G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, pp.1482-1518, 1992.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

G. Allaire and C. Conca, Bloch-wave homogenization for a spectral problem in fluid-solid structures, Archive for Rational Mechanics and Analysis, vol.33, issue.3, pp.197-257, 1996.
DOI : 10.1007/BF02198140

L. Baffico, C. Grandmont, Y. Maday, and A. Osses, Homogenization of Elastic Media with Gaseous Inclusions, Multiscale Modeling & Simulation, vol.7, issue.1, pp.432-465, 2008.
DOI : 10.1137/070705714

URL : https://hal.archives-ouvertes.fr/inria-00180307

L. Baffico, C. Grandmont, and B. Maury, MULTISCALE MODELING OF THE RESPIRATORY TRACT, Mathematical Models and Methods in Applied Sciences, vol.20, issue.01, pp.59-93, 2010.
DOI : 10.1142/S0218202510004155

J. H. Bates, Lung Mechanics, An Inverse Modeling Approach, 2009.

P. Cazeaux, Quelques modèles mathématiques homogénéisés appliqués à la modélisation du parenchyme pulmonaire, 2012.

J. R. Cebral and R. M. Summers, Tracheal and Central Bronchial Aerodynamics Using Virtual Bronchoscopy and Computational Fluid Dynamics, IEEE Transactions on Medical Imaging, vol.23, issue.8, pp.1021-1033, 2004.
DOI : 10.1109/TMI.2004.828680

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl, vol.68, issue.92, pp.185-213, 1989.

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl, vol.64, issue.91, pp.31-75, 1985.

G. Duvaut and J. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, issue.21, 1972.

M. Fabrizio and A. Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.12, 1992.
DOI : 10.1137/1.9781611970807

M. Fang, R. P. Gilbert, A. Panchenko, and A. Vasilic, Homogenizing the timeharmonic acoustics of bone: The monophasic case, Mathematical and computer modelling, vol.46, pp.3-4331, 2007.

J. L. Ferrín and A. Mikeli?, Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid, Mathematical Methods in the Applied Sciences, vol.34, issue.10, pp.831-859, 2003.
DOI : 10.1002/mma.398

C. Fetita, S. Mancini, D. Perchet, F. Prêteux, M. Thiriet et al., An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees, Computer Methods in Biomechanics and Biomedical Engineering, vol.3, issue.4, pp.279-293, 2005.
DOI : 10.1098/rspa.1929.0111

URL : https://hal.archives-ouvertes.fr/hal-00273054

R. P. Gilbert and A. Mikeli?, Homogenizing the acoustic properties of the seabed. I. Nonlinear Anal, pp.185-212, 2000.

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations Theory and algorithms, 1986.

C. Grandmont, B. Maury, and N. Meunier, A viscoelastic model with non-local damping application to the human lungs, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.1, pp.201-224, 2006.
DOI : 10.1051/m2an:2006009

URL : https://hal.archives-ouvertes.fr/hal-00277840

Q. Grimal, A. Watzky, and S. Naili, A one-dimensional model for the propagation of transient pressure waves through the lung, Journal of Biomechanics, vol.35, issue.8, pp.1081-1089, 2002.
DOI : 10.1016/S0021-9290(02)00064-7

A. Hanyga, Viscous dissipation and completely monotonic relaxation moduli, Rheologica Acta, vol.6, issue.-245, pp.614-621, 2005.
DOI : 10.1007/s00397-005-0443-6

F. Hecht, FreeFem++ manual, 2012.

Y. Lanir, Constitutive Equations for the Lung Tissue, Journal of Biomechanical Engineering, vol.105, issue.4, pp.374-380, 1983.
DOI : 10.1115/1.3138435

S. Ley, D. Mayer, B. S. Brook, E. J. Van-beek, C. P. Heussel et al., Radiological imaging as the basis for a simulation software of ventilation in the tracheo-bronchial tree, European Radiology, vol.12, issue.9, pp.2218-2228, 2002.
DOI : 10.1007/s00330-002-1391-5

J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.

J. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, 1968.

S. Martin, T. Similowski, C. Straus, and B. Maury, Impact of respiratory mechanics model parameters on gas exchange efficiency, Mathematical and numerical modelling of the human lung, pp.30-47, 2008.
DOI : 10.1051/proc:082303

B. Mauroy, M. Filoche, J. Andrade, and B. Sapoval, Interplay between Geometry and Flow Distribution in an Airway Tree, Physical Review Letters, vol.90, issue.14, p.90, 2003.
DOI : 10.1103/PhysRevLett.90.148101

URL : https://hal.archives-ouvertes.fr/hal-00916486

B. Mauroy, M. Filoche, E. Weibel, and B. Sapoval, An optimal bronchial tree may be dangerous, Nature, pp.633-636, 2004.
DOI : 10.1038/nature02287

URL : https://hal.archives-ouvertes.fr/hal-00916483

R. E. Miller, Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence, Discrete and Continuous Dynamical Systems, vol.1, issue.4, pp.485-502, 1995.
DOI : 10.3934/dcds.1995.1.485

G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM Journal on Mathematical Analysis, vol.20, issue.3, pp.608-623, 1989.
DOI : 10.1137/0520043

G. Nguetseng, Asymptotic Analysis for a Stiff Variational Problem Arising in Mechanics, SIAM Journal on Mathematical Analysis, vol.21, issue.6, pp.1394-1414, 1990.
DOI : 10.1137/0521078

M. R. Owen and M. A. Lewis, The mechanics of lung tissue under high-frequency ventilation, SIAM J. Appl. Math, vol.61, issue.5, pp.1731-1761, 2001.

B. Owren and H. H. Simonsen, Alternative integration methods for problems in structural dynamics, Computer Methods in Applied Mechanics and Engineering, vol.122, issue.1-2, pp.1-10, 1995.
DOI : 10.1016/0045-7825(94)00717-2

E. Sanchez-palencia, Vibration of mixtures of solids and fluids, Non-Homogeneous Media and Vibration Theory, pp.158-190, 1980.

M. Siklosi, O. E. Jensen, R. H. Tew, and A. Logg, Multiscale modeling of the acoustic properties of lung parenchyma, ESAIM: Proceedings, vol.23, pp.78-97, 2008.
DOI : 10.1051/proc:082306

M. H. Tawhai, A. J. Pullan, and P. J. Hunter, Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways, Annals of Biomedical Engineering, vol.28, issue.7, pp.793-802, 2000.
DOI : 10.1114/1.1289457

C. Vannier, Modélisation mathématique du poumon humain, 2009.

C. Vannier, D. Salort, and B. Maury, Trace theorems for trees and application to the human lungs. Networks and Heterogeneous Media, pp.469-500, 2009.