G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM. Control, Optimisation and Calculus of Variations, European Series in Applied and Industrial Mathematics, pp.209-243, 1999.

L. Alvarez-vazquez and J. M. Viaño, Asymptotic justification of an evolution linear thermoelastic model for rods, Computer Methods in Applied Mechanics and Engineering, vol.115, issue.1-2, pp.93-109, 1994.
DOI : 10.1016/0045-7825(94)90189-9

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, vol.17, issue.5, pp.1445-1464, 2001.
DOI : 10.1088/0266-5611/17/5/314

C. Bellis and M. Bonnet, A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data, International Journal of Solids and Structures, vol.47, issue.9, pp.1221-1242, 2010.
DOI : 10.1016/j.ijsolstr.2010.01.011

URL : https://hal.archives-ouvertes.fr/hal-00446550

M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.5239-5254, 2006.
DOI : 10.1016/j.cma.2005.10.026

URL : https://hal.archives-ouvertes.fr/hal-00092360

M. Bonnet and B. B. Guzina, Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework, Journal of Computational Physics, vol.228, issue.2, pp.294-311, 2009.
DOI : 10.1016/j.jcp.2008.09.009

URL : https://hal.archives-ouvertes.fr/hal-00320517

A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoulos, D. Gintides, and K. Kiriaki, The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, vol.23, issue.1, pp.27-51, 2007.
DOI : 10.1088/0266-5611/23/1/002

P. G. Ciarlet, II: Theory of plates, Studies in Mathematics and its Applications, 1997.

N. Dominguez, V. Gibiat, and Y. Esquerre, Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection, Wave Motion, vol.42, issue.1, pp.31-52, 2005.
DOI : 10.1016/j.wavemoti.2004.09.005

K. O. Friedrichs and R. F. Dressler, A boundary-layer theory for elastic plates, Communications on Pure and Applied Mathematics, vol.31, issue.1, pp.1-33, 1961.
DOI : 10.1002/cpa.3160140102

T. Ikeda, Fundamentals of piezoelectricity, 1990.

S. Imperiale and P. Joly, Mathematical and numerical modelling of piezoelectric sensors, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.4, pp.875-909, 2012.
DOI : 10.1051/m2an/2011070

URL : https://hal.archives-ouvertes.fr/hal-00869631

H. Irago and J. M. Viaño, Mathematical justification of stretching and torsional vibration models for elastic rods, Computer Methods in Applied Mechanics and Engineering, vol.189, issue.3, pp.975-989, 2000.
DOI : 10.1016/S0045-7825(99)00411-9

P. Joly and S. Tordeux, Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.1, pp.63-97, 2006.
DOI : 10.1051/m2an:2006008

URL : https://hal.archives-ouvertes.fr/inria-00527590

G. A. Maugin and D. Attou, AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES, The Quarterly Journal of Mechanics and Applied Mathematics, vol.43, issue.3, pp.347-362, 1990.
DOI : 10.1093/qjmam/43.3.347

I. M. Figueiredo, C. M. Franco, and . Leal, A piezoelectric anisotropic plate model, Asymptotic Analysis, vol.44, pp.327-346, 2005.

I. M. Figueiredo, C. M. Franco, and . Leal, A Generalized Piezoelectric Bernoulli???Navier Anisotropic Rod Model, Journal of Elasticity, vol.25, issue.1, pp.85-106, 2006.
DOI : 10.1007/s10659-006-9072-2

S. A. Nazarov, Justification of the asymptotic theory of thin rods. Integral and pointwise estimates, Journal of Mathematical Sciences, vol.84, issue.No. 2, pp.4245-4279, 1999.
DOI : 10.1007/BF02365044

S. , N. Fata, and B. B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, vol.20, pp.713-736, 2004.

S. Nintcheu-fata, B. B. Guzina, and M. Bonnet, Computational framework for the BIE solution to inverse scattering problems in elastodynamics, Computational Mechanics, vol.32, issue.4-6, pp.370-380, 2003.
DOI : 10.1007/s00466-003-0494-4

R. E. Plessix, Y. H. De-roeck, and G. Chavent, Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization, SIAM Journal on Scientific Computing, vol.20, issue.3, pp.1033-1052, 1999.
DOI : 10.1137/S1064827596311980

M. Rahmoune, A. Benjeddou, and R. Ohayon, New Thin Piezoelectric Plate Models, Journal of Intelligent Material Systems and Structures, vol.34, issue.3, pp.1017-1029, 1998.
DOI : 10.1177/1045389X9800901207

I. T. Rekanos, T. V. Yioultsis, and T. D. Tsiboukis, Inverse scattering using the finite-element method and a nonlinear optimization technique, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.3, pp.336-344, 1999.
DOI : 10.1109/22.750236

D. Royer and E. Dieulesaint, Elastic waves in solids I. Free and guided propagation, 2000.

D. Royer and E. Dieulesaint, Elastic waves in solids II. Generation, Acousto-optic interaction, Applications, 2000.

L. , S. Jr, and S. J. Song, Ultrasonic nondestructive evaluation systems, 2007.

A. Sene, Modelling of piezoelectric static thin plates, Asymptotic Analysis, vol.25, pp.1-20, 2001.

L. Trabucho and J. M. Viaño, Mathematical modelling of rods, Handbook of Numerical Analysis of Studies in Mathematics and its Applications, pp.487-974, 1996.
DOI : 10.1016/S1570-8659(96)80006-8

T. Weller and C. Licht, Asymptotic modeling of linearly piezoelectric slender rods, Comptes Rendus M??canique, vol.336, issue.7, pp.572-577, 2008.
DOI : 10.1016/j.crme.2008.05.004

URL : https://hal.archives-ouvertes.fr/hal-00574922