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Reciprocity identities for quasi-static piezoelectrartsducer
models: Application to cavity identification using iterdtexcitations

and a topological sensitivity approach

Cédric Bellis, Sébastien Imperiale

Dept of Applied Physics and Applied Mathematics
Columbia University, New York, NY 10027, USA

Abstract

The focus of this article is the transient wave-based deteend identification of defects embedded in isotropic
elastic solids using piezoelectric transducers. This vaatiresses this problem within a comprehensive framework
encompassing description of elastic wave propagationmtie probed media as well as consideration of the coupling
phenomena induced by the transducers. A fundamental oetipiidentity associated with a quasi-static piezoelec-
tric model is derived to lay the foundations of ensuing depeients and approach of this inverse scattering problem.
Modeling of piezoelectric transducers is discussed antdcgpipn of the proven reciprocity theorem enables the prop
sition of an iterative construction procedure of electniotits generating waves expected to focus on the soughtislefec
The characteristic features of the inverse problem consitjevhich uses piezoelectric sensor-based measurerasats,
also discussed. Next, the identification problem is ingeséd by way of an adjoint field-based topological sensitiv-
ity approach that permits the construction of a defect iagicfunction based on the derived reciprocity identityr Fo
simplicity of exposition, the studied configurations inwldefects in the form of traction-free cavities. Finallyset
of 2D numerical examples based on the spectral finite-elesweathod is presented to assess the performances of the

proposed approach in identifying embedded defects frostrgdeneasurements.

Keywords. Piezoelectric transducers, Reciprocity identity, ltedatime reversal, Adjoint method, Topological sensi-

tivity.

1 Introduction

Transient elastic or ultrasonic waves are preferred phenanto probe elastic solids in applications such as non-
destructive material testing [34, 11]. Possible embeddeduamknown defects, i.e. localized heterogeneities or geo-

metrical features such as cavities or cracks, are illurethély waves propagating in the solid body considered while



measurements of their scattered counterparts are calleota subset of the external surface. Based on such boundary
data, a wide range of algorithms aiming at detecting andm&tcocting such scattering obstacles have been developed
over the last few decades. For instance, optimizationébapproaches are generally concerned with the characteriza
tion of a finite number of parameters that are quantified byimization of cost-functionals exploiting the available
data, see e.g. [35, 39]. Alternatively, computationalffjeent techniques centered on the construction and the non
iterative computation of indicator functions of the soudbfects have been more recently developed [19, 31, 6]. These
approaches are commonly referred tajaalitative methodfL4].

There exists a variety of devices providing full-wavefornpartial measurements of boundary displacement fields
based on, e.g., mechanical vibrations or electroactiveasmts. In this study, it is assumed that the elastic solfds o
interest are probed using ultrasonic piezoelectric tracss. Such transducers are made of piezoelectric material
which have the property to convert mechanical energy irgotat energy, and reciprocally [25]. Here, the piezoglect
phenomena are investigated within the framework of theiegtatic piezoelectric model [27] which features the alast
dynamics equation coupled to Maxwell's equations reduceddcalar electric potential constituting the quantitycihi
can be controlled and recorded during an experiment. Indméiguration considered, such a transducer is placed in
contact with the investigated elastic medium and it is usst Bs the source of the illuminating elastic waves as well
as, as the receiver of the associated echoes [40, 44]. Iisiemisode, customized electric potentials are appliedien t
active elements of the transducer, which generates a wapagating in the underlying solid. Alternatively, durirget
reception regime, or sensor-mode, electric currents @sdowith the displacement field generated by the mechhnica
waves impinging the sensor are recorded.

In the present study, the defect identification problem dresised in a comprehensive framework in dimension two
or three, which encompasses description of elastic waveagation within the probed medium as well as of compan-
ion transient piezoelectric phenomena occurring withmtlansducer. This approach is based on the recent progress
concerning the mathematical treatment of piezoelectitsdtucer models in association with the development of-a per
formant and highly accurate simulation tool [27]. Therefahe fully-coupled problem arising due to the presence of
the piezoelectric transducer is taken into account. Soreeifipissues arise in this context: Firstly, the presendb®f
piezoelectric transducer induces an electro-mechaniegllmg impacting the elastic field within the probed medium
and thus its observation in comparison with a configurateaiudring purely elastic boundary excitation and measure-
ments. Moreover, only time-dependent and discrete scaasarements of the electric field, rather than full-wavefor
data, are accessible. Lastly, in their most general formgethctric measurements are associated with an integrel ope
ator, in time and space, acting on the elastodynamic state@ted with the echoes recorded at the sensor’s interface
with the probed medium. In other words, the mapping betweemdary elastic field and measured electric potentials

lacks of injectivity and the inverse problem considerecdeigesely ill-posed.

The intended contribution of this work is threefold:
i. Derivation of a time-domaimeciprocity identityassociated with the quasi-static piezoelectric modelidensd,

a terminology which originates from Betti reciprocity tem [43]. Improving simplified models such as [20, 5] while



particularizing the studies [30, 32], this identity, whicdin be seen as stemming from a weak formulation of the problem
or the virtual work principle, corresponds to a cross-iefabetween Neumann and Dirichlet boundary data associated
with two solution states satisfying the same piezoelefigld equations over a given geometrical domain. Recipyecit
based methods are classical techniques in the field of nsinedéive testing [1], in particular those based on thealted
reciprocity gap concept [42, 13]. Therefore, the derivezhiity constitutes a key result for the proposed approach of
the inverse problem considered and a thread of the ensuuaiogenents.

ii. Application of the reciprocity theorem to a specific mbdé piezoelectric transducer, i.e. introducing the set
of coupled elastic-electric boundary conditions involedhe emission and reception regimes. This additionallresu
provides the framework for the proposition of an iterativeqedure aiming at constructing optimal electric exaiasi
generating elastic waves achieving selective focusingperuhknown defects.

iii. Construction of an indicator function of the sought gedang obstacles which are considered in the form of
traction-free cavities for simplicity of exposition. Toahpurpose, the chosen approach is based on the concepbef top
logical sensitivity which revolves around the quantifioatiof the perturbation of a given cost functional induced by
an infinitesimal defect. This method that has been develapddapplied in a variety of configurations [19, 12, 16, 6]
is extended to the present context of piezoelectric selnased measurements by taking advantages of an adjoint-field

formulation [10] which requires application of the prevétyderived reciprocity identities.

This article is organized as follows: The elastic-eleatnapled equations describing the behavior of a piezoétectr
solid are presented in Section 2, within the framework of asipstatic approximation of Maxwell's equations. The
fundamental result proven in Section 3 is a theorem estabiisa reciprocity identity associated with the piezoelect
model considered in a generic geometrical configuratiorcti®e 4 is concerned with the description of a specific
model of piezoelectric transducer, application of thedstireciprocity identity and construction of optimallyefesing
excitations. Next, the inverse problem considered, i.eted®n and identification of embedded cavities, is stated
in Section 5 and the issues arising when dealing with pientiét measurements are discussed. Construction of the
indicator function along the lines of the topological sémiy approach is presented Section 6. Finally, numerical
results associated with 2D configurations and based on #wrapfinite-elements method are shown and discussed in

Section 7.

2 Piezoelectric model

2.1 Preliminaries

Let R? with dimensiond = 2 or 3, be endowed with the euclidean scalar product denoted by

d
uv = Zul v; V(u,v) € RYx RY. 1)
i=1



The spaceC(R?) of linear mappings fronR? into itself, whose elements are second-order tensorgysats

d
(e-u)i = ZEZ'J‘UJ' Ve = (Eij) S ﬁ(Rd),Vu S Rd,

j=1
is equipped with the scalar product
d
g.g= Z Oij €ijs V(O’,E) S ,C(Rd) X ,C(Rd) (2)
i,j=1
Moreover, let£2(R?) denote the space of linear mappings fréfR?) into itself, in which any element is associated

with a fourth-order tensor such &s= (C;;;) satisfying
d
(€C:e)ij = Y Cijren, V(C,e) € L2RY) x LRY).
k,l=1

Next, letZ (R, £(R?)) denote the space of linear operators frgfhinto £(R?), i.e. mapping vectors to second-order

tensors. Such operators are associated with third-ordsote such ad = (dy;; ) satisfying

d
(d-u)ij = Z dkij Uk .
k=1

The transposed tensdr, with respect to the inner products (1) and (2), is an elernéttie spaceC (L(R?), R?) of
linear mappings from second-order tensors to vectors,tasdéefined by
d
(dTZE)k = Z dkij Eij.
i,j=1
The notation div is introduced for the scalar divergencaajoe which maps vector fields & to real-valued scalars,

together with the vectorial divergendév mapping the spacé(R?) of tensor fields taR?. Let us recall that
(divo); = div(o;),

whereeo; denotes thé-th line vector ofe, i.e. o; = o -e; with e; an element of a basis &.

