynchronously. In this section, we analyze the properties of
theses systems in supporting collaborative editing and discuss
a set of desired properties for such systems.

A. Limitations of Current Solutions

Google Drive and Microsoft Office at SkyDrive present
two different strategies for supporting collaborative editing
discussed hereafter.

Google Drive: Google Drive (formally named Google
Docs) [1] allows users to edit a document synchronously when
they are online at the same time. It also support editing of text
documents during disconnected periods, with the reintegration
of updates occurring when the user becomes online again.

When merging updates executed during disconnected pe-
riods with the current version, the resulting state may be
unexpected for users, either because it becomes semantically
incorrect or because it violates users’ intentions [14]. Some of
the problems that can occur are the following:

• Concurrent updates on the same sentence: Two users
can edit the same sentence simultaneously without being
aware of the other users’ interaction, which may leave the
sentence semantically inconsistent [15];

• Typographic errors: When users correct the same typo-
graphic error by inserting a character, two characters may
show up in the document;

• Cursor position: The cursor position of a user may change
unexpectedly due to the arrival of new updates;

• Updates loss: In some situations, when users update the
same block of text offline, insertions from one users
can be deleted even if no user explicitly deleted the
inserted text. For example, if one user inserts one line
in the middle of some other lines and some other user
concurrently removes those line, the inserted text will be
removed.

Some of these phenomena are the direct result of allowing
users to concurrently access any part of the document without
coordination and thus it is unlikely that it is possible to
avoid them to happen in multi-synchronous settings without
restricting users’ action. We believe the problem with Google
Docs solution is that it lacks a good mechanism for providing
awareness information about the result of merges and in
particular of situations where potential conflicting actions have
occurred.

Google Docs provides only support to recover previous
revisions of the documents. This can help in some situations
where the merge policy has hidden content produced by some
user. However, we found out that the past revisions are not able
to accurately reproduce the executed operation. In the example
of the update loss we described, where two users concurrently
update the same block of text offline, if the first client to get
back online is the one that deleted the block, then the revision
will not keep the updates from the other user. Independently
of whether this is a bug or just the way the merge procedure
works, we argue that the current awareness support on this
system falls short for asynchronous editing.

Microsoft SkyDrive: Microsoft SkyDrive [2] uses a more
conservative collaboration support. In this system, users are
forced to synchronize the document explicitly. When a user
saves the document, the document is sent to the server, and if
there were conflicting updates, he is asked to solve conflicts
manually. Other online users will not see the merged document
(and updates) until they save the document again. Meanwhile,
new conflicts can be generated as users continue modifying
older versions of the document.

Additionally, while editing a document, there is awareness
information that presents the area other users are editing
(but not the contents of theirs edits). This solution provides
weak awareness and no synchronous update support, making
collaboration hard.

B. Properties of Desired Solution

We now discuss the properties of a solution that supports
both synchronous and asynchronous collaborative editing, ad-
dressing the limitations of the solution analyzed before.

a) Synchronous mode: While editing a document in
synchronous mode, two basic solutions can be adopted: imme-
diately propagate and integrate edits or propagate edits at some
user-defined synchronization point. The first solution, adopted
by Google Docs, allows users to immediately observe changes
performed by other users. The second solution, adopted in
Microsoft SkyDrive, allows users to control the visibility of
their changes.

The second approach seems the most appropriate when
observing partial changes from some other user may pose prob-
lems to a user’s work. For example, while editing a document
with structural requirements, such as the source code of a
program, observing partial changes may make it impossible
for a user to execute some action, such as compiling the
code. In most other cases immediately applying updates from
other users seems appropriate. In any case, obtaining awareness
that concurrent modifications occur without applying them can
help [16].

In our approach we support both solutions: users can
immediately observe all changes in synchronous mode while
they can control the visibility of their changes by working in
asynchronous mode for some periods.

Regarding awareness information, there are two types of
awareness information that can be presented. First, the position
of users’ cursors, for allowing a user to be aware of which
area of the document other users are working at. Second,
information about other users recent edits, for allowing a user
to check other users updates easily. This can be presented as a
log of changes (as in Google Docs) or by coloring each users
recent edits with different colors.

While an important component for providing this aware-
ness information is the user interface, it is also necessary
to guarantee that the necessary information is available: the
position of each user’s cursor and the identification of the
author of each update.

b) Asynchronous mode: While editing a document in
asynchronous mode, integrating edits at the granularity of
the character may lead to unexpected behaviors. Thus, it
seems appropriate that edits are integrated at a much larger
granularity using coarse update operations. When concurrent
updates to the same element exist, users must be notified to
resolve the conflict or at least check that the choices made by
the merge algorithm are correct.

Unlike the solution adopted in Microsoft SkyDrive and
in most version control systems, it might be interesting to
keep the document with multiple versions of some element
for some time before resolving the conflict, while allowing
additional changes to be performed. This approach would
allow new updates to be immediately integrated and conflicts
to be resolved at some later time by the most appropriate users.
For example, multiple versions of some element may represent
alternative options that users may want to decide at a later point
in time.

