Multi-View Object Segmentation in Space and Time

Abdelaziz Djelouah 1, * Jean-Sébastien Franco 1 Edmond Boyer 1, * Francois Le Clerc 2 Patrick Pérez 3
* Auteur correspondant
1 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this paper, we address the problem of object segmentation in multiple views or videos when two or more viewpoints of the same scene are available. We propose a new approach that propagates segmentation coherence information in both space and time, hence allowing evidences in one image to be shared over the complete set. To this aim the segmentation is cast as a single efficient labeling problem over space and time with graph cuts. In contrast to most existing multi-view segmentation methods that rely on some form of dense reconstruction, ours only requires a sparse 3D sampling to propagate information between viewpoints. The approach is thoroughly evaluated on standard multi-view datasets, as well as on videos. With static views, results compete with state of the art methods but they are achieved with significantly fewer viewpoints. With multiple videos, we report results that demonstrate the benefit of segmentation propagation through temporal cues.
Type de document :
Communication dans un congrès
ICCV 2013 - IEEE International Conference on Computer Vision, Dec 2013, Sydney, Australia. IEEE, pp.2640-2647, 2013, <10.1109/ICCV.2013.328>
Liste complète des métadonnées


https://hal.inria.fr/hal-00873544
Contributeur : Abdelaziz Djelouah <>
Soumis le : mardi 26 juillet 2016 - 12:28:04
Dernière modification le : mercredi 3 août 2016 - 00:07:06
Document(s) archivé(s) le : jeudi 27 octobre 2016 - 12:17:16

Fichiers

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Abdelaziz Djelouah, Jean-Sébastien Franco, Edmond Boyer, Francois Le Clerc, Patrick Pérez. Multi-View Object Segmentation in Space and Time. ICCV 2013 - IEEE International Conference on Computer Vision, Dec 2013, Sydney, Australia. IEEE, pp.2640-2647, 2013, <10.1109/ICCV.2013.328>. <hal-00873544>

Partager

Métriques

Consultations de
la notice

1238

Téléchargements du document

411