To be employed in the ensuing analysis, the Green’s formaag regular enough domaii ¢ R¢ with boundary
00, are presented hereafter for the reader’s conveniencen@iny symmetric second-order tenst), then one has
for (u,v) € HY(O) x H*(O)

/div(e-Vu)vdm:—/ Vu~e~Vvdm—|—/ €-Vu-n vdo,
o o 00

wheren is the unit outward normal 080, and for any symmetric fourth-order tensdfx) and (u,v) € H*(O)¢ x

H'(0)? the following identity holds
/ div (C:Vu)-vdx = —/ Vu:C:Vvd:c—i—/ C:Vu-n-vdo.
o o 00

In the two above identities, the integrals alon@ must be understood in the sense of the duality product betwee
H~2(00) andH'/?(90).



2.2 Coupled equations of piezoelectricity

Consider a linear elastic and piezoelectric sélig ¢ R?, with d = 2, 3, not necessarily bounded and isotropic, to be
composed of two sub-domains, nam@ly which represents the piezoelectric transducer(ahthe flawed elastic solid

to be investigated. Moreover, |18t represent the background medium which is supposed to berkwinile D cc Q4
denotes the geometrical open domain occupied bytmepactly containedefect (or the set thereof) to be identified.
There exists a variety of possible choices depending ondhéguration tested, such as cavity, crack, rigid inclusion
or elastic inhomogeneity. As we prefer to keep the presemaimple, the present analysis focuses on traction-free

cavities so that the open domain of inter@st is defined by

0, =0,U07, withQ? =0,\D.

Therefore, since diéD, 025) > 0 one has)), N INL = 9N, N ONs. As a reference, the open defect-free domain
referred to as! is defined by

:QTUQ_Sa

2l

so that2,, C € for the configurations considered.
When characterizing the linear elastic behavior of sélidet p(x) denote the mass density, which is a strictly,

non-degenerating, positive function, i.e. there exist positive scalarg_ andp. such that
0<p-<px)<py, aexel

Moreover, the so-called elasticity tengdiz) € £2(R9) synthesizes the local elastic material properties at ainyt po

within the domair?, and it has the usual major and minor symmetries
Cijit = Crisj = Cjim

The boundedness of the moduli comprisifigogether with thermo-mechanical stability conditionsoadésisure the

existence of two scalars. andc, such that
0<c_le*<e:C(x):e<cilef’, aexcQ, VeecLl(RY).

The linearized strain field associated with a displacemeftfi ¢ R¢ arising in(2,, or ©, is defined as the symmetric

second-order tensefu] € £(R%) such that

1 an 8u1
(E[u])ij 9 (axi + ij) .

In the context of a piezoelectric medium, which is charazésl by the ability to convert electric energy into me-

chanical energy, and vice versa, tHtr) € L‘(R‘i, ﬁ(Rd)) stand for the so-called piezoelectric tensor synthesitting

corresponding local material properties and which exsithie following index symmetry

iij = diji-



In the ensuing analysis, the piezoelectric equations gpeesged in terms of the scalar electric potentialvhich is
associated with local electric properties that are endafesiiin the second-order permittivity tensdte) € L(R?)

defined inR¢, which is assumed to be symmetric, i.e.
€i5 = €44

Moreover, owing to the boundedness of these physical paessn@nd to the reference vacuum permittivity, their exist

two scalars_ ande, such that
0<e_ | <p-e(x)y <e|p)?, aexeR? VieR

It is also assumed that the active piezoelectric elememtsisioof an open sub-domaity. C Q- of the transducer and,

as a consequence, the piezoelectric tedseanishes outside ., i.e.
d(z) =0, ae xcR\Q,. 3

When the quasi-static approximation of the Maxwell’s etrat is valid [25, 27], then the set of coupled piezoelec-

tric field equations irf2, hereinafter referred to a&{2), reduces to

2
pa—u + apa—u —div (C:elu]) = div (d-Vy), inQ, t>0, (4a)
ot? ot
&(Q) :
div (e- Vo) = div (d":e[u]), inR%, ¢ > 0. (4b)

The positive functionx(x) is associated with damping properties of the materialstiating the backing (if any)
of the piezoelectric transducer considered. Note thatehm tp featured in the above equation is introduced for
consistency with a mass-proportional dissipation, see R§]. Therefore, it is assumed that there exists a positive
scalaray such that

0<a(z)<ay, aexcil
Moreover, both the probed elastic solid and the transdwmesidered are assumed to be initially at rest, so that thalini
displacement conditions, formally denotediasreads

Ju ¢ u(x,0) =0, %—1;(:13,0) =0, ae x€l, (5)

while the potential at timeé = 0 satisfies
Js 0 @(x,0)=0 ae xcR (6)

Note that, if homogeneous electric boundary conditiongpaogided to complete the problem (4) (see Section 4), then

the conditions (5) are sufficient to ensure the homogenenitie ielectric conditiory.

Remark 2.1 In the ensuing analysis, the computation of the electrieptial o can be reduced to the domdil.. This

model is mathematically justified in [27] based on the assionghat there exists a high permittivity contrast between



the piezoelectric elements. and their surroundings, i.e. providing that the followingndlition holds

sude\m'l,b-e-@b
info, e

Therefore, equatio¥b)is restricted to the domaifi .

<1, Vo eR

Next, given the geometrical configuration of the problemsidered, theexterior surface read82 = 9Q, U 995 \

(092 N 0N5) and it is assumed to be associated with the coupled traf@boundary condition
B © (Ciefu] +d-Vy)-n =0 onthe free-surface, (7

with n being the unit outward normal. The elastic boundary cood#tiare not complete yet fn, as no condition has

been specified on the defect boundady. An additional elastic boundary condition denofgd is defined as
B,(0D,t) : C:elu]-n=t ondD, (8)

with ¢ = 0 for the case considered of traction-free cavities.

3 Reciprocity identity
The time convolutioriu « v] at timet > 0 is defined by
t
[uxv)(x,t) = / u(x,7) @ v(x,t — 7)dr.
0

for generic time-dependent tensor fieldsv. Moreover, the combination of time convolution and singesp. double)
inner product will be denoted by x v] (resp. [u x v]), the operationx (resp. x) being thus defined by replacing the
tensor product&®” sign by the inner product" (resp. “”) in the above definition.

We are now in a position to present a key result that is paratiothe ensuing analysis as well as in the construction
of a defect indicator function. The following theorem is &ipgocity identity associated with the set (4) of coupled
equations that are reduced to a generic open doflalefined as a subset of the background medium considered and
which also includes the transducer, i.e.

QrcOcCq.
Reference to [1] can be made for an overview on reciprociptems in elastodynamics, with a particular application
to piezoelectric materials obeying the complete Maxweltisiations. Note that general reciprocity theorems forgiez
electric models that take into account thermo-acousticraagnetic phenomena are given in [30, 32]. Therefore, the
theorem provided below can be seen as a particularizatidrese results to the piezoelectric model considered, which

is synthesized by field equations (4) and which also includaterial damping. To establish this result, care is taken to

describe the featured piezoelectric solutions in the propectional spaces.



Theorem 3.1 Let (u, ) and (@, ¢) in C* ([0, T3]; L*(O0)4) N C°([0, T7]; H(0)?) x C°([0,Ty]; H*(25)) satisfying,

in a weak sense, the field equatiat@)) for ¢ € [0, T] as well as the initial conditiofd,,, then these solutions satisfy

| \(Celul +d- Vo) mx i~ (Celu] +d-VE)n x u} do
_ /m [(e Vo —deu)) nxp— (Ve —d:ela])n x ¢} do, t€[0,T7. (9)
Proof For simplicity of expositign, a formal derivation of idetyti(9) is presented based on assumptions of additional
regularity, i.e.
(u, ) and(a, ¢) in C*((0,Z3); L*(0)?) N C* ([0, I]; H(O)) x C*([0, Iy]; H' (),
while discussion of the interpretation of this relationhe ttase of minimal regularity is deferred to Remark 3.1.

By taking the convolution and inner product of equation (dafisfied by(u, ¢) with the functionu, then after

integration over the domai@® C () one obtains

0%u ou . -
/ Poz +op—— 5 div (C:e[u]) — div (d-Vy) | xadx = 0. (10)
Using the initial conditions (5) and the properties of thewamution product, the time derivatives are shiftedita.e.
0%u ou . 0%u ou
/ ( BTl +ap 815) tudm—/ ( 9z + ap 8t> *u de. (12)

The regularity assumptions implies that the sdiw (C: e[u]) + div (d- V) is a square integrable function of space,
although this is not true in general for each term of the suenvdxtheless, for ease of reading, each of these terms are
formally handled independently in the next equations.

Using the Green’s formula twice, the purely elastic termli@)(is replaced as follows

/OdiV(C:s[u])thd:v:/Odiv(C:s[ﬂ])tud:n—i—/ao(C:s[u]-ntﬂ—C:s[ﬂ]-ntu) do. (12)

Moreover, the electric term is also recast using Greenimnfta as

/Odlv(d Ve)xadr = /V(p*dT elu ]d:c+/ao(d-V<p)~ntﬁdo—.