When editing a document, users sometimes move an ele-
ment from one position to another: for example, a user editing
a scientific paper moves the position of a paragraph, or a
section; a user editing a source code may move the position
of a function in a class, etc. When collaboratively editing
a document, problems arise if the element is concurrently
updated and moved - the expected result would be to move the
updated version of the element to the new position, but this is
not supported by typical solutions. To support this semantics,
it is important to explicitly support the move operation. Such
scenario may also occurs during synchronous editing where
these operations are usually executed by cutting and pasting
the moved element. Users must be informed about the result
of the merge whenever any conflict has been solved.

III. SOLUTION FOR MANAGING SHARED DOCUMENT

In this section we present the algorithm to manage the
document state. A document is defined as a conflict-free
replicated data type. We start by introducing the essential
properties of conflict-free data types.

A. Conflict-free Replicated Data Types

Conflict-free replicated data types (CRDT) [9] are a class
of distributed data types that allow replicas to be modified
without coordination while guaranteeing that replicas converge
to the same correct value after all updates are propagated and
executed in all replicas.

Two types of CRDTs have been defined: operation-based
CRDTs, where modifications are propagated as operations
(or patches) and executed on every replica; and state-based
CRDTs, where modifications are propagated as states and
merged on every replica.

In this work, we focus on a solution based on operation-
based CRDTs, as this solution is responsive enough for syn-
chronous collaboration and requires less communication to
propagate each update, making it more appropriate to a setting
where supporting low latency is important. As such, a shared
document is an operation-based CRDT (or CRDT when no
confusion can arise), with an interface that includes read-only
functions, producing no side-effect on the document state, and
updates, that produce side-effects.

When a user modifies the document producing an update,
the following process occurs: (i) the replica computes from
this update a downstream operation that can be applied on
any replica, (ii) the replica applies locally this operation,
(iii) the replica disseminates the operation to other replicas,
(iv) the other replicas apply this operation when they want :
as soon as received in synchronous mode, when user decides
in asynchronous mode.

In the replica where an update is generated, the com-
putation and the execution of the downstream operation are
executed atomically in sequence. The downstream operation
must be propagated to other replicas for execution, but this
propagation can be delayed as long as required – e.g. until the
replica reconnects to the network.

It has been proven that if all concurrent downstream
operations of a CRDT commute, all replicas converge to the
same state after executing all downstream operations in any
order that respects causal order [9].

B. System Model

Our solution assumes a set of distributed nodes, S, each one
maintaining a replica of the shared document CRDT1. Each
node communicates with a subset of nodes of S. During this
communication, each node si may send operations originated
in si or in some other node. We make no assumption on
the topology of the network of nodes, and no assumption on
the communication latency. However, as usual in operation-
based replication, our algorithm requires that all updates are

1In the description, we consider without lack of generality that a single
document exists in the system. When multiple documents exist, each document
has its own set of nodes that replicate the document.

!"#$%&'(

)(

Figure. 1: Possible cloud-based system architecture.

propagated to all replica nodes to work correctly. These
requirements can be achieved by using a large number of
different protocols [17], [18], [19].

1) Causal Order Requirement: In our solution, we use
the fact that updates are delivered in causal order to avoid
maintaining information about deleted elements for which the
create operation has not been received yet. This requirement
could be easily dropped by using techniques similar to the ones
proposed in Logoot-Undo [20].

We decided to maintain the causal delivery requirement to
guarantee that the state of the document is always causally
consistent in the sense that if a user has made some update
after observing some prior update, this prior update should
always be executed before the more recent one. This property
is commonly assumed as a correctness criteria in collaborative
editing [14].

2) Possible Deployments: As massively used distributed
version control systems (DVCS) – e.g. git – our algorithm
can be deployed in any architecture, from a peer-to-peer to a
centralized solution, such as used in many cloud-based hosting
service for software development.

For example, a typical cloud deployment, depicted in
Figure Fig. 1, works as follows. The data management service
is provided by servers located in a set of data centers located
around the world. Each server maintains a replica of the
document CRDT. Users access the shared documents in their
devices by executing a collaborative editing application. The
application manages a local copy of the document CRDT
and interacts with a single data center. Updates executed by
the user are propagated to the data center. Updates executed
synchronously by other users are received sequentially from
the data center. Each data center propagates updates received
from clients to other clients and to all data ceners. Each data
center propagates updates received from a data center to all
clients and to other data centers (that have not received them
yet).

In such deployment, causal delivery can be achieved very
efficiently if each data center propagates operations to other
data centers and clients in the same order it has received them.

C. Document CRDT

In our solution, we use a simple document structure, where
each document is composed by a sequence of elements. We

TABLE I: Handling of concurrent updates to the same element
and associated awareness solution.

insert update delete move
insert keep two not possible not possible not possible

elements
highlight - - -

new elems.
update - create delete move the

versions element updated version
- show both show del. highlight

versions element
delete - - delete delete

element
- - nothing show del.

needed element
move - - - create clones

- - - highlight
- - clones

expect each element to be a semantic unit of the document
and be composed by a sequence of more elementary editing
elements – for example, an element can be paragraph com-
posed by a sequence of characters. The document CRDT can
maintain multiple versions for each element, as a result of
concurrent updates.

The interface of our document CRDT includes four opera-
tions: insert an element; delete an element; update an element,
by replacing all existing versions by a new version; move an
element to a new position.

1) Synchronous Editing of an Element: The operations de-
fined in the document CRDT are coarse-grain, and appropriate
for an asynchronous editing setting. When the document is
being edited in a synchronous setting, the document CRDT is
used as follows.

Collaborative editing in an element version – e.g. adding
or removing a character in a line – must be handled by
an existing algorithm, such as a CRDT based solution [10],
[11] or operational transformation [14] (in our implementation
we use TreeDoc CRDT). These solutions are appropriate for
synchronous editing as users immediately observe changes
executed by other users and can solve any conflict that arises.
The state of the collaborative editing session is integrated in the
document CRDT by issuing an update operation whenever the
document is saved and before any document CRDT operation
on the element is executed in the local copy.

Other editing actions executed in a synchronous session
lead to the execution of a document CRDT operation: a cut
& paste leads to a move operation; the delete of an element
leads to a delete operation; and the creation of a new element
leads to an insert operation.

2) Policy For Handling Conflicting Operations: Table I
presents a table that shows how our solution handles concurrent
operations on the same element. Because we get more precise
awareness information on the operations done by the users, we
do not consider every couple of modification occurring at the
same position as conflicting, contrary to existing DVCS. For
instance, a DVCS considers that the insertion of two new and
unrelated methods at the same position in a source code is a

conflict. We claim that users must be aware of such an event
but without blocking the editing process.

We now describe our conflict resolution decisions. As just
mentioned, when two users insert an element at the same
position, i.e., between the same two existing elements, our
solution will keep both elements. After merging two versions
of the document, we rely on the standard operation awareness
to show each user the updates of the other user, allowing them
to verify if the automatic result is acceptable.

On two concurrent updates, our solution keeps both ver-
sions, as it is not possible to decide which update is the best.
After the merge, the editor will show the users this situation.

On concurrent update and delete, our solution deletes the
element. However, it keeps the new version of the element that
can be shown to the user by the editor. The same approach is
used on a concurrent delete and move.

On concurrent update and move, the updated version is
moved, as we expect that the move to be changing the place
of the element, independently of its value. In this case, the
moved version is only highlighted.

On two concurrent moves, the same element becomes vis-
ible in two places of the document. The editor must highlight
this situation and ask the user to solve it. If a user executes an
operation on an element visible in two different places, a copy
of the element is created, as we assume that in such case the
user wants a copy of the element to be present in each place.

Next we describe how this approach is implemented in the
document CRDT specification and how an editor can obtain
the necessary information to present the specified awareness
information.

D. Document Specification

The code of the document CRDT is presented in Figure
Fig. 2. The model of the algorithm is composed of two sets.
The set POS associates an element identifier to a position
identifier. An element can be cloned to several positions due
to concurrent move operations, but a position correspond to
a unique element. Positions identifier are them-self unique
and generated using a CRDT algorithm such as Logoot or
TreeDoc. These identifiers are unique and totally ordered and
can be generated without coordination [10], [11]. The set V AL
associates identifier elements to values through unique times-
tamp. Again, an element can have several values (versions)
due to concurrent update operations, each one with its own
timestamp.

The document presented to the user is obtained using the
ordered list of visible positions. A position is visible if it is
associated to an element identifier which has at least one value.
For each position, the value presented to the user by default is
the value with the greatest timestamp. For positions that have
multiple values, editors must convey that information to users
using some user-interface technique.

We consider the four operations a user can produce
on a document. These operations are insert, update, delete
and move. Each operations is transformed into a 4-tuple,
(oldPosition, oldV alues, newPosition, newV alue), which
are respectively the sets of position and values to remove and

position and value to add to the model. These sets are empty by
default. The insert operation generates a new element with a
new position. When inserting an element between two existing
elements, the new position identifier computed using a CRDT
identifier will be ordered between the identifiers of those two
existing elements. This guarantees that the element will always
appear at the same correct relative position in respect to those
two existing elements. The update operation generates a new
value for an element and removes the existing ones. The delete
operation removes the position and all the existing values. The
move operation creates a new position for the element and
remove the old one.

The move operation can produce clones, i.e. an element
appearing at several different positions. Editors should present
awareness information to users to make them know that they
are editing a clone. If the user decides to edit a clone, we
assume that the user wants to affect only the element at the
position she is editing. To support this, update, delete and
move operations that affect a clone remove only the targeted
position and create, if required, a new element, thus detaching
this position from the original element.

Due to lack of space, we can only give the intuition of
the correctness of our document CRDT specification. Eventual
consistency of the model’s sets is ensured by the uniqueness
of identifiers. Each element inserted in the sets has a unique
identifier - pos for the set POS and the pair (id, ts) for the
set V AL. These identifiers can only be produced once and
thus can only be inserted in the corresponding set once. The
identifiers can be deleted by more than one operation, but
after being deleted they will never reappear. An identifier is
only deleted after being added due to causal delivery. This
guarantees that after executing all operation, an identifier is
in the set if it has been added and never deleted. Consistency
of the view, i.e. the guarantee that all users eventually view
the same document, is ensured by the total order of position
identifiers and of timestamps.