Next, asd(x) = 0 whenx ¢ Q, and on noting tha®2,, C Q, C O, then the volume integral at the right-hand side
of the previous equation can be restricted to the dorfiain Then, application of Green’s formula in this subdomain,

entails

/ div(d-Vy)xade =
o

The intermediate equalities (11-13) are then substitut€ild) and the resulting equation is simplified by noticingtth

div(dT:(s[iL])*cpd:z:—/652 (d":ela)) n *goda—i—/ (d-Vy) nxudo. (13)

Qp o0

w is also solution of (4), which leads to

/ div(d-V@)xudr — div(d":e[u]) x pdx =
o

Qp

/ {(C:elu] +d-Vy) nxu—C:elu] nxu} da—/ (d":ela])-n * pdo.
20 o0p



In a similar fashion, by interchanging the roles@fu and g, ¢ in (13), the termdiv (d- V) xu can be replaced

accordingly in the previous equation, so that one obtains

A {div(d":e[u]) x p —div(d":elu]) x p} dz =

{(C:e[u] +d- Vo) nxu— (C:ela] +d-V@) nxu} dcr+/ {(d":e[u]) m *@ — (d":e[a])-n ¢} do.

00 o0p

The proofis concluded by using equation (4b) far ») and(w, ¢), which finally yields

A {div(d":efu]) x p — div(d":e[u]) x p} dz = . {div(e- V) x pdx —div (e- V@) * ¢} dx

:/ {(e:Von)xp— (e-Vp-n)*p} do.
op

Remark 3.1 It may not be clear mathematically whether the integratedratary terms at the left-hand side of identity
(9), i.e. those involving elastic stresses, exhibit sufficiegtilarity in time for the convolution products to be defined
properly. However, for solutions having minimal regulgrisuch as weak solutions, then these terms can be recast as
volume integrals which actual definitions turn out to be riggs in a functional sense. More precisely(if, ) and

(@, ¢) denote solutions belonging €' ([0, Ty]; L*(O)*) NC ([0, Ty]; H'(O)?) x C°([0, Ty]; H'(Q2,)) and satisfying,

in a weak sense, the field equatiat@) for ¢ € [0, T7] as well as the initial conditiold,, then one has frorda)

/ (C:elu] +d-Vy)n x ado = Ou (8u
20

Opgt E—i—au) dw—i—/o(C:e[u]—i—d-ch)ée[u]dw,

together with the companion equality obtained by interdiag the roles ofe, w and 4, ¢. In the above identity the
right-hand side terms appear to be properly defined, theeetloe proven reciprocity relatiof®) for such solutions is

valid.

4 Piezoelectric transducer modeling

4.1 Geometry and boundary conditions

In this section, a mathematical model associated with teegalectric transducél,. is presented. As a beginning, the
transducer geometry to be used in the ensuing analysis éffisge The piezoelectric domain, C €2, is assumed to

be composed of a numbafz of active piezoelectric bar’, such that

Np _
Q= JO, with Q,NQ%L=0ifi#j.
=1



The external boundary of each bar includes two open surgeested’y andI'¢, respectively referred to as cathode

and anode, and which are characterized by
00L =T¢UTIUT? with TSNT¢=T¢NT =T/ NT¢ =0, QL connected T¢ # 0,

andT'? designating the remaining part 6f)%,. Figure 1 describes the standard geometry for the transduncethe

underlying solid of interest.

| MV 47 LT

ag

Figure 1: Schematic of transducer geometry with e\gz = 3 (left) and electric circuit between piezoelectric

bar Q% and generatoqright).

Boundary conditions for the electric potential can now bec#jied on these different surfaces. On the one hand,
for a given bar2%, the boundary condition to be imposed on the corresponditizppdel’¢ must allow the different
transducer regimes, namely emission and reception modethe®ther hand, the anodi¢ is conventionally grounded

at zero potential which is therefore associated with thedgeneous Dirichlet condition

Moreover, on the remaining bar bounddry and on introducingD = —e-Vy + d" : e[u] as the so-calleélectric-
displacementield, then it is proven in [27] that it is a good approximatimnconsider the following homogeneous

mixed boundary condition
Np
Dn=(-eVp+d:eu]) n=0 on U I’
i=1

corresponding to zero normal electric-displacementpand which completes the set of boundary conditions imposed

on 9. Next, in a simplified cathode model [40], the electric cteang thei-th cathodd’s is given by
Qi(t) =— D~ndo:/ (e Vo —d":elu]) ndo,
r¢ r¢

Each pair of electrodes, i.e. a pair cathode-anode, is cb@did¢o a generator (see Figure 1) with common internal
resistance? and which imposes an electric potenfigsuch that the electrode-receiver regime is associatedith =

0, while V;(¢) # 0 is e.g. a pulse during the emission mode. Therefore, owil@htms’ law, one has
Vi(t) — ¢ire = RLi(t),

10



wherel;(t) is the electric current flowing into the corresponding p&eotric bar. Since intensity and electric charge

satisfyI; (t) = dQ;(t)/dt, then the following mixed boundary condition is finally olntad

d
oire = Vi(t) — R

7 . (e:Vy—d":elu]) ndo

Then, the coupled electric boundary conditions are syirbddy the following set of equations denoted&s:

d
wz%(t)—RE (Ve —d":elu])-ndo, onT¢, ie{l,...,Ng}, t >0, (14a)
ry
B,({Vi}) :§ ¢ =0, onT¢, ie{l,...,Np}, t >0, (14b)
(e-Vg@—dT:e[u])n:O, onT], ie{l,...,Ng}, t >0. (14c)

For fixed timet, in order to define the electric potentiain the proper functional space, one introduces
W= {y € H () | » = 00onT{ andy is constant od™ fori =1,...,Np}.

Therefore, the above space is defined in such way thatjf) € W then the boundary condition (14a) is well defined

while (-, t) being necessarily constant aloRg

Remark 4.1 Consider the complete piezoelectric problem constituietthe field equation&(€2), initial conditionsJ,,
andJ,, as well as boundary conditio®., B, andB, ({V;}) with {V;(¢)} in L2([0, 77])V=. Then this mathematical
problem lies within a classical functional framework whizllows to prove that there exists a unique solutien ¢),

see [27], such that

(u, p) € CH([0,T3]; L2 () n ([0, T3]; H*()Y) x C°([0, Tp); W).

4.2 Reciprocity identity involving piezoelectric transdwcer model

Theorem 3.1 does not specify any particular boundary cmmditin terms of displacement or electric potential fields,
therefore identity (9) is satisfied in a generic configumatid > 2, when the quasi-static approximation of piezoelec-
tricity holds. The following corollary is a direct appligan of this theorem when the set (14) of boundary conditisns i

introduced. This situation corresponds to the modelingmeaoelectric transducer in emission and reception modes.

Corollary 4.1 Consider(u, ¢) and(a, @) in C* ([0, Ty]; L2(0)?)nC([0, T;); H*(O)?) x C°([0,T}]; W) satisfying,
in a weak sense, the field equatia®@) for ¢ € [0, 7}], initial conditionsJ, andJ4, as well as the electric boundary
conditions®,, respectively associated with the electric inp{its(¢)} and {V;(t)} in L2([0, T;]) >

Then the following identity holds fare [0, T}]

1 &

O{(C:s[u]—l—d-Vg&)-ntﬂ— (C:eli] + d-V@)-m x u} do = EZ(@W «Vi — opre *ffi). (15)

i=1

d
dt J,

11



Proof The starting point to prove this corollary is equation (MeTime derivative of the right hand side of (9) is recast

as
I(t) == %‘/39 {(e-V(p— dT:e[u]).n * P — (GVQZ? —dT:e[fL])"n * (P} do
iz {( Vo —d elu))n « ¢ — (Ve —d :ela])n x g} do,

where the homogeneous conditions (14b) and (14c) have lzsehta get rid of the terms respectively integrated over
I'¢ andI'}. On noting that, by definition of the spat, o (-, t) andg(-, ¢) are constant along ea&li so that they can be
removed from the integral ovéi¢, and using the property of the convolution product with ezgpo the differentiation

when homogeneous initial condition suchJgsholds, one finds

Np
o d . o
t):Z@*E/F eVp—d: ndCf—ZsO* / €V —d':elal) ndo
i=1 ;

This equation is finally simplified using boundary condisd4a) which finishes the proof. O

4.3 Optimally-focusing excitation

To probe the flawed soli2? it is convenient to optimize the illumination generated bg piezoelectric transducer so
that focusing is achieved over a region of interest. Theggnef the interrogating elastic wave is thus maximized at a
prescribed location in order to enhance the signal-toen@iso associated with this sampling point. Given the gdogme

of the transduce®, considered, then the electric inpyts;(¢)} applied on the different piezoelectric bars can feature
time-delay parametergr;} chosen so as to obtain focusing at the desired location ésge,[26, 27]). Despite its
apparent simplicity, this process relies strongly on thevdedge of the material properties of the transducer and of
the underlying medium. Moreover, the focusing points, véfisociated parametefs;}, are chosen a priori, which
generally imposes to sample a large region to obtain reiaés$ults. To circumvent these limitations, the proposed
approach aims at optimizing the excitation to achieve fomuen the sought defect(€) but without having recourse

to any user-chosen parameters. This method finds its rothe iterative time reversal approach of acoustic fields and
the decomposition of the so-called time reversal operalochveigenvectors are associated with waves focusing on the
scatterers [36, 38, 37, 24].