For efficiency purposes, the sets POS and V AL can be
implemented using maps. Our actual implementation contains
two maps. The first is a Java TreeMap2 pos→ id that allows
to compute positionAt(i) and elementAt(i).id efficiently in
O(log(n)). The second is a hash table id→ ({pos}, ts→ val)
that allows to compute elementAt(i).positions and the value
with the greatest timestamp efficiently.

E. Information for Providing Awareness Information

Our document CRDT creates new unique identifiers when-
ever a new element version is created or updated. The unique
identifiers we are using include the identifier of the node
where the operation originated and a counter of the operations
originated in that node. These identifiers can be used by an
editor to provide awareness information about the updates
recently executed in other nodes - for example, by highlighting
those elements. This is the typical awareness synchronous
editors already provide, by highlighting the changes of other
users.

In Table II we present how it is possible to detect that
conflicting operations have occurred by inspecting the local

2A navigable map based on a red-black tree.

1 local set POS // Set of pairs (id, pos)
2 local set VAL // Set of pairs ((id, ts), value)

4 function positionAt(int index) // Returns the position identifier of the element visible at a given position
5 let visible = {pos : ∃(id, pos) ∈ POS ∧ ∃((id, ts), v) ∈ V AL}
6 let ordered = order(visible) // Obtains an array of ordered elements
7 return ordered[index]

9 function elementAt(int index) // Returns the identifier of the element visible at a given position with its clones and its value with the greatest
timestamp

10 let identifier = choose id : ∃(id, positionAt(index)) ∈ POS
11 let positions = {pos : ∃(identifier, pos) ∈ POS}
12 let value = {val : ∃((identifier, ts), val) ∈ V AL ∧ ∀t : ((identifier, t), x) ∈ V AL =⇒ ts > t})
13 return (identifier, positions, value)

15 operation insert(int index, V v) // Inserts a new element at a given position
16 let id = unique()
17 newPosition = {(id, generate(positionAt(index), positionAt(index+ 1)))}
18 newValue = {((id, unique()), v)}

20 operation update(int index, V v) // Sets a value at a given position
21 let id = elementAt(index).identifier
22 if |elementAt(index).positions| > 1 // Removes a clone and creates a new element
23 let newId = unique()
24 oldPosition = {(id, positionAt(index))}
25 newPosition = {(newId, generate(positionAt(index− 1), positionAt(index+ 1)))}
26 newValue = {((newId, unique()), v)}
27 else // Removes all values and sets a new value
28 oldValues = {((id, ts), x) : ((id, ts), x) ∈ V AL}
29 newValue = {((id, unique()), v)}
30 endif

32 operation delete(int index) // Removes an object at a given position
33 let id = elementAt(index).identifier
34 oldPosition = {(id, positionAt(index))}
35 if |elementAt(index).positions| ≤ 1 // Removes a complete element
36 oldValues = {((id, ts), x) : ((id, ts), x) ∈ V AL}
37 endif

39 operation move(int index, int destination) // Moves an element
40 let id = elementAt(index).identifier
41 let pos = generate(positionAt(destination), positionAt(destination+ 1))
42 oldPosition = {(id, positionAt(index))}
43 oldValues = {}
44 if |elementAt(index).positions| > 1 // Removes a clone and creates a new element
45 let newId = unique()
46 newPosition = {(newId, pos)}
47 newValue = {((newId, unique()), elementAt(index).value)}
48 else // Moves a complete element
49 newPosition = {(id, pos)}
50 endif

52 effect(oldPosition , oldValues, newPosition, newValue)
53 VAL = V AL \ oldV alues ∪ newV alue
54 POS = POS \ oldPosition ∪ newPosition

Figure. 2: Document CRDT with update and move operations.

TABLE II: Conditions for triggering the presentation of awareness information on conflicts.

insert update delete move
insert standard highlight - - -
update - ∃ts1, ts2, v1, v2 : ((id, ts1), v1) ∈ V AL∧ ∃ts, v : (id, ts), v) ∈ V AL∧ standard highlight

((id, ts2), v2) ∈ V AL 6 ∃p : (id, p) ∈ POS
delete - - nothing to ∃p : (id, p) ∈ POS∧

do 6 ∃ts, v : ((id, ts), v) ∈ V AL
move - - - ∃p1, p2 : (id, p1) ∈ POS∧

(id, p2) ∈ POS

state of the document CRDT. For presenting the awareness
information suggested in Table I, in some cases it might be
necessary to access some deleted information - e.g. on the
concurrent update and delete of an element, the information
about the position of the element is not kept in the document
CRDT. This information can be maintained in the document
CRDT by keeping sets with tombstones containing recently
deleted information - we omit this part from the specification
for simplicity.

IV. EVALUATION

To evaluate the interest of our approach, we need to know if
potential users are satisfied by the merge result obtained by our
solution. Such user satisfaction metrics can be obtained using
user studies. However such studies are limited in scale and
require a lot of effort if every possible configuration should be
evaluated. Instead, we use an open-sourced benchmark frame-
work [21] able to evaluate collaborative editing algorithms in
the context of real usage.

A. Framework

The benchmark framework transforms a git software state-
based history of collaboration to an operation-based history.
Then, it can replay any implemented operation-based algorithm
against this history trace. The framework can measure the
performance of the algorithm in term of computing time, mem-
ory requirements, bandwidth consumption and merge quality
estimation.

To estimate merge quality, the framework follows a proce-
dure similar to the git merging. When a user merges branches
in git, it first obtains a best-effort automatic merge result done
by diff3 utility. If this automatic merge does not produce
conflicts in the git meaning – i.e. two modifications at the
same position – the result is automatically committed. If the
automatic merge produces conflicts, the user must resolve them
before committing. Thus the merge commit present in the
history represent the user expectation.

When replaying a git history, the framework computes
the automatic merge obtained by the evaluated algorithm and
compares it, using the diff tool, to the result committed by
the actual user. The framework measure the number and the
size of operations obtain by diff to estimate the difference
between a collaborative editing merge result and the “ideal”
result committed in the history.

Indeed, developers have collaborated to produce the
sources present in the studied git repositories. They have made
a lot of effort to merge the concurrently produced versions of
the source code. If the difference between the merge obtain by
a tool and their intended result is shorter, they will spend less
effort and we assume that they will be more satisfied by the
tool.

B. Operation detection

In order to evaluate our algorithm we need operation-
based histories that contains update and move operations. The
used benchmark framework is originally based of the insert,
delete and replace operations produced by the standard unix
diff utility. These operations manipulate block of lines. A

replace operation correspond to the deletion and the insertion
of possibly non-related blocks of text at the same position.
Starting from these original operations we modified the open-
source framework to produce update and move operations.

The problem is that update and move operations are
subjective. They are difficult to accurately detect, especially
in asynchronous collaboration, were we do not capture each
user’s keystroke. For instance, considering any deletion fol-
lowed by an insertion at the same position as an update may
not lead to an adequate result since the inserted text may not
be related to the delete one. Also, detecting move operation
requires to identify non-trivial text that reappears in an other
place in the document, but such text may be updated afterward
before committing a new version.

A replace operation may not delete as many lines as it
inserts and we must detect which lines are updated or inserted
or deleted. So, we produce update operations using a dy-
namic programming algorithm. This algorithm first computes
0 ≤ δi,j ≤ 1, the Levenshtein distance divided by the size of
the lines between each couple of lines in a replace operation,
and then find the minimum edit script between the deleted
and inserted block of text. To avoid false positive updates, a
couple ins(i)/del(j) is considered as an update only if the
corresponding δi,j is lower than a threshold Tu.

For instance, the following replace operation :

- % test if x is greater than 0
- int a;
- Object toto;
- if (x > 0)
==================
+ % file procedure
+ % useful for stuff
+ % test if x is greater or equal than 0
+ int a=0;
+ File f;
+ if (x >= 0)

is transformed with a threshold of Tu = 0.3 into five
operations : one insert, one update, one insert, one delete, and
one update:

+ % file procedure
+ % useful for stuff

- % test if x is greater than 0
- int a;
==================
+ % test if x is greater or equal than 0
+ int a=0;

- Object toto;

+ File f;

- if (x > 0)
==================
+ if (x >= 0)

Since moved blocks can also be updated, to produce
move operations, we apply the same dynamic programming
algorithm on the remaining delete and insert operations. The
move detection has a different threshold Tm and produces only

block containing at least two lines in order to avoid obvious
false positives such as a single closing brace “}” deleted and
inserted at different positions.

C. Results

To evaluate the quality of the merge obtained by our
algorithm we selected nine git repository among the most
popular projects available on GitHub web site3.

In Table III we present the characteristics of git repositories
that we used in our experiments, showing for each one: (i) the
head commit sha1 used to run our experiments; (ii) the number
of files that contains at least one merge operation; (iii) the
total number of merges performed by users; (iv) the number
of lines edited corresponding to number of lines added and
deleted; (v) the number of operations is the number of block
added, removed, moved and updated; and (vi) the number of
updated and moved operations. We observe that the number
of operations correlate well with the number of update and
move operations. However, the number of update operations is
approximately one order of magnitude higher than the number
of move operations.

Using each repository history, we apply the replication
benchmark on our algorithm and the original TreeDoc [10]
CRDTs for collaborative editing. TreeDoc CRDT supports
the typical insert, delete interface and can be taken as a
representative of the results that would be obtained with such
interface, including most CRDT and operational transforma-
tion solutions. We evaluate two configuration of our algorithm :
our algorithm using only update operations, and our algorithm
using update and move operations. Since repository histories
now contain update and move operations, every evaluated
algorithm must handle such operations. The default behavior
is to produce the corresponding delete and insert operation to
obtain the same local effect.