Consider the propagation operator for the flawed domain e s
Po: Vi e L2(0, )Y —  {ope} € OO0, T)N"
such thatu, ) satisfies®(Q2,), Ju, T, Bert, Bu andB,({Vi}),

with its defect-free counterpaR associated with the probleg(Q2) in the background domain for which the boundary

condition®B,, does not hold. As the solution potentiakatisfies the following estimates [27]

Z ||<P\Ff

oz =T Z (zup) (ors)* < Tep Z IVillZ2(0,230)- (16)
=1
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wherec, > 0, thenP, andP are linear and continuous operators. Next, one introdingesrnoothing operator
St {wi} e L0, DY — {sxui} € HY([0, 7)™,
where the symbaot is a positive causal time-domain function which Fouriensfarms satisfies
(1 + w?)28(w)| poe(m) = €5 < +00, (17)

with ¢, > 0, which implies, based on Fourier transform properties sardé¥al’s identity,

NB NB
ZHS*WH%I([O@]) < CsZ||1/fi||%2([o,Tf])- (18)
=1 1=1

Finally we introduce the time reversal operator
R A{vi()} € GO0, )Y —  {wu(Tp — )} € CO([0, )"

Consequently, we consider the composite opefdtor [R S (P, —P)] which maps electric inputs to the time-reversed
counterpart of the regularized potential residual assediwith the perturbation induced by the obstacle D (or the se
thereof). Therefore, it is expected that the eigenfunstioh? that are associated with the eigenvalues of largest
amplitude, if they exist, correspond to excitations getiegawaves that focus on the sought defect(s). A statement
motived by studies [36, 37, 24]. The operator main propertius characterized by the following theorem which relies

strongly on Corollary 4.1 and thus on Theorem 3.1.

Theorem 4.1 The linear operatof{ = [RS (P, — P)] : {Vi} € L*([0,T;])Ne — {4;} € L?([0,T;])V# xadmits a

countable orthonormal basis of eigenvectors associatéi @al eigenvalues accumulating at zero.

Proof One has to prove that is (i) self-adjoint and (ii) compact. First one proves (ig.i#H is self-adjoint with respect

to the L? inner-product in0, 7;] that is defined by
- Ng 1y .
(11 70) g e = 22 | nwvoa.
On notingP, ({Vi}) = {¢n,} andP({Vi}) = {p:} as well asP, ({Vi}) = {@»,} andP({V;}) = {:}, then one has

- No o T -
(VD ) o =2 / 5% (s — i) (Ty = ) Vi(t)

Np
= [S* (3 (woi— v i)

=1

(75)

based on the definition of the time reversal operator, thpgtes of the convolution product and the fact that} are
compactly supported and causal functions. Next, owing fmitien of operatorP and Corollary 4.1 with the domain

O coinciding with the background geometry, i®@.= €2, one has



using (7). Similarly, definition of?, together with the piezoelectric reciprocity identity fovetconfiguratiorO = €,

based on (7) and (8) yield

Np N d
Z@Di*VZ— = Z@Di*VZ— — R— {C:elup]'m xu, —C:eltp] n xupy} do.
i=1 i=1 dt Jap

whereu, andu , are the displacement field solutions of the complete pientet problem in2,, respectively associ-
ated with the potential§y,,; } and{¢,;} on the electrodes. Owing to (8), i.e. the boundary condifignmposed on
the defect boundary, then the integral al@hg vanishes in the right-hand side of the previous equatioroaedinally

obtains v
(qupxﬁanmmM,—F*(g;¢m—¢»*m)aw
Np

(Vi [s % (Boi = 2] (1)

N
Il
-

= (VR HA) Ly v
which proves the self-adjointness of the operéafor
Then one proves (ii), i.e. th&{ is a compact operator. L€/}, be a bounded sequencefid([0, 7;]) V& with

{i}n = H({Vi}n), then as a consequence of estimates (16) and (18) one has

H{wi}nuél([oj}])NB < Tcp CS||{‘/;}7Z||%2([07’]}])NB7 Vn > 1.

Therefore, the sequenge; },, is bounded ini7 ([0, 77])V# so that by Rellich theorem there exists a subsequence that
converges in.%([0, T;])V# which, by definition, induces the compactness of the opefato

The proof is concluded by invoking the spectral theorem. O

Construction of optimal excitations. Owing to Theorem 4.1, the operaf® S (P, — P)] admits a countable set of or-
thonormal eigenvectors. Yet, the interpretation of theégerdunctions are beyond the scope of this study, nonetbéle

is expected that the eigenvalues of largest amplitude apzeded with eigenfunctions corresponding to waves tadia
by the different scatterers present within the probed nrad&6, 37, 24]. Therefore, one can iteratively define electri
inputs so that the emitted wave will converge to the eigection associated with the eigenvalue of largest amplitude

(in the case where its multiplicity is one), and thus targie¢ésstrongest scattering obstaéleo be identified.

—Let{V;}o € L?([0,Tf])N= denote the initial input
— Compute{W;},, = [RS (Po — P)]({Vi}n) (19)

— Define{Vi}, = {Witn/I{Wi}nll o (j0,13))

Discussion and assessment of this approach capabiligetederred to Section 7. Note that this power iteration me&tho

can be advantageously superseded by Lanczos iteratiopg}d8 extension is however left for future work.
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Remark 4.2 The purpose of introducing the smoothing operafas twofold: i) From a theoretical standpoint to en-
force the compactness of the operatband thus the convergence of the above algorithm, and ii) &igoractical point

of view, to damp the highest frequency phenomena occurtirigglan experiment or a simulation which could therefore
pollute the proposed iterated procedure. In practice, thsthing functiors(¢) is chosen as a causal approximation

of the Dirac delta functiomn ().

5 Measurements and inverse problem

5.1 Definition

The inverse problem considered consists in detecting tkeawn defectD and determining qualitatively its topology
and geometry. To do so, the doma&}y is illuminated using a given set of source functigié} € L%([0, 7}])V= im-
posed on the piezoelectric transducer’s cathodes. Thitaesinterrogating electro-mechanical fighd°s, :°°%), to be
measured, is the solution of the complete piezoelectriolpro described b¥(2,), Ty, T, Bere, Bu (0D, 0) andB4({V;}),

i.e. equations (4-8) and (14), and one has
(u®®S, %) € C' ([0, Ty); L2 (2,)1) N C ([0, Tp); H' (2,)7) x C°([0, T); W).

To handle the inverse scattering problem considered, d@risidered that the only available measurements are thieielec

potentials on théVg cathodes of the transducer, therefore the defehis to be characterized from knowledge of

obs Ne 0 Np
{¢™e ) e 0. ). (20)

5.2 Measurements and ill-posedness

Given the nature of measurements (20), a first question cosdee possibility of reconstructing the displacemendfiel
u® on 90, N 9NZ. Answering positively this question would ensure the gtifiorward applicability of existing
inversion strategies, in particular of a class of so-catjedlitative (or sampling) methods using such remote elasto-
dynamic measurements, see e.g. [4, 31, 15, 12] and the me&sraherein. To address this question, the idea is to
establish an explicit relation betwembjmmaﬂg and the measured potentl,a‘fbs‘ri on a given electrod&§ with
te{l,...,Ng}.

Let (Gy(x,t), ®¢(x,t)) denote the fundamental piezoelectric solution associattithe electrodd’;, defined as

the solution of the problerg (), i.e.

9*Gy oG, . . i
P 5 + ap—g= div (C:e[Gy]) = div (d-VP;), inQy, t >0,
div (G-VCI)@) = div (dT ZE[G@]), inQp, t>0,

15



together with electric boundary conditiofis, ({V; }) with sourceV; (¢) = d;¢ 6(t)

b, = (Sig&(t) —R d

= (VP —d":e[Gy])-ndos, onI§, ie{l,...,Ng}, t>0,
ry

®, =0, onT¢, ie{l,...,Ng}, t >0,

(e:V®, —d":e[G]) m =0, onl?, ie{l,...,Ng}, t >0,
which corresponds to the situation where thilh electrode has been excited by an electric Dirac deltatfom. To

define completely G (z, t), ®,(x, t)) the following mixed elastic boundary conditions are added:
(C:e[Gel+d-V®) n=0 ondQ,\ (002, N9NQ;) and G, =0 ondQ NIy,

which are conditions satisfied at the transducer boundaggther with homogeneous initial conditiadhsandJs. Note

again that in the configuration of interest which involvesrgarnal defect, one ha¥, N 9L = 90, N Q.