1) Thresholds: Before we evaluate our proposed merge
algorithm itself, we need to estimate the most adequate values
for thresholds Tu and Tm. t this end, we apply the benchmark
framework on the repository with more commits – git/git –
using different possible values for the couple (Tu, Tm). We
vary both Tu and Tm from 0 to 1 in steps of 0.1. For each
couple, we measure the three configurations : TreeDoc as a
reference, and our algorithm with update operations, and with
both update and move operations. Figure Fig. 3 presents the
obtained results. The horizontal axis represent the Tu value,
the depth axis the Tm value, and the vertical axis the number
of lines in the difference between the user committed merges
and automated merges computed by the algorithms (less is
better).

First, we note that our update and move detection has a
small but observable impact on the result of TreeDoc. The
reason is that the granularity of the insert and delete operations
is modified by this detection. The maximum impact is 1.92%.
In the same way, the move detection also sightly impacts our
algorithm with only update operations. The maximum impact
is 0.52%.

Second, we observe that our algorithm outperforms the
TreeDoc algorithm for any threshold values except for Tu = 0

3https://github.com/popular/starred

and Tm = 0, i.e. without update and move operations. This is
not surprisingly, since in this case our algorithm is the same
as TreeDoc.4

Finally, the overall best performance is obtained by our
algorithm with update and move operations and threshold
values Tu = 0.9 and Tm = 0.2. With such values the gain
obtained against the original TreeDoc is 17.97%.

To understand the real effect of move operation in our
framework, we compute the difference between the result
of the update only and move and update variation. This is
presented Figure Fig. 4. This figure allows to verify that the
best threshold value for move detection is around 0.2 and
0.3. We also observe false positive update operations do not
affect more the quality of the merge than move but false
positive move operations are more problematic. Indeed, the
move operation effect is counter-productive (negative result)
for values higher or equal to Tm = 0.9. Also, despite being
observable, the impact of move operation on the result quality
is low. This is due to the much lower number of move
operations compared to update ones. For instance, we detect
55,483 update operations and 4,857 move operations with the
same thresholds, Tu = 0.5 and Tm = 0.5. This may also
be due to the merge mechanism of git that do not take into
account move operations.

0

20
40

60
80
100

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100
Tu

Tm

60-80
40-60
20-40
0-20
-20-0
-40--20
-60--40

Figure. 4: Move effect

2) Repository result: We present the result obtained on
the different source code git repositories in Table IV. We use
threshold values of Tu = 0.9 and Tm = 0.2.

We observe that our solution improves the result of recon-
ciliation for all projects, although the degree of improvement
varies. As the complexity of reconciliation depends on the use
patterns, this variability is expectable.

When comparing results obtained by using block and line
granularity, we observe that results for block granularity are
usually better. This seems to suggest that line granularity used
in most version control systems is not the best match for
handling concurrent updates and solving conflicts. Our solution
allows any granularity to be used in the operations.

When comparing results obtained with our solution using
only update or using both update and move operations, we

4Except for very subtle implementation details.

https://github.com/popular/starred

TABLE III: Projects characteristics

‘‘‘‘‘‘‘‘Projects
Feature HEAD SHA1 FILES MERGE LINES BLOCK UPDATES MOVES

WITH MERGE NUMBER EDITED OPERATIONS
git 8c7a786b 557 5646 676486 141284 67433 3581

backbone 6ac7704c 10 274 56348 16434 8922 374
bootstrap 37d0a305 68 444 225596 38975 19033 2003

d3 d1d71e16 37 489 99093 18214 7963 1651
homebrew 911ded01 10 10 14377 4200 1714 88

html5-boilerplate f27c2b73 3 34 4467 1577 671 29
jquery 2f2e045e 29 178 154745 40025 21265 1168
node 88333f7a 48 315 165835 39155 16839 1417
rails 36f7732e 351 1157 603528 129762 67507 3101

0

30

60

90

4800

5000

5200

5400

5600

5800

6000

6200

0 10 20 30 40 50 60 70 80 90 100

Tm

Tu

6000-6200

5800-6000

5600-5800

5400-5600

5200-5400

5000-5200

4800-5000

(a) TreeDoc

0

30

60

90

4800

5000

5200

5400

5600

5800

6000

6200

0 10 20 30 40 50 60 70 80 90 100

Tm

Tu

6000-6200

5800-6000

5600-5800

5400-5600

5200-5400

5000-5200

4800-5000

(b) Update only

0

30

60

90

4800

5000

5200

5400

5600

5800

6000

6200

0 10 20 30 40 50 60 70 80 90 100

Tm

Tu

6000-6200

5800-6000

5600-5800

5400-5600

5200-5400

5000-5200

4800-5000

(c) Update and move

Figure. 3: Threshold effect

TABLE IV: Evaluation of merge quality in different repos-
itories (results for our solution are the improvement over
TreeDoc).