Remark 5.1 The fundamental piezoelectric solution considered camtezpreted as the limit solution obtained using

parametrized and uniformly bounded source teiig, n) € L' ([0, Ty]) with V; (¢, n) — 8, §(t) whenn — 0.

Existence and uniqueness results can be shown, and oneatabehsolution(Ge(x,t), ®¢(x,t)) can be used to
define double-layer potential representations of the gkemdric solutions. Now, applying, formally, Corollaryl4dto
(Ge(m, 1), Dy(w, 1)) and(u, o) in O = Q; leads to

Np

d
e =Y Pype * Vi + R— (C:e[G(] + d- V) nxudo, (21)
— : dt Joornoas
which characterizes the measured electric potential aléwtrode/ € {1,..., N} as a double-layer potential having

the displacement fiele®s on 92, N 9 as its density.

The measurements (20) considered, consist of a numh¥jaime-dependent scalar functiop8® on I'¢ corre-
sponding to a time-dependent spatial average of the thireergional vector field:°®s at the interfaceéQ, N 902
between the probed domain and the sensor. Therefore, mamﬁmenu"bjaﬂmmg on the observation surface can-
not be reconstructed uniquely from the knowledge of thetgtepotentialy°®s on all the electrodes. For example, the
measurements are invariant with respect to the geomesgioainetries of the sensor considered (classically a cyf)jnde
More precisely, on using previous representation (21 graming whether or not the mapping between elastic fiett an

measurements is injective reduces to characterizing thapace of the integral operatéf defined by
K: uwel([0,T7, H/*(09, N 092s)") — Kue C[0,T3))N"

such tha{ Ku), = / (C:e[G) +d- V&) -nxudos, (e{l,...,Np},
IQrNONs

whereuw is solution of the fully coupled piezoelectric problem.
One can conclude that the measurements (20) at hand in thieproonsidered are markedly poor in terms of avail-

able informations for the following reasons: i) The use @& thezoelectric transducer induces an electro-mechanical
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coupling which impacts the observation of the field scatténethe sought obstacle compared to a configuration em-
ploying purely elastic boundary conditions and excitatignThe measurements involve remote boundary obsenation
on 992 and spatial averaging of the probing elastodynamic siét&arising inQ2 ¢ Q,,. iii) Only time-dependent
scalar, rather than vectorial, quantities are availabdeciicumvent these limitations, the approach proposed]indB-
sists in considering the identification problem within thneit geometric configuration of a slender piezoelectrig bar
which an explicit relation between the measured electrieqttal and the elastic displacement field&t, N 05 can

be established by asymptotic analysis.

6 Topological sensitivity approach

This section concerns the construction of a defect indidatoction based on the concept of topological sensitivitgt a

on an adjoint-field based approach that uses the derivegtoedy identity (15) of Corollary 4.1.

6.1 Presentation

Identification of the defecD is based on the availability of electric potential measiegrts of the form (20) during

the time interval0, 7;] and corresponding to a coupled probing elastodynamidréestate(u°s, x°°) arising in the
flawed solid and the transducer due to electric excitati@sqibed on the electrodes. The discrepancy between a
trial configuration(2;, and the unknown domaifl,, is evaluated by means of a cost functiofiah terms of a given
misfit density function. Such a misfit function is chosen sdaasvaluate the gap between observatigaﬁﬁrs and
measurements® . of the potential solution associated with the trial flawelits@* . Numerical experiments presented

in this work are based on a commonly-used least squares fuisfiion, i.e.
1y Ne

e =5 [

where the experiment duratidh appears as an adjustable parameter.

obs

. 2
Pire — @jre | dt, (23)

The topological sensitivity of the cost functional (23) isré defined as its sensitivity with respect to the creation
of an infinitesimaltraction-free obstacl®f characteristic size at a given locatiore € Q4 and formally defined by
D,.. = z + aD in terms of a characteristic radias> 0 and a normalized open surfatecontaining the origin and
specifying a chosen shape (egis a unit sphere for a nucleating spherical cavitRif). The corresponding trial open

flawed domain is defined such that

05 = 0as = 07 U(Q\ Do)

In 2, -, the prescribed electric excitation gives rise to a couptate(u, -, ¢, ) that can be conveniently decomposed
by linearity intow, = = uq, , + Va2 aNdp, = = |, . + a, =, Where the free-field solutiofu, ¢) is the response of

the referenceefect-freelomaing?, i.e.

(u,p) satisfies €(Q), Tu, Ty, Bere andBy,({Vi}), (24)

17



while (v, 2, %4, -) denotes the perturbation induced by the nucleating in§imital obstacle, such that
(Va,z,Va,z) SOlVes E(Qq.2), Tu, Tg, Bert, By(0) andB, (0D, », —C:elu]-n). (25)

Following earlier works on topological sensitivity, e.45] 21, 12], one seeks the asymptotic behavidi(ef, .; T})

asa — 0 through an expansion of the cost functional (23) abfau -, va.=) = (uq, ., ¥, ) to first order w.r.t.

('Ua,sza,z) = (ua,z —UQ, . Paz — @\Qayz)i ie.
I(@az:Ty) = I@T) + (% T (Yaz) + o(l[va =) (26)

wherelim,_ ||14,2|| = 0 andJ’ is the derivative off in the direction of the field perturbation.

Owing to first-order Taylor expansion of the misfit functiome has

Ty Nz

(5 T7)](Ya,2) —/O > (- chbS)‘Ff P,z re At (27)

1=1
Evaluating (27) is done by quantifying the leading asymipta¢havior in asymptotics (26) as— 0. One possible way,
along the lines of the so-called direct differentiation mggzh of parameter or shape sensitivity analysis [23], ists1s
in seeking the asymptotic behavior®f . onT¢ fori € {1,..., Ng} and plugging the result into (27). As previously
discussed on several occasions [10, 6], however, a moreairfgsmulation for actual evaluation @f (¢, . )] (¢a,=)

can be set up using an adjoint-field based approach and iseztiogre.

6.2 Piezoelectric sensor model
6.2.1 Adjoint-field formulation

The key idea of the adjoint formulation stems from treatimgintegral in the right-hand side of (27) as one of the terms
arising in the reciprocity identity (15) linking two piezieetric states, in which one state is the perturbation., ¢ -)
while the other is chosen as a so-called adjoint solutior?) to be defined appropriately.

Consider the electric inpul{siZ-} defined by the time-reversed counterpart of the measuremesituals, i.e.

Vi(t) = (p — gpobS)lrg(Tf —t) forie{l,...,Ng}, t €[0,T}], (28)
and let(w, ¢) be a piezoelectric solution in the reference defect-fremaln(2 of the following problem
(,p) solves €(Q), Ju, Jg, Bere andBy, ({V;}). (29)

Now, on applying Corollary 4.1 to the solutiof8, ¢) and (v, =, ¥, =) in the subdomail® = Q,_ . and owing to the

corresponding initial conditions and applied excitation&5, 29), then equation (15) is recast in

Np
R% {(C:e[ﬁ’]'i_d'V@)'ni'va,z_ (C:E[va,z]‘Fd'VdJa,z)'niﬁ} da':zf/i*wa,zﬂ“f- (30)
a2 =1
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On using definition (28), then the right-hand sides of theat¢igus (27) and (30) turn out to be equal, therefore, and
owing to hypothesis (3) and the relevant boundary conditinr(25, 29) on the infinitesimal defect bounda®,, . as

well as on the exterior surfa¢#?, . \ 9D, ., the derivative]’ reduces to

T (@3 TH)](a,2) ZV*z/Jaz|pc: i {C:elu] nxit+C:e[t] nkxv,} do. (31)
0Da, =

6.2.2 Topological derivative

Next, the so-calletbpological derivativdunctionT can be defined through the identity

V(03 T (W) =, 1(a) T(:D,Ty) + oln(a)),

where the functiom(a) vanishing in the limitz — 0. The coupled piezoelectric stafe, -, 1., .) exhibits an asymp-
totical behavior, however, as emphasized in the equatib)) (e is only interested in the leading contributiorgf,
ondD, . asa — 0. Since the sampling point varies within the elastic domaifs, i.e. not within the piezoelectric
material domairf2.., then in the limita — 0 the coupled boundary condition at the transducer interfdice N 05
does not enter the asymptoticsaf .. Consequently, the expressions established by local sigdlyr purely elastic
configurations in, e.g., [45, 21, 22, 3], remain valid in tliegent situation and hence, the right-hand side of equation
(31) can now be computed by inserting the appropriate asytinfitehavior ofv, ., see details provided in Section 3 of
[6]. Finally, with the second-order stress tensor defined(a$ = C:[v] in £(R?) and the symbok denoting a time

convolution involving the inner product (2), one obtains
n(a) = a’|D], (32a)

du du)(z)’ (32b)

T(2iD,1)) = R (olul cAD)solal + 5 5« T

where the so-calledlastic moment tensed € £2(R¢) depends on the shape of the infinitesimal traction-freeaahest
D, . that is featured in the asymptotic analysis, while regasltE this cavity shapg = p (see, e.g., [22]).