PROJECT
TREEDOC UPDATES ONLY MOVES & UPDATES

BLOCKS LINES BLOCKS LINES BLOCKS LINES
git 2221 6095 36.6% 17.8% 36.6% 18.1%

backbone 266 798 28.2% 11.7% 27.8% 11.7%
bootstrap 1409 6859 9.7% 6.1% 9.2% 6.0%

d3 711 3026 8.9 % 7.3 % 8.6 % 6.9 %
homebrew 14 25 28.6 % 24.0 % 28.6 % 24.0 %

html5-boilerplate 31 59 19.4 % 22.0 % 19.4 % 22.0 %
jquery 280 702 17.1 % 9.0 % 16.8 % 9.7%
node 532 2494 14.1 % 9.5 % 14.3 % 9.3 %
rails 774 2517 22.4 % 14.5 % 22.5% 15.0%

can observe that the difference is minimal. The reasons for
such small difference have been already discussed in the
previous sub-section. It also poses the question on whether
supporting move, with all its complexity is worth. We continue
to believe so, as our experience using (collaborative) editing
tools suggest that move is an operation users execute while
editing documents.

V. RELATED WORK

Existing approaches to build multi-synchronous collabo-
rative tools or editors are designed upon operations-based
techniques since state-based one are not responsive enough
during synchronous editing phases.

Some approaches are based on operational transforma-
tion [7] (OT) for multi-synchronous collaborative editing. Ad-

vantages of OT are its flexibility in defining user operations and
the ease of introducing awareness mechanism for concurrent
operations. Indeed, every couple of concurrent operations must
be managed explicitly by the concurrency control algorithm.
The disadvantage of OT is its performance in an arbitrary
distributed context. Purely peer-to-peer OT algorithms require
non-scalable concurrency controls [22], [14], or dissemination
mechanisms [23] that makes them suitable only for asyn-
chronous collaboration. Additionally, most OT solution support
only insert and delete operations.

Molli et al. propose a multi-synchronous [24] and an
asynchronous [5] collaborative framework. Theses approaches
provide awareness mechanisms such as state treemaps [25] or
conflict blocks similar to version control systems. They do not
provide update or move operations. The consistency is ensured
by the centralized OT algorithm SOCT4 [26]. Preguica et
al. [27] ensure consistency with the OT algorithm GOTO [14].
They provide update operations but not move ones. They claim
to provide awareness but do not detail the mechanism at all.

Geyer et al. [28] propose a multi-synchronous system
where consistency is ensured by a total order on operations and
roll back/roll forward mechanism. Such a mechanism can be
disturbing for the user, especially during synchronous editing.
No awareness mechanism is discussed and introduction of
update operations may cause lose of information.

Rahhal et al. [29] uses the Logoot [11] CRDT to ensure
consistency of a multi-synchronous semantic wiki. However,
they do not manage awareness on conflicting editions and they
do not provide update or move operation.

Ignat et al. [16] provide an awareness mechanism in multi-

synchronous collaboration. They do not deal with conflicts be-
tween concurrent operations, but propose a messaging system
to know that another user is modifying the document before he
actually commits its modification. This system is independent
from the consistency mechanism and can be also used with
our approach. A similar awareness mechanism is provided in
Microsoft SkyDrive [2].

VI. CONCLUSIONS

In this paper we present a solution for supporting multi-
synchronous collaborative editing. Our solution is based on
conflict-free data types (CRDT) [9]. Unlike typical CRDT and
OT solutions, our solution extends the traditional interface
of documents with support for operation appropriate to asyn-
chronous settings - different granularity for insert and delete
operations, and update and move operations. These operations
are essential to provide a better merge quality to the user, as
shown in our evaluation.

Our solutions additionally keeps awareness information
that allows applications to show to the users not only the
updates recently executed by other users, but also to highlight
the result of conflicting actions.

As future work we intend to further investigate the useful-
ness of providing move as a first-class operation for collab-
orative editing. We also plan to integrate our algorithm in a
cloud-based web editing tool that supports geo-replication.

ACKNOWLEDGMENTS

This work is partially supported by ANR project ConcoRDanT
(ANR-10-BLAN 0208), and by Portuguese FCT/MCT project PEst-
OE/EEI/UI0527/2011. Valter Balegas is supported by FCT/MCT Phd
scholarship SFRH/BD/87540/2012.

REFERENCES

[1] “Google drive,” https://drive.google.com.
[2] “Microsoft skydrive,” 2013, https://skydrive.live.com/.
[3] I. Greif, R. Seliger, and W. E. Weihl, “Atomic data abstractions in a

distributed collaborative editing system,” in Proceedings of the 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, ser. POPL ’86. New York, NY, USA: ACM, 1986, pp. 160–
172. [Online]. Available: http://doi.acm.org/10.1145/512644.512659

[4] F. S. F. GNU, “Diff3. Three way file comparison program,”
September 2005. [Online]. Available: http://www.gnu.org/software/
diffutils/diffutils.html

[5] P. Molli, G. Oster, H. Skaf-Molli, and A. Imine, “Using the transfor-
mational approach to build a safe and generic data synchronizer,” in
GROUP 2003. Sanibel Island, Florida, USA: ACM Press, November
2003, pp. 212–220.

[6] D. Roundy, “Darcs: distributed version management in haskell,” in
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, ser.
Haskell ’05. New York, NY, USA: ACM, 2005, pp. 1–4. [Online].
Available: http://doi.acm.org/10.1145/1088348.1088349

[7] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems.” in SIGMOD Conference, J. Clifford, B. G. Lindsay, and
D. Maier, Eds. ACM Press, 1989, pp. 399–407.

[8] “What’s different about the new google docs,” 2010, http://googledocs.
blogspot.fr/2010/09/whats-different-about-new-google-docs 22.html.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems (SSS), X. Défago, F. Petit, and V. Villain, Eds.,
vol. 6976, Grenoble, France, October 2011, pp. 386–400.

[10] N. M. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia, “A commu-
tative replicated data type for cooperative editing,” in ICDCS. IEEE
Computer Society, 2009, pp. 395–403.

[11] S. Weiss, P. Urso, and P. Molli, “Logoot: A scalable optimistic replica-
tion algorithm for collaborative editing on p2p networks,” in 29th IEEE
International Conference on Distributed Computing Systems (ICDCS
2009). Montréal, Québec, Canada: IEEE Computer Society, jun. 2009,
pp. 404 –412.

[12] M. K. Singley and J. R. Anderson, “A keystroke analysis of learning
and transfer in text editing,” Human-Computer Interaction, vol. 3, no. 3,
pp. 223–274, 1987.

[13] P. Dourish and V. Bellotti, “Awareness and coordination in shared
workspaces,” in Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, ser. CSCW ’92. New York, NY, USA:
ACM, 1992, pp. 107–114.

[14] C. Sun and C. A. Ellis, “Operational transformation in real-time group
editors: Issues, algorithms, and achievements.” in CSCW’98. New
York, New York, États-Unis: ACM Press, November 1998, pp. 59–68.

[15] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving conver-
gence, causality preservation, and intention preservation in real-time
cooperative editing systems,” TOCHI, vol. 5, no. 1, pp. 63–108, March
1998.

[16] C.-L. Ignat, S. Papadopoulou, G. Oster, and M. C. Norrie, “Providing
awareness in multi-synchronous collaboration without compromising
privacy.” ACM, 2008, pp. 659–668.

[17] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: a flexible
group communication system,” Commun. ACM, vol. 39, no. 4, pp.
76–83, April 1996. [Online]. Available: http://doi.acm.org/10.1145/
227210.227229

[18] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenkcr,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in PODC’87. ACM Press, 1987,
pp. 1–12.

[19] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
mers, “Flexible update propagation for weakly consistent replication,”
in SOSP’97. ACM Press, 1997, pp. 288–301.

[20] S. Weiss, P. Urso, and P. Molli, “Logoot-undo: Distributed collaborative
editing system on p2p networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, pp. 1162–1174, 2010.

[21] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso,
“Evaluating crdts for real-time document editing,” ACM, Ed., San
Francisco, CA, USA, september 2011, p. 10 pages.

[22] M. Suleiman, M. Cart, and J. Ferrié, “Serialization of concurrent
operations in a distributed collaborative environment,” ser. GROUP ’97.
New York, NY, USA: ACM, 1997, pp. 435–445.

[23] M. Cart and J. Ferrie, “Asynchronous reconciliation based on oper-
ational transformation for P2P collaborative environments.” IEEE
Computer Society, 2007, pp. 127–138.

[24] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain, “Sams: Synchronous,
asynchronous, multi-synchronous environments.” IEEE, 2002, pp. 80–
84.

[25] P. Molli, H. Skaf-Molli, and C. Bouthier, “State treemap: an aware-
ness widget for multi-synchronous groupware,” in Groupware, 2001.
Proceedings. Seventh International Workshop on. IEEE, 2001, pp.
106–114.

[26] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman, “Copies convergence
in a distributed real-time collaborative environment,” in Proceedings of
the 2000 ACM conference on Computer supported cooperative work,
ser. CSCW ’00. New York, NY, USA: ACM, 2000, pp. 171–180.

[27] N. Preguiça, J. L. Martins, H. Domingos, and S. Duarte, “Integrating
synchronous and asynchronous interactions in groupware applications,”
in Groupware: Design, Implementation, and Use. Springer, 2005, pp.
89–104.

[28] W. Geyer, J. Vogel, L.-T. Cheng, and M. Muller, “Supporting activity-
centric collaboration through peer-to-peer shared objects.” ACM, 2003,
pp. 115–124.

[29] C. Rahhal, H. Skaf-Molli, P. Molli, and S. Weiss, “Multi-synchronous
collaborative semantic wikis,” in Web Information Systems Engineering-
WISE 2009. Springer, 2009, pp. 115–129.

http://doi.acm.org/10.1145/512644.512659
http://www.gnu.org/software/diffutils/diffutils.html
http://www.gnu.org/software/diffutils/diffutils.html
http://doi.acm.org/10.1145/1088348.1088349
http://googledocs.blogspot.fr/2010/09/whats-different-about-new-google-docs_22.html
http://googledocs.blogspot.fr/2010/09/whats-different-about-new-google-docs_22.html
http://doi.acm.org/10.1145/227210.227229
http://doi.acm.org/10.1145/227210.227229

	Introduction
	Requirements
	Limitations of Current Solutions
	Properties of Desired Solution

	Solution for Managing Shared Document
	Conflict-free Replicated Data Types
	System Model

	Evaluation
	Framework

	Related work
	Conclusions
	References