The computation of the indicator functidhrequires the knowledge of the free-fieldand the adjoint-field: re-
spectively defined by the problems (24) and (29) in the refegelefect-free domaift. Moreover, the parameted
entering the definition (32b) can be computed for any anlyitshapeD by solving canonical elastostatic exterior prob-
lems [22]. However, it can be found in a closed form when treaed obstacle shagin relatively simple, e.gD
being a sphere iR?. Such a closed form is preferred for the purposes of the ptesedy, and the formula established

in previous studies are listed hereafter for the readeriseoience.

Consider the case whefg, is a homogeneous linear elastic and isotropic solid charized by shear modulys

and Poisson’s ratio, so that the elasticity tensor reduces to

C_Q/L Ist+ ﬁ[@[
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whereZ®™ and I denote respectively the symmetric fourth-order and se@wddr identity tensors. Then, for the
configurations addressed in this study, the material paea (32b) reduce to the following expressions depending
on the chosen shage: For the case of a spherical (resp. circular) cavity nuaigah the 3D (resp. 2D) elastic body
considered, one ha®| = 47 /3 (3D) or|D| = 7 (2D) and from [21]

_ 30 =) [szeym_ 1450
A— T [5Isy T V)I ® I] (3D) (33a)
AL |:2Isym - iL B I I] (2D plane strain) (33Db)

Remark 6.1 Note that the previous developments are not intrinsicaitjtéd to a choice of elastic boundary conditions
such ag(8) and the proposed approach can be easily generalized to tee chinhomogeneous elastic scatterers. In
such a case, the parameteds and 5 depend additionally on the assumed elastic parameterseointinitesimal trial

obstacle. In the case of a small nucleating spherical atasttlusion, closed-form expressions can be found in [16].

Further generalizations of the topological sensitivitypapach include the case of traction-free cracks [7]

7 Numerical results

7.1 Implementation

Figure 2: Left: Schematic of 2D configuratio». Right: Zoom on transducer characterized Bip = 15,

delineated piezoelectric ba&r? and amplitude of total displacement fiakd in nmat timet, = 23us.

Typical configurations in the field of non-destructive tegtare not unbounded, however piezoelectric transducers

are commonly employed to investigate locally such strustur.e. within areas that are small with respect to the size
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of the overall body which can then be seen as unbounded atdéfeensidered. Therefore, the numerical experiments
presented hereafter correspond to the probing of a two+tkioral and homogeneous half-sp&g An example ge-
ometry of a studied configuration is described Figure 2 wiiditivand height corresponding respectively to dimensions
along axeg; ande,: The transducer of width= 30mm is composed oN g equidistributed bars of widtly2 Nz and
height6.3mm. A 5mm-height dissipative backing denofeg lies atop the domaif ., so that the dissipation parameter

a in equation (4) is characterized bypp oo = Q. Finally, the inter-bar spade, \ (25 U) is considered to be filled
with a soft isotropic elastic matrix. Chosen physical pagtars are summarized in Table 1 and correspond to a standard
PZT piezoelectric material [40]. Note also, that common Rilsducer configurations involve a numbég of active
elements of the order of a dozen [41]. On Fig. 2, the unknoweal® embedded in the isotropic elastic meditinm

is a circular cavity, with radius = 3mm and centee = (—10mm, 45mm).

The spatial discretization relies on the spectral finiesrents method (see [17] and [28] for more details), and fea-
tured elements are associated witth order polynomial basis functions. The medif is truncated using surround-
ing Perfectly Matched Layers (PML) [18], to obtain a compigtaal domain of size 90mm90mm which is discretized
using52417 nodes. The discretized transdu€er and PML domains are respectively associated withi4 and17525
nodes. The different sub-meshes composing the global mesloapled by a standard non-conforming/non-overlapping
mortar element technique [9]. As in [27], the time discratiian is done via an explicit second-order energy-presgrvi
finite-difference scheme and the stability of the fully dete problem is guaranteed through an energy approach under
a standard CFL condition. For the simulations the time stesef toA¢ = 0.01us whileT; = 200us. Note that in order
to limit the memory requirements then the time convolutiassociated with the computation of (32b) are discretized
using a time step equals 10 At.

Figure 3 represents snapshots of incident fieJgimulated observation field°?s and corresponding adjoint field

u. In this experiment each piezoelectric bar cathbflés connected to a generator which resistance is sBt$0400

Piezoelectric bar Q¢,
61111 111.0 61122 15.4 62222 121.0 61212 21.1 P 7.75 x 103
dllg 12.7 (&11 -5.4 d222 15.1 €11 1730 €292 1700

Isotropic elastic matrix Q,\ (Qz UQp)

Ci111 8.5 Ci122 4.3 p 1.1 x 103

Isotropic and dissipative backing €25

Ci111 14.4  Cyyo9 7.22 p 1.8 x 103 « 1.8 x 107°

Isotropic elastic medium Qg

61111 37.15 61122 10.88 P 6.8 x 103

Table 1: Electric and elastic material parameters. Units redds;] = GPa[p] = kg-m~2, [d;;x] = C-m~2,

€i; given relatively to vacuum permittivity and scalar paraeret.
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|u(to)]

Figure 3: Amplitude of computed fields at timg = 45us during a numerical experiment withz = 15:

Incident fieldu, observationu®®® and associated adjoint fietd in nm.

Ohm. To compute the incident displacement figldnd generate the synthetic observatief¥, it is assumed that all

cathodes are excited using the common source function

1—cos (2nfo(t —7))| whent € [7,1/fo+ T
Vi(t;, fo) = [ (2ol )] [r1/fo + 7] fori=1,...,Np (34)
0 otherwise

with fo = 600kHz andr = 20us. electric input and corresponding measurements on tliffeeetit electrodes are

plotted Figure 4.
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Figure 4: Electric potentials inV corresponding to experiment of Fig. 3: electric inpufs with ¢ =

1,..., Np and measured residual potentials— °° on three different electrodes.

7.2 Dirichlet-type vs Piezoelectric measurements

To illustrate the issues raised in Section 5.2, compariaomprovided in this section between computed elastodymami

solutions in the defect-free mediufty for configurations involving or not coupling with the piezeetric transducer.

22



DA

E;:/ ! vv g

t

w |
rot rot
| | — | T ]
0 2.107% 4.107% 0 21073 41073
(a) Free-surface b.c.: Time-reversed incident fieldl; — ¢) (b) Dirichlet-type measurements: Adjoint fieldt)
=— div -~z
3
— ' ’ ’ P———
rot rot
| — | — | |
0 21073 41073 0 51077 1076
(c) Piezoelectric b.c.: Time-reversed incident fielil; — ¢) (d) Piezoelectric measurements: Adjoint figi¢k)

Figure 5: P-wave source: Displacements fields in linear isotropickagsound mediungs.

In the different experiments, an elastic source is placqubatt x; = (—35mm, 70mm) and it is calibrated so as to
generate purely divergence- or rotational-free forwaedstt solutionu up to interaction with the top boundary of the

domain considered. The employed body-force terms, denftechd f., are defined as
Foe@,0) = Foje e 1570t £,,0) with (13 £, 1) = [2m(fult = ) — 1)7] & (10-t071)

where the polarized amplitudes read

[(cc —x) - 61]62 - [(cc —x) - 62]61
|z — 2l +b

B T — x4
|z — x| +b

in terms of adjustable parameters sefto= 200kHz, ¢ = 8-10~2mm~2 andb = 10~®mm. On the one hand, purely

F, and Fy =

elastic simulations are presented as references: Forwéutiomhsw solving the elastodynamic equation in the half-
space€); are computed assuming traction-free boundary conditia¥ ;. Then, full-field boundary measurements of
u at 73 nodes along the corresponding suld$et N 025 of the free-surface are used to generate the adjoint spnhutio
w. On the other hand, the coupled piezoelectric problem isidened: Forward solution:, ¢) are computed in the

presence of a passive sensor, i.e. assuming (24) with ielectndition®3,(0), together with corresponding adjoint

fields @ solving (29) with source¥; (t) = ore(Ty —t)fori=1,...,15.
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Figure 6: S-wave source: Displacements fields in linear isotropidigaaund mediungs.

Figures 5 and 6 represent snapshots of the computed sawidour equidistributed instants o, 7'[. Each field
is decomposed into divergence (resp. rotational) compasteawn in the top (resp. bottom) panels. To facilitate the
comparison between them, time-reversed counterpartswhfd solutionau are plotted aside forward representations
of corresponding adjoint statés

For the two types of excitation considered on figures 5 anad@parison between Fig. a and b, as well as Fig. ¢
and d, highlights the analogies betwee(T; — ¢) andu(t): The adjoint field is predominantly of the same nature, in
terms of amplitude of divergence or rotational compondrantthe original forward solution. Moreover, the solutions
u achieve focusing in the area of the original source locatidow, comparing Fig. 5b and 5d, or Fig. 6b and 6d,
emphasizes significant differences between full-field meaments based and piezoelectric adjoint states. In tleeatas
the P-wave source (resp. S-wave) and piezoelectric maasuts, the computed adjoint field exhibits a rotationaldres
divergence) component of significantly higher relative &mg@e. Moreover, the wave-fronts appear to be relatively
distorted on Figures 5d and 6d, a phenomenon which can beratecbfor by the complexity induced by the coupling

with the piezoelectric sensor.
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Figure 7: Identification of a single cavity: Increasing numh®&¥; of piezoelectric bars (Figa—€ and com-

parison with resulf based on direct boundary measurement of displacement field.

7.3 Topological sensitivity based identification

Heuristic. Identification using the topological sensitivity basededtfindicator function is addressed in this section.
The topological derivativ&'(z ; D, Ty) quantifies the sensitivity of the cost functiorfatonsidered to the nucleation
at pointz of an infinitesimal trial cavity in the reference medidi. Therefore, the functior — T(z;D,T}) is
employed as a cavity indicator function with the heurisppach of seeking actual defect(s) at locatieret which
T(z; D, T;) attains its most pronounced negative values (i.e. suchirfinitesimal trial cavity placed there improve
the fit between predicted and actual measurements). Whilgiom (and previous studies on the same approach carried
out for other types of defects [22, 16, 6]) suggests thatefidéfects having the same location also induce a decrease
of the cost function, this proposed exploitation of the fi€ld; D, T;) is not backed by a rigorous mathematical proof
(whereas the analysis of the cost function leading to thaitief and evaluation oI (z ; D, T}) is itself mathematically
rigorous). This proposed heuristic identification apptoadl be tested on numerical experiments in this section.

The indicator function (32b) featuring polarization tené®3b) corresponding to the 2D plane strain model is com-

puted and a thresholded and normalized verdiimdefined as

A T(2;D,73) / | min T(a; D, Ty)| i T(25D,7) <0
xells

T(Z;Dvrf) =
0 if T(z;D,Ty) > 0.
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7.3.1 Single cavity identification

The identification of a single circular cavity of radius= 3mm is considered here with its center located:at=
(—10mm,45mm) (Fig. 7) ores = (—30mm,45mm) (Fig. 8). Panels a—e show the reconstructions obtainedjusin
piezoelectric measurements and an increasing nuivigeof piezoelectric bars that are commonly excited using the
source function (34). As references, results obtained ielpelastic configurations, i.e. in the absence of piezigte
transducer, are also included on panels f. These recotistradollow the methodology described in [6]: Dat&°s

correspond to simulations where transient excitationsnapesed in the form of the following applied tractions
C:e[uObs] ‘n =71(t; fo ts)Xonsuon, €2 0NN, with f, = 3-10°Hz andt, = 10 us,

with characteristic functionsa,uan,, and recording full-field measurements at 73 nodes alongafresponding part

005 U 09, of the top boundary.

(e) NB =1H

Figure 8: Identification of a single cavity: Increasing numh®i; of piezoelectric bars (Figa—€ and com-

parison with resulf based on direct boundary measurement of displacement field.

Finally, Figure 9a—c show the influence of introducing ani@idal cutoff of the normalized topological gradient

indicator functioriT which are here respectively associated with values less-tidal, —0.2 and—0.3.

7.3.2  Multiple cavity identification using optimally-focusing excitations

In this section, results based on optimally-focusing eticihs are presented for multiple cavity configurations amd

ploying a transducer composed of a numbgy = 15 of piezoelectric bars. Configuration 1 involves two cawtigth
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Figure 9: Configuration of Figure B: Comparison for the cutoff values0.1, —0.2 and —0.3.

(a) Config. 1: Two cavities (b) Config. 2: Three cavities
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Figure 10: Simultaneous identification of multiple cavities based\agn = 15 piezoelectric bars.

common radiug: = 3mm and centers; = (—30mm,55mm) andce = (30mm, 75mm) ; Configuration 2 features
three cavities located a, = (—20mm,45mm), ¢z = (0mm, 55mm) andcs = (20mm, 45mm) with corresponding
radiir; = 3mm andry = r3 = 1.5mm.

Electric inputs{V; },, are defined iteratively using the power iteration methogd (it8sented in Section 4.3:

—Let{V;}o € L?([0,T}])V= denote the initial electric input defined by (34)
— Computg(u,, ) in 2, U Qs and synthetic observatiqm2®, (%) in Q,, associated with inputV; },,
— Compute{Wi}n 11 =[RS (Po = P)I({Vitn) = {[s * (&2°° = @n)re) (T — 1)}

with filter functions(t) = x. > o(t)/=—5 e~"°/297 which satisfies condition (17) and wherg = 0.5us
Oz

- Define{Vi}ni1 = {Witni1/[{Witns1llL(o0.13))

Upon employing a regularized versidn of the cost functiory, which is defined by (23), using convolution with the
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(a) Ty (b) T, (c) T; (d) T,

Figure 11: Config. 1: Optimally-focusing excitations and iteratediaador functionsT,,.

IIII‘S

()T (b) T, (c)T; (d) Ty

Figure 12: Config. 2: Optimally-focusing excitations and iteratedigador functionsT,,.

above positive time domain functiait), i.e. such that

T; Ns
Js(e" T / ZS*|<P|1“c 90|1“c dt, (35)

then according to definition (28-29) of the adjoint stateg aotices thatw,,, ¢,,) = (—wn+1, —pnyt1). Therefore,

according to (35), one computes for> 0 the corresponding topological derivative

T, (21D,77) = Ry (olun] s AD)sofinn] +p 22 22 (2)

using polarization tensor (33b), and finally plots its thi@ded normalized counterpaPt,. Figure 10 shows the results
obtained for the standard regularized topological deiieal’,, while iterated indicator function®, are plotted on
Figure 11 and 12.

7.3.3 Discussion

Figure 7 and 8 show identification results using piezoedlettansducer with varying numbé¥z of piezoelectric bars.
The casesVg = 1, i.e. Fig. 7a and Fig. 8a, constitute typical examplestitatsrg the problem ill-posedness, which is
described in Section 5.2, due to the resulting axial synyratthe configuration considered. However, as the number
of piezoelectric bars increases, the resolution improweisthe plotted indicator functions exhibit minima that tend
localize in the area of the actual defects. Moreover, pikendigc reconstructions converge qualitatively to referefull-

field measurements based results shown on panels f, hemoba@ting the heuristic of the extension of the topololgica
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sensitivity approach to piezoelectric-sensor based measnts. The identification of the out-of-axis cavity of F&)

is deteriorated relatively to Fig. 7, a phenomenon whichlmamccounted for by the characteristic in-axis transducer
emission of elastic energy which is illustrated Fig. 3. Hinas shown on Figure 9 the reconstruction legibility can
be enhanced by introducing an additional cutoff parametéchvallows to locate precisely the global minimum of the
indicator function.

For the cases of simultaneous identifications of multipkatgaFigure 10 illustrates the influence of the distance
between obstacles and of their relative scattering sthengt factor which is correlated to the assumed illumination
The two well-separated cavities of Fig. 10a are relativedyi vocated by the global minima of the indicator function,
whereas on Fig. 10b the different obstacles are not coyrelehtified. One may also note the relative spreading of the
indicator function of Fig. 10a ; These artefacts may be aataat with the adjoint field features and discrepancy from
its full-field measurements based counterpart that areitbesicin Section 7.2.

When optimally-focusing excitations are used to probe tkedimconsidered, as in Fig. 11 and 12, the identification
results are significantly improved. Comparison betweeitatdr functionsT, andT; on Fig. 10a and 11a highlights
that a single iteration of the proposed method reduces tahbrthe previously observed artefacts. Concerningtiéera
illuminations with corresponding indicator functions fiéal Fig. 11a—d and 12a—d, then global minima tend to logaliz
in the area of the strongest scatterers in accordance vdtexpected properties of the approach that are discussed in
Section 4.3. Note that the geometric spreading of the indiidanction increases with iterations, a feature which may
be caused by the expected convergence of the iterated gfigdihtowards a harmonic solution, a phenomenon which

is described in [2] in a slightly different context.

8 Conclusions

This study concerns the investigation of an inverse s¢ag@roblem revolving around the identification of defeats e
bedded in elastic solids from piezoelectric sensor-basatr measurements. A fundamental piezoelectric recipy
identity is proven and applied to a specific transducer moked characteristic features of such inverse problem assoc
ated with electric data are discussed and a comparisonigidvith commonly used direct displacement field boundary
measurements in full, or partial, waveform. Along the limdésterative time reversal techniques, a construction pro-
cedure of optimally-focusing electric inputs is presenéed implemented. In the context of traction-free cavities,
extraction of the informations encapsulated in the avilabeasurements is investigated by way of an adjoint-field
based topological sensitivity approach, which uses theelkreciprocity relations, leading to the construction &me
non-iterative computation of a defect indicator functidhe proposed approach is deployed within the framework of a
spectral finite-elements computational platform in ordeadsess its capabilities and performances on 2D examples. F
completeness, the comparison is made with topologicaltsgtysbased reconstructions featuring full-field bowryl
measurements.

Theoretical work remains to be done to provide proper mattiead backing to the interpretation of the indicator
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function (32b), as well as to characterize the eigensystietimedterated time reversal operator introduced in Theorem
4.1. Future studies will also encompass practical and cdatipnal investigations of the expected straightforward
generalization of this work to other types of defects, antbrsions of the proposed approach in association with
topological sensitivity-based indicator functions deypald for anisotropic and heterogeneous elastic solidsallzin

addressing numerically reconstruction problems assetiaith 3D configurations remains to be done. To do so, the
design of a specific algorithm aiming at limiting the memopsttassociated with the time-domain convolutions in

equation (32b) is needed.

References

[1] J. D. AchenbachReciprocity in elastodynamic€Cambridge Monographs on Mechanics. Cambridge University
Press, Cambridge, 2003.

[2] C. Ben Amar and C. Hazard. Time reversal and scatteriagrghfor time-dependent acoustic waves in a homoge-

neous mediumlMA J. Appl. Math, 76:938-955, 2011.

[3] H. Ammari and H. Kang.Polarization and moment tensors with applications to igeeproblems and effective

medium theoryvolume 162 ofApplied Mathematical ScienceSpringer, Berlin, 2007.
[4] T. Arens. Linear sampling methods for 2D inverse elastiwe scatteringinverse Problemsl7:1445-1464, 2001.

[5] B. A. Auld. General electromechanical reciprocity tedas applied to the calculation of elastic wave scattering
coefficients.Wave Motion1:3-10, 1979.

[6] C. Bellis and M. Bonnet. A FEM-based topological sendiyi approach for fast qualitative identification of
buried cavities from elastodynamic overdetermined bogndata.International Journal of Solids and Structures
47(9):1221-1242, 2010.

[7] C. Bellis and M. Bonnet. Qualitative identification ofamks using 3D transient elastodynamic topological deriva-

tive: Formulation and FE implementatioBomput. Methods Appl. Mech. Engrg53:89-105, 2013.

[8] C. Bellis and S. Imperiale. Dynamical one-dimensionaldals of passive piezoelectric sensoMath. Mech.
Solids pages 1-26, 2012.

[9] A. Bendali and Y. Boubendir. Non-overlapping domain dexposition method for a nodal finite element method.
Numerische Mathematit03(4):515-537, 2006.

[10] M. Bonnet. Topological sensitivity for 3D elastodyn@siand acoustic inverse scattering in the time domain.
Comput. Methods Appl. Mech. Engrj95:5239-5254, 2006.

[11] M. Bonnet and A. Constantinescu. Inverse problemsastédity. Inverse Problem£1:R1-R50, 2005.

30



[12] M. Bonnet and B. B. Guzina. Sounding of finite solid badiy way of topological derivativent. J. Num. Meth.
in Eng, 61:2344-2373, 2004.

[13] H. D. Bui, A. Constantinescu, and H. Maigre. Numerickntification of linear cracks in 2D elastodynamics using

the instantaneous reciprocity gdpverse Problems20:993-1001, 2004.
[14] F. Cakoni and D. ColtonQualitative methods in inverse scattering thea®pringer, Berlin, 2006.

[15] A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoylbs Gintides, and K. Kiriaki. The factorization method

in inverse elastic scattering from penetrable bodiegerse Problem£3:27-51, 2007.

[16] I. Chikichev and B. B. Guzina. Generalized topologigativative for the navier equation and inverse scatterng i

the time domainComp. Meth. Appl. Mech. Engnd.97:4467-4484, 2008.
[17] G. Cohen.Higher-order numerical methods for transient wave equaticspringer, 2001.

[18] E. Demaldent and S. Imperiale. Perfectly matched trassion problems with absorbing layers: Application to

anisotropic acousticsSubmittegd2012.

[19] N. Dominguez, V. Gibiat, and Y. Esquerre. Time domaipdingical gradient and time reversal analogy: an inverse

method for ultrasonic target detectiowave Motion42(1):31-52, 2005.

[20] L. L. Foldy and H. Primakoff. A general theory of passivear electroacoustic transducers and the electroacoust

reciprocity theorem. 1J. Acoust. Soc. Am17:109-120, 1945.

[21] S. Garreau, P. Guillaume, and M. Masmoudi. The topaalgasymptotic for pde systems: the elasticity case.
SIAM J. Control Optim.39:1756-1778, 2001.

[22] B.B. Guzina and M. Bonnet. Topological derivative fbetinverse scattering of elastic wave3uart. J. Mech.

Appl. Math, 57:161-179, 2004.
[23] E. J. Haug, K. K. Choi, and V. KomkoWwesign Sensitivity Analysis of Structural SysteAsademic Press, 1986.

[24] C.Hazard and K. Ramdani. Slective acoustic focusiniggigme-harmonic reversal mirrorSIAM J. Appl. Math.
64:1657-1676, 2004.

[25] T. Ikeda.Fundamentals of piezoelectricitpxford University Press, 1990.

[26] S. Imperiale. Etude mathématique et numérique de capteurs piézoéleetigPhD thesis, Université Paris

Dauphine, France, 2012.

[27] S. Imperiale and P. Joly. Mathematical and numericallelling of piezoelectric sensor&SAIM: Mathematical

Modelling and Numerical Analysig6:875-909, 2012.

31



[28] D. Komatitsch and J. Tromp. Introduction to the spdotiament method for three-dimensional seismic wave

propagationGeophysical Journal International 39(3):806—822, 2002.

[29] R. Lerch. Simulation of piezoelectric devices by twudahree-dimensional finite element&EE Trans. Ultra.
Ferr. Freq. Cont, 37:233-247, 2002.

[30] J. Y. Li. Uniqueness and reciprocity theorems for lingeermo-electro-magneto-elasticitQuart. J. Mech. Appl.
Math., 56:35-43, 2003.

[31] S. Nintcheu Fata and B. B. Guzina. A linear sampling rodtfor near-field inverse problems in elastodynamics.

Inverse Problem=20:713-736, 2004.

[32] W. Nowacki. A reciprocity theorem for coupled mechaliand thermoelectric fields in piezoelectric crystals. In

Proceedings of Vibration Problemgolume 6, pages 3-11, Warsaw, 1965.

[33] A. A. Oberai, G. R. Feijoo, and P.E. Barbone. Lanczesated time reversalJ. Acoust. Soc. Am. Exp. Let.
125:70-76, 2009.

[34] R. Pike and P. SabatieScattering: Scattering and Inverse Scattering in Pure appli&d Science Academic
Press, 2002.

[35] R. E. Plessix, Y. H. De Roeck, and G. Chavent. Waveforueiision of reflection seismic data for kinematic
parameters by local optimizatio8IAM J. Sci. Comput20:1033-1052, 1999.

[36] C. Prada and M. Fink. Eigenmodes of the time reversalaipe A solution to selective focusing in multiple target
media.Wave Motion20:151-163, 1994.

[37] C. Prada, S. Manneuville, D. Spoliansky, and M. Fink. Braposition of the time reversal operator: Application to
detection and selective focusing on two scatterérécoust. Soc. AnR9:2067-2076, 1996.

[38] C. Prada, J. L. Thomas, and M. Fink. The iterative timersal process: Analysis of the convergenteAcoust.
Soc. Am.97:62-71, 1995.

[39] I. T. Rekanos, T. V. Yioultsis, and T. D. Tsiboukis. Imge scattering using the finite element method and a

nonlinear optimization techniquéEEE Transactions on microwave theory and techniqd&s336—344, 1999.
[40] D. Royer and E. DieulesainElastic waves in solids I. Free and guided propagatiSpringer, 2000.

[41] D. Royer and E. DieulesaintElastic waves in solids Il. Generation, acousto-optic iat¢ion, applications
Springer, 2000.

[42] Andrieux S., A. Ben Abda, and Bui H. D. Reciprocity priple and crack identification.Inverse Problems
15:59-65, 1999.

32



[43] J. SalenconHandbook of continuum mechanics: General concepts, thelagticity Springer, 2001.
[44] L. Schmerr Jr and S. J. Songltrasonic nondestructive evaluation syster8gringer, 2007.

[45] J. Sokolowski and A. Zochowski. On the topological gative in shape optimizationSIAM J. Control Optim.
37:1251-1272,1999.

33



